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1 Optimal control problem

From our assumptions of no social interactions and density-dependent competition through fecundity de-

scribed in the section “Closing the model” (see Eqs. 25 and 31; hereafter all equations refer to those in the

main text unless they have an “S”), the basic reproductive number (Eq. 2) can be written as

R0(u,v) =C (v)J (u), (S1)

for some scalar C (v) > 0 and objective function

J (u) = f0

∫ T

0
exp(−µt )xr(t )dt , (S2)

which only depends on the mutant but not the resident strategy (we leave f0 in the objective to re-scale it,

which facilitates numerical convergence). Hence, determining an uninvadable strategy (Eq. 1) poses a stan-

dard life history optimal control problem [1–5].

In the terminology of optimal control theory (e.g., [5]), we seek a strategyu∗ and resultingx∗ that solve the

problem

max
u∈U

J (u), (S3a)

where u= {u(t )}T
t=0 is the time sequence of control variables subject to the constraints

u(t ) = (ub(t ),ur(t ),us(t )) ∈ [0,1]3 and ub(t )+ur(t )+us(t ) = 1. (S3b)

Likewise, x= {x(t )}T
t=0 is the time sequence of state variables

x(t ) = (xb(t ), xr(t ), xs(t ), xk(t )) ≥ 0, (S3c)

for all t in the time interval [0,T ]. For readability, we will suppress the argument in u(t ) and x(t ), and instead

simply write u and x below. Note that referring tou andx as time sequences is a slight abuse of optimal control

terminology, where they would be called control signal (or trajectory) and state trajectory, respectively. With

this notation, the dynamic constraints are

ẋ = g(t ,u,x), (S3d)

with

gi (t ,u,x) = ai ui Bsyn(t ,x) for i ∈ {b,r,s} (S3e)

gk(t ,u,x) = b1
[
xbBb +ubBsyn(t ,x)

]−b2xk, (S3f)

which are obtained from Eqs. (24), where ai = 1/Ei , b1 = sk/Ek, and b2 = Bk/Ek. From Eqs. (6), (11), and (21),

we have that the growth metabolic rate is

Bsyn(t ,x) = K e(t , xk)xβB −Bbxb −Brxr −Bsxs, (S3g)

where body mass is

xB = xb +xr +xs, (S3h)

and the energy extraction efficiency at age t is

e(t , xk) = c(xk)

α[1−ϕ0 exp(−ϕrt )]+ c(xk)
, (S3i)
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which depends on the competence at energy extraction:

c(xk) =


xγk (power competence)

exp(γxk) (exponential competence).
(S3j)

Finally, the initial conditions of Eq. (S3d) are

xi (0) = xi 0 for all i (S3k)

and we do not consider any terminal conditions for Eq. (S3d).

2 The Pontryagin Maximum Principle

Necessary first-order conditions for maximizing the objective J (u) with respect to the controls throughout t

are given by the Pontryagin Maximum Principle (PMP) [5–7]. The PMP states that if (u∗,x∗) is a solution to the

optimal control problem (S3), then an associated function, the Hamiltonian, is maximized with respect to the

controls when evaluated at (u∗,x∗) for all t ∈ [0,T ]. The Hamiltonian for problem (S3) is

H(t ,u,x,λ) = f0 exp(−µt )xr +
∑

i∈{b,r,s,k}
λi gi (t ,u,x), (S4)

where λi is the costate variable associated to state variable i and λ is the vector of costates. Here we also drop

the argument of λi (t ) and write simply λi . A costate variable gives the marginal value of the corresponding

state variable; that is, it is the effect on the maximized objective J∗ for a marginal change in the corresponding

state variable [8]. Thus, we now proceed to maximize the Hamiltonian to obtain candidate optimal controls

u∗ that satisfy these necessary conditions for optimality. To simplify the mathematical exposition of the PMP,

the following derivations focus on the case of inactive state constraints; that is, we assume that Eq. (S3c) holds

with the strict inequality. This simplification is justified since for any interval [t1, t2] ⊂ [0,T ] with xi (t ) = 0 for

i ∈ {b,r,s}, we have that ui (t ) = 0 (see Eq. S3e). Moreover, our numerical solutions indicate that xk(t ) is never

identically zero along the optimal solutions (e.g., Fig. 4 in the main text). For an overview of the the PMP for

optimal control problems with state constraints, see [9].

For simplicity of presentation in the remainder of sections 2-4, we will explicitly write the arguments of

a function only when defining the function and will suppress their writing elsewhere, except in a few places

where it is useful to recall them.

Due to the constraint ub +ur +us = 1 (Eq. S3b), we set ur = 1−ub −us and only two controls must be

determined: u∗
b and u∗

s . Using Eqs. (S3e) and (S3f), collecting for Bsyn in Eq. (S4), and evaluating at (x,λ) =
(x∗,λ∗) the Hamiltonian becomes

H(t ,u,x∗,λ∗) = f0 exp(−µt )x∗
r +Bsyn(t ,x∗)φ(u,λ∗)+λ∗

kξ(x∗), (S5)

where

φ(u,λ) = ubσb +usσs +arλr (S6a)

ξ(x) = b1xbBb −b2xk (S6b)
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and

σb(λ) = abλb −arλr +b1λk (S7a)

σs(λ) = asλs −arλr. (S7b)

We thus seek to maximize Eq. (S5) with respect to u = (ub,us).

The derivatives of the Hamiltonian (S5) with respect to the two controls (ub, us) are (see Eq. 10 on p. 126

of [7])

∂H(t ,u,x∗,λ∗)

∂ui

∣∣∣∣
u=u∗

= Bsynσi for i ∈ {b,s}. (S8)

If Bsyn > 0, then the Hamiltonian is maximized with respect to ub and us depending on the signs of the switch-

ing functions σi and, because of the constraint that ub +us ≤ 1 (Eq. S3b), also depending on the sign of the

difference

σs −σb = asλs −abλb −b1λk. (S9)

By definition, the costates satisfy (see Eq. 7 on p. 126 of [7])

λ̇∗
i = −∂H(u∗,x,λ∗, t )

∂xi

∣∣∣∣
x=x∗

for i ∈ {b,r,s,k} (S10a)

λ∗
i (T ) = 0. (S10b)

For readability, hereafter we write λ instead of λ∗. Hence, the dynamical equations of the costates are

λ̇b =−(
φψb +λkb1Bb

)
(S11a)

λ̇r =−(
φψr + f0 exp(−µt )

)
(S11b)

λ̇s =−φψs (S11c)

λ̇k =−(
φψk −λkb2

)
, (S11d)

evaluated at (x∗,u∗), where we define

ψi (t ,x∗) = ∂Bsyn

∂xi

∣∣∣∣
x=x∗

(S12)

for i ∈ {b,r,s,k} (see Eq. 23 in the main text).

Then,

ψi (t ,x∗) =ψ(t ,x∗)−Bi for i ∈ {b,r,s} (S13a)

ψk(t ,x∗) = K xβB (x∗)
∂e

∂xk
(S13b)

= K xβB (x∗)e(t , x∗
k )[1−e(t , x∗

k )]
γ

δ(x∗
k )

, (S13c)

where

ψ(t ,x∗) = Kβe(t , x∗
k )xβ−1

B (x∗) (S13d)

δ(x∗
k ) =


x∗

k for c(xk) = xγk

1 for c(xk) = exp(γxk).
(S13e)
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Eq. (S13c) follows because the marginal returns on energy extraction from increasing skill are

∂e

∂xk
= e(1−e)

dlnc(xk)

dxk
(S14a)

= e(1−e)
γ

δ(xk)
. (S14b)
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3 Analytical results

We present the analytical results for the candidate optimal controls in this section, and their derivations in

section 4. In these two sections, we assume that the growth metabolic rate is positive; that is, Bsyn(t ,x∗) > 0.

The Hamiltonian of the optimal control problem (S3) is affine (or, less rigorously, linear) in the controls

(Eq. S5). Since we assume that Bsyn(t ,x∗) > 0, the sign of the derivative of the Hamiltonian with respect to

us or ub (Eq. S8) is given by the sign of the two switching functions σs and σb (Eqs. S7). If σi is negative, the

Hamiltonian is maximized when u∗
i = 0. If σi is positive and the other switching function, denoted by σi ′ , is

negative, then the Hamiltonian is maximized when (u∗
i ,u∗

i ′ ) = (1,0). If both σi and σi ′ are positive, because of

the constraint that u∗
s +u∗

b ≤ 1, the Hamiltonian is maximized when (u∗
i ,u∗

i ′ ) = (1,0) if and only if σi > σi ′ . If

σi is zero and σi ′ is positive, then the Hamiltonian is maximized when (u∗
i ,u∗

i ′ ) = (0,1). If σi is zero and σi ′

is negative, then the Hamiltonian is maximized when u∗
i ′ = 0 but the Hamiltonian is independent of ui . In

this case, the candidate optimal control u∗
i = ûi is called a singular arc and must be determined by another

method [6]. If both σs and σb are zero, the Hamiltonian is independent of both controls and the candidate

optimal controls are the singular arcs (u∗
s ,u∗

b ) = (ûs, ûs). Finally, if both σs and σb are positive and equal, then

both u∗
s and u∗

b are positive and maximal given the constraint u∗
s +u∗

b ≤ 1, so (u∗
s ,u∗

b ) = (1− ûb, ûb).

Together, these cases show that there are seven possible growth regimes (Table A). Regimes B, R, and S

involve pure growth of one of the three tissues, whereas regimes BS, BR, RS, and BRS are singular arcs where

at least two tissues grow simultaneously. These regimes occur as indicated in Table A depending on the sign

of both the switching functions and their difference. Numerical illustration of these regimes is given in Fig. A

(figures and tables with alphabetic labels are in the S1 Appendix; those with numeric labels are in the main

text).

Regime Tissues growing
Candidate

optimal controls

Sign of switching

functions

(u∗
s ,u∗

b ) sign(σs,σb,σs −σb)

R Reproductive (0,0) (−,−, ·)
B Brain (0,1) (−,+, ·), (+,+,−), (0,+, ·)
S Soma (1,0) (+,−, ·), (+,+,+), (+,0, ·)
BS Brain and soma (1− ûb, ûb) (+,+,0)

BR Brain and reproductive (0, ûb) (−,0, ·)
RS Reproductive and soma (ûs,0) (0,−, ·)
BRS Brain, reproductive, and soma (ûs, ûb) (0,0, ·)

Table A: Growth regimes. Four regimes are singular arcs. Note that u∗
r = 1−u∗

s −u∗
b . The “·” means any sign.
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Figure A: Switching functions and costates for the process in Fig. 3 in the main text. The signs of the switching

functions σi (t ) determine the candidate optimal allocation at time t (Table A). GPOPS yields the costates λi

using a direct approach rather than the PMP [10]. The switching functions σi are calculated using such λi and

Eqs. (S7). The costate λi (t ) gives the marginal value of state variable i at time t : that is, how much the lifetime

number of offspring changes if state variable i increases by an infinitesimally small amount at time t . The

switching function σi (t ) is proportional to the marginal effect on current and future profits of control variable

i at time t : that is, proportional to the change in current offspring production and value of future prospects if

control variable i increases by an infinitesimally small amount at time t . No filtering is applied to this figure.
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In section 4 we show that for the singular arcs and assuming the denominators are non-zero, the candidate

optimal controls are

Regime BS: ûb(t ,x∗,λ) =
ρsk −χsb

s(s+/)(bk−sk)

χsb
s(s+/)(sk+/k)

(S15a)

Regime BR: ûb(t ,x∗,λ) =
ρrk −χbr

r/(/k)

χbr
rb(bk)

(S15b)

Regime RS: ûs(t ,x∗,λ) = ρrs −χsr
r/0

χsr
rs0

(S15c)

Regime BRS: ûs(t ,x∗,λ) = 1

D

[
(ρrs −χsr

r/0)χbr
rb(bk) − (ρrk −χbr

r/(/k))χ
sr
rb0

]
(S15d)

ûb(t ,x∗,λ) = 1

D

[
(ρrk −χbr

r/(/k))χ
sr
sr0 − (ρrs −χsr

s/0)χbr
rs(sk)

]
(S15e)

D =χsr
rs0χ

br
rb(bk) −χsr

rb0χ
br
rs(sk).

Here we have

χkl
i j m(t ,x∗,λ) = aiλi

[
ω j (ak −al )+ωmb1

]
(S16a)

ρni (t ,x∗,λ) = θi

(
ηnb1b2λk(abBb −b2) (S16b)

+aiλi
{

aiψi
[
aiψi −ηn(abψb +b1ψk)− η̂n asψs

]−ηnb1ψk(abBb −b2)
}

(S16c)

+ θ̂i ar f0 exp(−µt )
{
µ+ [

arψr −ηn
(
abψb +b1ψk

)− η̂n asψs
]})

, (S16d)

for

i ∈ {r,s}, k ∈ {b,s}, l ∈ {b,r}, n ∈ {k,0}, (S17a)

j ∈ {b,s,/,b− s,s+/}, m ∈ {bk,sk,/k,0,bk− sk,sk+/k}. (S17b)

From Eq. (S15), note that the superscripts in χkl
i j m coincide with the growth regime. The functions defining

χkl
i j m and ρni are

ωs(t ,x∗) = ψ(t ,x∗)

xB(x∗)
Bsyn(t ,x∗)(β−1)(as −ar) (S18a)

ωb(t ,x∗) = ψ(t ,x∗)

xB(x∗)
Bsyn(t ,x∗)

[
(β−1)(ab −ar)+xB(x∗)(1−e(t , x∗

k ))
γ

δ(x∗
k )

b1

]
(S18b)

ω/(t ,x∗) = ψ(t ,x∗)

xB(x∗)

[
Bsyn(t ,x∗)(β−1)ar +xB(x∗)(1−e(t , x∗

k ))

[
γ

δ(x∗
k )
ξ(x∗)−ϕr

α−d(t )

d(t )

]]
(S18c)

ωsk(t ,x∗) = ψk(t ,x∗)

xB(x∗)
Bsyn(t ,x∗)β(as −ar) (S18d)

ωbk(t ,x∗) = ψk(t ,x∗)

xB(x∗)
Bsyn(t ,x∗)

{
β(ab −ar)+xB(x∗)b1

[
(1−2e(t , x∗

k ))
γ

δ(x∗
k )

− δ̂δ(x∗
k )

1

x∗2
k

]}
(S18e)

ω/k(t ,x∗) = ψk(t ,x∗)

xB(x∗)

{
Bsyn(t ,x∗)βar +xB(x∗)(1−2e(t , x∗

k ))

[
γ

δ(x∗
k )
ξ(x∗)−ϕr

α−d(t )

d(t )

]
−xB(x∗)δ(x∗

k )δ̂
1

x2
k

ξ(x∗)

}
,

(S18f)
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with

ωb−s(t ,x∗) =ωb −ωs (S19a)

ωs+/(t ,x∗) =ωs +ω/ (S19b)

ωbk−sk(t ,x∗) =ωbk −ωsk (S19c)

ωsk+/k(t ,x∗) =ωsk +ω/k (S19d)

ω0 = 0. (S19e)

Finally, to complete the specification of Eqs. (S15), we have

θi =


1, if i = s

−1, if i = r
θ̂i =


0, if i = s

1, if i = r
(S20a)

ηn =


1, if n = k

0, if n = 0
η̂n =


0, if n = k

1, if n = 0
(S20b)

δ̂=


1 if c(xk) = xγk

0 if c(xk) = exp(γxk).
(S20c)

The analytical solutions for the candidate optimal controls given by Table A and Eqs. (S15) are functions

of the candidate optimal states x∗ and costates λ, which we have not specified analytically. To assess if these

analytical candidate optimal controls are indeed optimal, we compare them to the approximately optimal

controls found numerically by GPOPS [10] (Fig. 3A,E in the main text). GPOPS uses a direct approach to obtain

a numerical approximation to the solution of optimal control problems by iterating different shapes for the

controls and determining which increases the value of the objective [10], rather than the indirect approach

of the PMP via necessary conditions for optimality (see [11] for a comparison of direct and indirect solution

approaches to optimal control problems). From the numerical approximations given by GPOPS, we obtain

approximately optimal states and their costates which are part of the output given by GPOPS (Fig. A panels

B-E). Feeding these numerically obtained, approximately optimal states and costates to the expressions for

the analytical candidate optimal controls, we plot in Fig. B the analytical solutions for the candidate optimal

controls given by Table A and Eqs. (S15). Comparison with Fig. 3A,E in the main text shows that the analytical

candidate optimal controls closely follow the controls found numerically by GPOPS.
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Figure B: Plots of the analytically found candidate optimal controls. (A) is for the power competence case in

Fig. 3A-D in the main text. (B) is for the exponential competence case in Fig. 3E-H in the main text. In these

plots, the analytically found controls are much greater than one or smaller than zero near the switching times

(tb0, tb, tm, ta) between regimes (truncated here for figure clarity), possibly due to negligible numerical error in

the location of the switching times. No filtering is applied to this figure.
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4 Derivation of analytical results

Here we derive the expressions for the singular controls ûb(t ,x∗,λ) and ûs(t ,x∗,λ) given by Eqs. (S15). To do

so, we make use of the well-known result, according to which singular controls can be obtained from total

time derivatives of the switching functions of even but not odd order [12]; specifically, we will take the second

order total time derivatives of the switching functions. During the singular arcs, either σi = 0 for some i or the

difference σs −σb = 0, and hence their total time derivatives also equal zero during the singular arcs. Before

calculating these derivatives, we obtain expressions that will be useful.

Using the overdot to denote total time derivatives, from Eqs. (S11), taking the second total time derivatives

for the costates and noting that ψ̇i = ψ̇ for i ∈ {b,r,s}, we find

λ̈b =−(
φψ̇+ φ̇ψb + λ̇kb1Bb

)
(S21a)

λ̈r =−[
φψ̇+ φ̇ψr − f0µexp(−µt )

]
(S21b)

λ̈s =−(
φψ̇+ φ̇ψs

)
(S21c)

λ̈k =−(
φψ̇k + φ̇ψk − λ̇kb2

)
. (S21d)

Thsu, we need the total time derivative of ψi , ψ̇i .

4.1 Calculation of ψ̇i

From Eqs. (S13) we have that ψi is both a direct and an indirect function of time through the state variables;

that is, ψi (t , xb(t ), xr(t ), xs(t ), xk(t )). Thus, its total time derivative is

ψ̇i = ∂ψi

∂t
+ ∂ψi

∂xs

dxs

dt
+ ∂ψi

∂xb

dxb

dt
+ ∂ψi

∂xr

dxr

dt
+ ∂ψi

∂xk

dxk

dt
. (S22)

For short, define

y j =


t for j = t

x j for j ∈ {b,r,s,k}
(S23a)

Φi =


0 for i = {b,r,s}

γ
δ for i = k

(S23b)

ςi =


1 for i ∈ {b,r,s}

0 for i = k.
(S23c)

Then, in general from Eqs. (S13), we have that

∂ψi

∂y j
= ςi

∂ψ

∂y j
+K

∂

∂y j

[
xβB e(1−e)Φi

]
. (S24)

for i ∈ {b,r,s,k} and for j ∈ {t,b,r,s,k}. From Eq. (S13d), we have that

∂ψ

∂y j
= Kβ

[
e(β−1)xβ−2

B

∂xB

∂y j
+xβ−1

B

∂e

∂y j

]
, (S25)

while the rightmost derivative in Eq. (S24) is

βxβ−1
B

∂xB

∂y j
e(1−e)Φi +xβB

∂e

∂y j
(1−e)Φi −xβB e

∂e

∂y j
Φi +xβB e(1−e)

∂Φi

∂y j
. (S26)
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Therefore, to calculate Eq. (S24), using Eqs. (S25) and (S26), we need the following quantities

∂xB

∂y j
,

∂e

∂y j
,

∂Φi

∂y j
. (S27)

We have that

∂xB

∂y j
=


1 for j ∈ {b,r,s}

0 for j ∈ {t,k}.
(S28)

Also,
∂e

∂y j
= e(1−e)Φ j (S29)

whereΦ j is given by Eq. (S23b) for j ∈ {b,r,s,k} and

Φt =−ϕr
α−d

d
. (S30)

The latter follows since

∂e

∂t
=−e(1−e)

∂ lnd

∂t

=−e(1−e)ϕr
α−d

d
(S31a)

Consequently, to calculate Eq. (S24), it only remains to obtain ∂Φk/∂xk, which is

∂Φk

∂xk
= γ ∂

∂xk

(
1

δ

)
(S32a)

=−γδ̂ 1

x2
k

. (S32b)

We now have all the elements to write the ψ̇i . Using Eqs. (S22)–(S32b), (S3e), (S3f), and collecting for us

and ub, we obtain

ψ̇i (t ,u∗,x∗) = u∗
s ωsi +u∗

bωbi +ω/i (S33a)

where

ωss(t ,x∗) = ψ

xB
Bsyn(β−1)(as −ar) (S34a)

ωbs(t ,x∗) = ψ

xB
Bsyn

[
(β−1)(ab −ar)+xB(1−e)

γ

δ
b1

]
(S34b)

ω/s(t ,x∗) = ψ

xB

[
Bsyn(β−1)ar +xB(1−e)

(
γ

δ
ξ−ϕr

α−d

d

)]
. (S34c)

SinceΦi = 0 for i ∈ {b,r,s}, then ψ̇i = ψ̇s for i ∈ {b,r,s}. Then, we write ω j i =ω j for i , j ∈ {b,r,s}. Also,

ωsk(t ,x∗) = ψk

xB
Bsynβ(as −ar) (S35a)

ωbk(t ,x∗) = ψk

xB
Bsyn

{
β(ab −ar)+xB

[
(1−2e)

γ

δ
−δδ̂ 1

x2
k

]
b1

}
(S35b)

ω/k(t ,x∗) = ψk

xB

[
Bsynβar +xB(1−2e)

(
γ

δ
ξ−ϕr

α−d

d

)
−xBδδ̂

1

x2
k

ξ

]
. (S35c)
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4.2 Singular controls for regime BS: σs > 0, σb > 0, and σs =σb

We now obtain the singular controls for growth regime BS. The procedure is essentially the same for growth

regimes BR, RS, and BRS.

For regime BS, we have the singular arc where (u∗
b ,u∗

s ) = (ûb,1− ûb) and σs = σb. Hence, from Eq. (S6a),

during regime BS the variable φ in the Hamiltonian (S5) is no longer an explicit function of the controls:

φ(λ) = (1− ûb)σs + ûbσs +arλr

=σs +arλr

= asλs. (S36a)

From Eq. (S33a), we also have the simplifications

ψ̇(t ,u∗,x∗) = ûbωb−s +ωs+/ (S36b)

ψ̇k = (t ,u∗,x∗) = ûbωbk−sk +ωsk+/k. (S36c)

Since σs −σb = 0, we have that σ̈s − σ̈b = 0, which using Eqs. (S9), (S21), and (S36) becomes

asλ̈s −abλ̈b −b1λ̈k = 0 (S37a)

⇔ −as
(
φψ̇+ φ̇ψs

)+ab
(
φψ̇+ φ̇ψb + λ̇kb1Bb

)+b1
(
φψ̇k + φ̇ψk − λ̇kb2

)= 0 (S37b)

⇔ ψ̇(t ,u∗,x∗)φ(λ)(ab −as)+ ψ̇k(t ,u∗,x∗)φ(λ)b1 +ρks(t ,x∗,λ) = 0, (S37c)

where

ρks(t ,x∗,λ) = λ̇kb1 (abBb −b2)− φ̇(
asψs −abψb −b1ψk

)
(S38a)

= b1b2λk(abBb −b2)+asλs
[
asψs(asψs −abψb −b1ψk)−b1ψk(abBb −b2)

]
. (S38b)

(The subscripts for ρ are taken from the defining costates). Here λ̇k during the singular arc BS is similarly not

an explicit function of the controls.

In Eq. (S37c), only ψ̇ and ψ̇k are functions of u∗. Expanding these terms in Eq. (S37c), we obtain an affine

equation in the singular control ûb:

(ûbωb−s +ωs+/)φ(ab −as)+ (ûbωbk−sk +ωsk+/k)φb1 +ρsk = 0 (S39a)

−ûbχ
sb
s(b−s)(bk−sk)(t ,x∗,λ)+ζsb

s(s+/)(sk+/k)ks(t ,x∗,λ) = 0, (S39b)

where

χsb
s(b−s)(bk−sk)(t ,x∗,λ) =φ [ωb−s(as −ab)−ωbk−skb1]

= asλs [ωb−s(as −ab)−ωbk−skb1] (S40a)

ζsb
s(s+/)(sk+/k)ks(t ,x∗,λ) = ρks −φ [ωs+/(as −ab)−ωsk+/kb1]

= ρks −asλs [ωs+/(as −ab)−ωsk+/kb1] . (S40b)

Therefore, assuming that χsb
s(b−s)(bk−sk) 6= 0, the singular control for regime BS is

ûb(t ,x∗,λ) =
ζsb

s(s+/)(sk+/k)ks

χsb
s(b−s)(bk−sk)

. (S41)
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4.3 Singular controls for regime BR: σs < 0 and σb = 0

For regime BR, we have that (u∗
b ,u∗

s ) = (ûb,0). Hence, from Eq. (S6a), during regime BR the variable φ is no

longer an explicit function of the controls:

φ(λ) = 0×σs + ûb ×0+arλr

= arλr. (S42a)

From Eq. (S33a), we have the simplifications

ψ̇(t ,u∗,x∗) = ûbωb +ω/ (S42b)

ψ̇k(t ,u∗,x∗) = ûbωbk +ω/k. (S42c)

From σb = 0, we have that σ̈b = 0, which becomes

abλ̈b −arλ̈r +b1λ̈k = 0 (S43a)

⇔ −ab
(
φψ̇+ φ̇ψb + λ̇kb1Bb

)+ar
(
φψ̇+ φ̇ψr − f0µexp(−µt )

)−b1
(
φψ̇k + φ̇ψk − λ̇kb2

)= 0 (S43b)

⇔ −ψ̇(t ,u∗,x∗)φ(λ)(ab −ar)− ψ̇k(t ,u∗,x∗)φ(λ)b1 +ρkr(t ,x∗,λ) = 0, (S43c)

where

ρkr(t ,x∗,λ) =−λ̇kb1 (abBb −b2)+ φ̇(
arψr −abψb −b1ψk

)−ar f0µexp(−µt ) (S44a)

=−b1b2λk (abBb −b2)−arλr
[
arψr

(
arψr −abψb −b1ψk

)−b1ψk (abBb −b2)
]

−ar f0 exp(−µt )
[
µ+ (

arψr −abψb −b1ψk
)]

. (S44b)

Again, in Eq. (S43c), only ψ̇ and ψ̇k are functions of u∗. Expanding these terms in Eq. (S43c), we similarly

obtain an affine equation in the singular control ûb:

− (ûbωb +ω/)φ(ab −ar)− (ûbωbk +ω/k)φb1 +ρrk = 0 (S45a)

−ûbχ
br
rb(bk)(t ,x∗,λ)+ζbr

r/(/k)rk(t ,x∗,λ) = 0, (S45b)

where

χbr
rb(bk)(t ,x∗,λ) =φ [ωb(ab −ar)+ωbkb1]

= arλr [ωb(ab −ar)+ωbkb1] (S46a)

ζbr
r/(/k)rk(t ,x∗,λ) = ρkr −φ [ω/(ab −ar)+ω/kb1]

= ρkr −arλr [ω/(ab −ar)+ω/kb1] . (S46b)

Therefore, assuming that χbr
rb(bk) 6= 0, the singular control for regime BR is

ûb(t ,x∗,λ) =
ζbr

r/(/k)rk

χbr
rb(bk)

. (S47)
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4.4 Singular controls for regime RS: σs = 0 and σb < 0

For regime RS, we have that (u∗
b ,u∗

s ) = (0, ûs). Hence, during regime RS the variable φ is again no longer an

explicit function of the controls:

φ(λ) = ûs ×0+0×σb +arλr

= arλr. (S48a)

We have the simplifications

ψ̇(t ,u∗,x∗) = ûsωs +ω/ (S48b)

ψ̇k(t ,u∗,x∗) = ûsωsk +ω/k. (S48c)

From σs = 0, we have that σ̈s = 0, which becomes

asλ̈s −arλ̈r = 0 (S49a)

⇔ −as
(
φψ̇+ φ̇ψs

)+ar
(
φψ̇+ φ̇ψr − f0µexp(−µt )

)= 0 (S49b)

⇔ −ψ̇(t ,u,x)φ(λ)(as −ar)+ρ0r(t ,x∗,λ) = 0, (S49c)

where

ρ0r(t ,x∗,λ) = φ̇(
arψr −asψs

)−ar f0µexp(−µt )

=−arλr
[
arψr

(
arψr −asψs

)]−ar f0 exp(−µt )
[
µ+ (

arψr −asψs
)]

. (S50)

Once again, only ψ̇ is a function of u∗ in Eq. (S49c). Expanding this term in Eq. (S49c), we obtain an affine

equation in the singular control ûs:

− (ûsωs +ω/)φ(as −ar)+ρrs = 0 (S51a)

−ûsχ
sr
rs0(t ,x∗,λ)+ζsr

r/00r(t ,x∗,λ) = 0, (S51b)

where we define

χsr
rs0(t ,x∗,λ) =φωs(as −ar)

= arλrωs(as −ar) (S52a)

ζsr
r/00r(t ,x∗,λ) = ρ0r −φω/(as −ar)

= ρ0r −arλrω/(as −ar). (S52b)

Therefore, assuming that χsr
rs0 6= 0, the singular control for regime RS is

ûs(t ,x∗,λ) = ζsr
r/00r

χsr
rs0

. (S53)

4.5 Singular controls for regime BRS: σs =σb = 0

For regime BRS, we have that (u∗
b ,u∗

s ) = (ûb, ûs). As before, the variable φ is no longer an explicit function of

the controls:

φ(λ) = ûs ×0+ ûb ×0+arλr

= arλr. (S54a)
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Similarly, we have the simplifications

ψ̇(t ,u∗,x∗) = ûsωs + ûbωb +ω/ (S54b)

ψ̇k(t ,u∗,x∗) = ûsωsk + ûbωbk +ω/k. (S54c)

From σs = 0, we have that σ̈s = 0, which is

asλ̈s −arλ̈r = 0 (S55a)

⇔ −as
(
φψ̇+ φ̇ψs

)+ar
[
φψ̇+ φ̇ψr − f0µexp(−µt )

]= 0 (S55b)

⇔ ψ̇(t ,u∗,x∗)φ(λ)(ar −as)+ρ0r(t ,x∗,λ) = 0, (S55c)

where as before

ρ0r(t ,x∗,λ) = φ̇(
arψr −asψs

)−ar f0µexp(−µt )

=−arλr
[
arψr

(
arψr −asψs

)]−ar f0 exp(−µt )
[
µ+ (

arψr −asψs
)]

. (S56)

Expanding ψ̇ in Eq. (S55c), we obtain an affine equation in the two controls ûs and ûb:

(ûsωs + ûbωb +ω/)φ(ar −as)+ρrs = 0 (S57a)

−ûsχ
sr
rs0(t ,x∗,λ)− ûbχ

sr
rb0(t ,x∗,λ)+ζrs

r/00r(t ,x∗,λ) = 0, (S57b)

where

χsr
rs0(t ,x∗,λ) =−φωs(ar −as)

= arλrωs(as −ar) (S58a)

χsr
rb0(t ,x∗,λ) =−φωb(ar −as)

= arλrωb(as −ar) (S58b)

ζrs
r/00r(t ,x∗,λ) = ρ0r +φω/(ar −as)

= ρ0r −arλrω/(as −ar). (S58c)

Now, from σb = 0, we have that σ̈b = 0, which is

abλb −arλr +b1λk = 0 (S59a)

⇔ −ab
(
φψ̇+ φ̇ψb + λ̇kb1Bb

)+ar
[
φψ̇+ φ̇ψr −µexp(−µt )

]−b1
(
φψ̇k + φ̇ψk − λ̇kb2

)= 0 (S59b)

⇔ −ψ̇(t ,u∗,x∗)φ(λ)(ab −ar)− ψ̇k(t ,u∗,x∗)φ(λ)b1 +ρkr(t ,x∗,λ) = 0, (S59c)

where as before

ρkr(t ,x∗,λ) =−λ̇kb1 (abBb −b2)+ φ̇(
arψr −abψb −b1ψk

)−ar f0µexp(−µt ) (S60a)

=−b1b2λk (abBb −b2)−arλr
[
arψr

(
arψr −abψb −b1ψk

)−b1ψk (abBb −b2)
]

−ar f0 exp(−µt )
[
µ+ (

arψr −abψb −b1ψk
)]

. (S60b)

Expanding ψ̇ and ψ̇k in Eq. (S59c), we obtain another affine equation in the two controls ûs and ûb:

− (ûsωs + ûbωb +ω/)φ(ab −ar)− (ûsωsk + ûbωbk +ω/k)φb1 +ρrk = 0 (S61a)

−ûsχ
br
rs(sk)(t ,x∗,λ)− ûbχ

br
rb(bk)(t ,x∗,λ)+ζbr

r/(/k)kr(t ,x∗,λ) = 0, (S61b)
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where

χbr
rs(sk)(t ,x∗,λ) =φ [ωs(ab −ar)+ωskb1]

= arλr [ωs(ab −ar)+ωskb1] (S62a)

χbr
rb(bk)(t ,x∗,λ) =φ [ωb(ab −ar)+ωbkb1]

= arλr [ωb(ab −ar)+ωbkb1] (S62b)

ζbr
r/(/k)kr(t ,x∗,λ) = ρkr −φ [ω/(ab −ar)+ω/kb1]

= ρkr −arλr [ω/(ab −ar)+ω/kb1] . (S62c)

Therefore, solving for ûs and ûb in Eqs. (S57b) and (S61b) and assuming that D 6= 0, the singular controls

for regime BRS are

ûs(t ,x∗,λ) = 1

D

[
ζrs

r/00rχ
br
rb(bk) −χsr

rb0ζ
br
r/(/k)kr

]
(S63a)

ûb(t ,x∗,λ) = 1

D

[
χsr

sr0ζ
br
r/(/k)kr −ζrs

r/00rχ
br
rs(sk)

]
(S63b)

D =χsr
rs0χ

br
rb(bk) −χsr

rb0χ
br
rs(sk). (S63c)
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5 Parameter values

Here we summarize the values of the 22 parameters used in the numerical approximations. From these, 13

parameters are estimated as described in section 6 and they refer to newborn mass, tissue metabolism, and

demography (Table B). The estimates of Ei are less accurate than those of Bi for i ∈ {b,s,r} as the former require

stronger assumptions given the available data (see [13]). Since the parameter f0 only displaces the objective

vertically and thus has no effect on the solution, we choose its value to scale the objective J and facilitate the

numerical procedure (Table B). The remaining 8 parameters refer to skill metabolism, energy extraction, and

maternal care, for which we use benchmark values that produce body and brain mass that closely approach

ontogenetic modern human data. Hence, we use different benchmark values with either power (Table C) or

exponential (Table D) competence.

Newborn mass Tissue metabolism Demography

K 132.7281 MJ
y kg−β β 0.7378

xs(0) 2.0628 kg Bs 29.6891 MJ
y×kg Es 12.4594 MJ

kg f0 10 #offspring
kg×y

xb(0) 0.3372 kg Bb 313.0962 MJ
y×kg Eb 123.7584 MJ

kg µ 0.034 1
y

xr(0) 0 kg Br 2697.1179 MJ
y×kg Er 190.8196 MJ

kg T 47 y

Table B: Estimated parameter values and f0, which is set to an arbitrary value. Note that Bi and Ei are per mass

unit. So, with an estimated adult brain and reproductive mass of ≈ 1.31 kg and ≈ 3 g (§6.1), respectively, the

estimated Bb and Br yield an estimated adult brain and reproductive metabolic rates of ≈ 410 MJ/y and ≈ 8

MJ/y, respectively.

For power competence:

Skill metabolism Energy extraction Maternal care

sk 0.5 α 1 skillγ ϕ0 0.6

Bk 36 MJ
y×skill γ 1.4 ϕr 0.2 1

y

Ek 370 MJ
skill xk(0) 1 skill

Table C: Benchmark parameter values with power competence. The value used for ϕr yields maternal care for

≈ 20 years, as observed in forager-horticulturalists [14]. For short, we occasionally write “skill unit” as “skill”.

For exponential competence:

Skill metabolism Energy extraction Maternal care

sk 0.5 α 1.15 ϕ0 0.8

Bk 50 MJ
y×skill γ 0.6 skill−1 ϕr 0.2 1

y

Ek 250 MJ
skill xk(0) 0 skill

Table D: Benchmark parameter values with exponential competence.

19



6 Estimation of parameter values

Here we describe how we obtained the parameter values in Table B. We use ontogenetic data for modern

human females published in Table S2 of [15]. We denote the observed mass of tissue i at age t as Xi (t ) and their

sum as XB(t ). Thus, we set xs(0) = Xs(0) = 2.0628 kg and xb(0) = Xb(0) = 0.3372 kg [15]. We take reproductive

cells as referring to preovulatory ovarian follicle cells, and thus set xr(0) = 0 kg. We also denote by τa the

observed age at adulthood. Hence, XB(τa) = 51.1 kg and Xb(τa) = 1.31 kg [15]. We also have that Brest(τa) =
1243.4 kcal/day×4184 J/kcal×365 d/y = 1898.8707 MJ/y [15].

As stated in the main text, we assume that Bi and Ei are constant with respect to age. However, they are

likely to vary with age in real systems. So, we seek to estimate these parameters’ value around the ages where

the parameter is expected to have the strongest effects on growth dynamics. From the shape of the ontogenetic

dynamic equations (Eqs. 24), the growth dynamics are more likely to be driven by maintenance costs Bi later

in life and by acquisition costs Ei at points in life where the tissue is growing the fastest (see [16]). So, to obtain

the values of Bi and Ei at the ages that are presumably most affected by them, we estimate Bi from data for

adults, Eb from data for newborns, Er from data for fifteen year old females, and Es for newborns.

6.1 Values for Bi for i ∈ {b,r,s}

Bb: Let c1(t ) be the ratio of glucose uptake by the brain per unit time at age t divided by the resting metabolic

rate at that age. Let c2(t ) be the fraction of brain glucose metabolism that is oxidative. Then, the empirically

estimated brain metabolic rate at age t is the product Brest(t )c1(t )c2(t ). c1(t ) is obtained from Table S2 of [15]

and rough estimates of c2(t ) are obtained from [17]. For adults they are c1(τa) = 0.24 and c2(τa) = 0.9 [15, 17].

Hence, we let Bb = Brest(τa)c1(τa)c2(τa)/Xb(τa) = 313.0962 MJ/kg/y.

Br: We are unable to find reports of the metabolic rate of preovulatory follicles. Thus, we use the metabolic

rate of a human oocyte as a proxy. The oxygen consumption by a human oocyte is estimated to be 0.53×10−9

l O2/h/oocyte [18]. Oxygen consumption can be transformed into power units by multiplying by 20.1 kJ/l O2

[19]. The mass of a mouse oocyte is 34.6 ng [20]. Assuming that mouse and human oocytes are of similar mass,

then Br = 0.53×10−9 l O2
h×oocyte ×20.1 kJ

l O2
× 1 oocyte

34.6 ng × 24 h
1 d × 365 d

1 y × 109 ng
1 g × 1000 g

1 kg × 1 MJ
1000 kJ = 2697.1179 MJ/kg/year.

Bs: Adult human females have on average about 2 preovulatory follicles at any given age [21]. A preovulatory

follicle has an average diameter of 21.1 mm [22]. Approximating the follicle dry mass by the dry mass of a

spherical cell with such diameter and water content of 60%, then the adult mass of reproductive tissue is

Xr(τa) = 2 follicles × 4
3π

( 21.1 mm
2

)3 × 1 kg H2O
106 mm3H2O

× 0.4 kg dry mass
1 kg H2O = 3.9349 × 10−3 kg. Hence, Xs(τa) = XB(τa) −

Xb(τa)−Xr(τa) = 49.7861 kg.

Since at human adulthood there is no growth, it must be the case that Brest(τa) = Bmaint(τa) =∑
i∈{b,r,s} Xi (τa)Bi . Because we have that Brest(τa) = 1898.8707 MJ/y, it follows that Bs = [Brest(τa)−BbXb(τa)−

BrXr(τa)]/Xs(τa) = 29.6891 MJ/kg/y.
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6.2 Values for Ei for i ∈ {b,r,s}

Eb : We have that brain metabolic rate is Brest,b(t ) = Xb(t )Bb + Ẋb(t )Eb. Hence, Eb should satisfy

Eb = [Brest,b(0)− Xb(0)Bb]/Ẋb(0). We have also that Brest,b(0) = Brest(0)c1(0)c2(0) and that Brest(0) = 166.6132

MJ/y [15], c1(0) = 0.598 [15], and c2(0) ≈ 0.9 [17]. From the data in [15], we estimate Ẋb(0) = 0.7246 kg/y. Using

these values and the estimated Bb, the resulting [Brest,b(0)− Xb(0)Bb]/Ẋb(0) is negative. However, this may be

a consequence of Bb being estimated for adults while the other quantities are for newborns. Therefore, we

instead assume that at birth most brain metabolic rate is due to brain growth (i.e., Ẋb(0)Eb À Xb(0)Bb, ei-

ther because at birth brain growth rate is substantial relative to brain mass or because at birth mass-specific

brain maintenance is substantially small relative to production). So Brest,b(0) ≈ Ẋb(0)Eb. Then, we let Eb =
Brest,b(0)/Ẋb(0) = 123.7584 MJ/kg.

Er : We have that Bsyn(t ) = ∑
i∈{b,r,s} Ẋi (t )Ei . We assume that shortly before adulthood, specifically at fifteen

years of age, most growth is reproductive. So assuming Ẋr(15) 6= 0 while Ẋi 6=r(15) ≈ 0, we have that

Er = Brest(15)−Bmaint(15)

Ẋr(15)
(S64a)

= Brest(15)−B XB(15)

ẊB(15)
, (S64b)

where the mass-specific resting metabolic rate is B = Brest(τa)/XB(τa) = 37.1599 MJ/y/kg. We also have that

Brest(15) = 1328.3 kcal
d × 4184 J

1 kcal × 365 d
1 y = 2028.5266 MJ/y, XB(15) = 47.4 kg, and ẊB(15) = 1.4 kg/y [15]. Then,

Er = 190.8196 MJ/kg.

Es : Again, we have that Bsyn(t ) = ∑
i∈{b,r,s} Ẋi (t )Ei . Assuming that there is no reproductive growth at birth,

then Ẋr(0) = 0 and so

Es = Brest(0)−Bmaint(0)− Ẋb(0)Eb

Ẋs(0)
(S65a)

≈ Brest(0)− Ẋb(0)Eb

Ẋs(0)
, (S65b)

assuming that at birth most resting metabolic rate is due to growth so Brest(0)−Bmaint(0) ≈ Brest(0). We have

that Brest(0) = 109.1 kcal
d × 4184 J

1 kcal × 365 d
1 y = 166.6132 MJ/y and ẊB(0) = 6.9 kg/y [15]. Since Ẋs(0) = ẊB(0)− Ẋb(0),

then Es = 12.4594 MJ/kg.

6.3 Values for K and β

Using the ontogenetic (averaged) data in Table S2 of [15], where resting metabolic rate is measured in well fed

individuals, we find that Brest(t ) = K X β

B (t ) with K = 132.7281 MJ
y kg−β and β= 0.7378 (R2 = 0.92) (Fig. C).

6.4 Values for f0, µ, and T

The constant f0 only multiplies the objective J and thus has not effect on the solution of the optimal control

problem, but we use it to re-scale the objective to facilitate convergence of the GPOPS algorithm. We thus set

it to f0 = 10 # offspring
kg×y .
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Figure C: Power law approximation of resting metabolic rate with respect to body mass. Dots are ontogenetic

values of resting metabolic rate vs body mass in modern humans in a log-log scale [15]. The line is the linear

least square regression yielding K = 132.7281 MJ
y kg−β and β= 0.7378 (R2 = 0.92).
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For traditional hunter-gatherers, the average life expectancy at birth is between 21 and 37 years [23]. The

mid-range life expectancy is thus 29 years. With a constant mortality rate, life expectancy is 1/µ. We thus let

µ= 1
29 y = 0.034 1

y .

For Hadza and Gainj hunter-gatherers, the average age at menopause is about 47 years [24]. So, we let

T = 47 years.
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7 Numerical implementation

GPOPS 2.0 was used to obtain the numerical approximations of the optimal solutions [10]. GPOPS is based

on a pseudospectral method which converts the optimal control problem into a finite-dimensional nonlinear

program. GPOPS adapts the underlying time mesh (partitions of the optimization horizon, or time interval)

until the error tolerance is met or until the maximum number of iterations is reached. We discarded solu-

tions that did not meet the error tolerance or where the solver failed [e.g., stalled in a zero objective (i.e., a

minimum)].

The GPOPS setup used was:

mesh.method = ’hp-PattersonRao’;

mesh.tolerance = 1e-6;

mesh.maxiterations = 45;

setup.method = ’RPM-Integration’;

To facilitate convergence of dynamic optimization algorithms, non-negative state variables should be scaled

so that they fall roughly between 0 and 1. So, we ran GPOPS with mass and skill units rescalled to Mg (mega-

grams) and kilo-skill units.

For Fig. 3 in the main text, the initial guess used was

xb(0) = xb0 xb(T ) = 1.3 kg (S66a)

xr(0) = xr0 xr(T ) = 0.2 kg (S66b)

xs(0) = xs0 xs(T ) = 50 kg (S66c)

xk(0) = xk0 xk(T ) = 40 skill unit (S66d)

ub(0) = 0.2 ub(T ) = 0 (S66e)

us(0) = 0.8 us(T ) = 0. (S66f)

For parameter sweeps (e.g., Fig. 6 in the main text), we let each parameter p ∈ {α, . . . , sk} take values pi

for i ∈ {1, . . . ,n}. For i = 1, the initial guess was given by Eqs. (S66), and for i > 1 the initial guess was the

solution found with i −1. This often facilitates convergence. The mesh partitioning algorithm of GPOPS can

lead to numerical instability on Mac OS computers, so we ran GPOPS in Windows as recommended by GPOPS

developers. GPOPS is also stable in Linux.
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8 Supplementary results

8.1 Results without image filtering

The solution of an optimal control problem during singular arcs is numerically challenging, and so GPOPS may

yield numerical jitter during singular arcs. For clarity in the figures, we filter all figures involving the control

strategies by plotting one every ten points rather than all the points. To illustrate the effect of such filtering,

Fig. 3 in the main text is shown in Fig. D without such filtering. The effect of filtering can be seen only in the

singular arcs (when more than one tissue grow simultaneously) (Fig. D panels A,E).

8.2 Tests of assumptions

8.2.1 Effect of fecundity approximation

Fig. E shows the obtained uninvadable growth strategy and resulting growth patterns using Eq. (29) with Bo ≈ 0

but without neglecting ẋr(t )Er; that is, letting fecundity be

f (t ) = so[xr(t )Br + ẋr(t )Er]

Eo
. (S67)

To calculate Eq. (S67), it is not necessary to estimate the value of the new parameters for so and Eo, but only

the value of the ratio so/Eo = f0/Br which was already estimated.

The error in the approximated fecundity (Eq. 30) is shown in Fig. F. The predicted switching times as well

as the predicted adult body and brain mass with fecundity given by Eq. (S67) are in Table E. In this case, the

predicted brain and body mass are identical with those obtained with the approximated fecundity (compare

Table E with Table 1 in the main text).

Table E: Predictions for life history timing with fecundity given by Eq. (S67). The values are the results as in

Table 1 in the main text but with fecundity given by Eq. (S67). Values with a ∗∗ differ (slightly) from those in

Table 1 in the main text.

Predicted with Observed in∗

PC EC H. sapiens

A
ge

at
:

Maturity, tm [y] 9.94 9.64∗∗ 7−13

Adulthood, ta [y] 23.45∗∗ 17.33 ≈17

Brain growth onset, tb0 [y] 2.35∗∗ 1.76∗∗ 0

Brain growth arrest, tb [y] 7.19 7.29∗∗ ≈17

Adult body mass, [kg] 53.19 67.79 51.1

Adult brain mass, [kg] 1.02 1.53 1.31

EQ†, [ ] 4.43 5.52 5.87
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Figure D: Same as Fig. 3 in the main text without image filtering. Jitter in the controls indicates that the optimal

control problem is computationally challenging for GPOPS (this applies to all plots in the main paper and SI).
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Figure E: Uninvadable growth strategy with fecundity given by Eq. (S67). The plots are the results as in Fig. 3 in

the main text but with fecundity given by Eq. (S67).
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Figure F: Error in the approximated fecundity. The plots are the resulting fecundity when using Eq. (S67) minus

the resulting fecundity when using Eq. (30) as in Fig. 3 in the main text. (A) The error for the power competence

case. (B) The error for the exponential competence case.
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8.2.2 Effect of removing maternal care

Fig. G shows the predicted growth patterns with the same situation of Fig. 3E-H in the main text but removing

maternal care by setting the maternal facilitation at birth to zero, ϕ0 = 0. The predicted adult body and brain

mass are essentially unchanged, but there is a period of negative growth early in life as the individual has larger

tissues than what it can maintain without maternal care (growth metabolic rate is negative early in life; Fig. (G

panel D).
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Figure G: Effect of removing maternal care with exponential competence. Parameters are as in Fig. 3E-H in the

main text, except that here maternal care is absent; i.e., ϕ0 = 0.
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8.2.3 Relaxing the assumption that maternal care is independent of maternal skill

Here we relax the assumption that maternal care is independent of maternal skill by lettingϕ(t ) =ϕ0 exp(−ϕrt )

(Eq. 33) be dependent on maternal skill. We do so by assuming that the facilitation given to a newborn (ϕ0)

depends on the skill level of its mother (whereas the rateϕr of decrease of maternal care remains independent

of maternal skill). Given clonal reproduction, the mother of a mutant individual is equally mutant. So, the skill

level of the mutant’s mother when the mother is of age t is xk(t ). A newborn mutant may be born by mothers

of different ages, and to determine the mutant’s invasion fitness we need the average environment faced by

the mutant [25–29]. Since the population is large, an average mutant is born by a mutant mother of average

age. Hence, the maternal facilitation ϕ0(x̄k) received by an average mutant newborn depends on the average

skill level of mutant mothers, which is

x̄k =
∫ T

0
xk(t )ρ(t )dt (S68)

where the probability density function of mutant mothers of age t is [30]

ρ(t ) = l (t )m(t )∫ T
0 l (τ)m(τ)dτ

. (S69)

From the definition of ϕ(t ), ϕ0(x̄k) must be between 0 and 1 so that the environmental difficulty d(t ) is non-

negative. So, we take the maternal facilitation to a newborn as

ϕ0(x̄k) = x̄k

1+ x̄k
, (S70)

which is an increasing function of the maternal average skill level, starting from 0 and saturating at 1.

Using Eq. (S70), the obtained uninvadable growth strategy and resulting growth patterns are in Fig. H.

The resulting facilitation to a newborn is ϕ0 = 0.8 with power competence and ϕ0 = 0.82 with exponential

competence. Since in Fig. 3 in the main text we tookϕ0 = 0.6 for power competence andϕ0 = 0.8 for exponen-

tial competence, Fig. H shows faster growth with power competence but is virtually identical for exponential

competence. In both cases, the resulting adult body and brain mass are essentially unchanged.

29



� �� �� �� ��

���

���

���

���

���

��
*

��
*

��
*

�� �� �� ��

��

��

��

��

��

��

��
*

��
*

��
*

��
*

� �� �� �� ��

���

���

���

����

� �� �� �� ��

���
���
���
���
���
���

��
*

��
*

������ �������� ����

������ ��������� ���� ���� (����)

[
]

[�
�
]

[�
�
/�
�
�
�]

[�
�
]

� ���

���
�� �� ��

���
�� �� ��

� �

� �

�
�
���
�
�
�
�

�����������
���������

�� �������

�� �������

�� �������

�� �������

� �� �� �� ��

���

���

���

���

���

��
*

��
*

��
*

� �� �� �� ��

��
��
��
��
��
��
��

��
*

��
*

��
*

��
*

� �� �� �� ��

���

���

���

����

� �� �� �� ��

���
���
���
���
���
���
���

��
*

��
*

������ �������� ����

������ ��������� ���� ���� (����)

[
]

[�
�
]

[�
�
/�
�
�
�]

[�
�
]

� ���

��� �� �� �� ��� �� �� ��

� �

� �

��� [�����] ��� [�����]

�
�
���
�
�
�
�

�����������
���������

�� �������

�����������

�� �������

�����������

�
�
�
�
�
�
�
�
�
�
��
�
�
�

�
�
�
�
�
�
�
���
�
�
�
�
�
�
��
�
�
�

Figure H: Uninvadable growth strategy (u∗
i ) and the resulting growth patterns (x∗

i ) under a me-vs-nature set-

ting when maternal care depends on maternal skill. See legend of Fig. 3 in the main text.
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8.3 Brain metabolic rate through ontogeny

With the obtained optimal growth strategy, brain metabolic rate is predicted to peak at the age of brain growth

arrest, which is qualitatively consistent with recent findings for brain glucose intake (Fig. I panels A,B and

Fig. J panels A,B; [15]). Brain metabolic rate and brain glucose intake are, however, not equivalent because

the former refers to oxygen consumption while the latter includes non-oxidative glucose metabolism which is

especially high during childhood [15,17]. As observed with brain glucose intake [15], a peak in brain metabolic

rate is predicted during mid childhood. The predicted small peak in brain metabolic rate results from brain

growth arrest (Fig. I panel B and Fig. J panel B) and is enhanced by a peak in allocation to brain growth just

before brain growth arrest (Fig. 3A,E in the main text). The predicted ratio of brain metabolic rate and resting

metabolic rate is also qualitatively consistent with brain glucose intake in modern humans (Fig. I panel C and

Fig. J panel C).
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Figure I: Predicted and observed brain metabolic patterns in humans qualitatively agree. Plots are for the

scenario in Fig. 3A-D in the main text (power competence). (A) Maintenance (blue; x∗
b Bb), growth (green;

ẋ∗
b Eb), and total (red; Brest,b) brain metabolic rates. (B) Brain metabolic rate peaks at the age of brain growth

arrest. (C) Ratio of brain metabolic rate to resting metabolic rate vs age. Dots are (A) the energy-equivalent

brain glucose intake observed in modern human females or (C) the ratio of the latter to resting metabolic

rate [15]. A similar pattern is predicted with exponential competence (Fig. J). Image filtering is not applied to

this figure.
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Figure J: Predicted brain metabolic patterns with exponential competence. Plots are for the scenario in Fig. 3E-

H in the main text (exponential competence). See legend of Fig. I. Image filtering is not applied to this figure.

42

43

31



8.4 Mass of reproductive tissue

For the parameter values of Fig. 3 in the main text, the predicted reproductive tissue mass remains at zero

until maturity tm and reaches 129 g (with power competence) or 131 g (with exponential competence) during

adulthood, exceeding the 3 g we roughly estimate for human females (SI §6.1).

8.5 Indeterminate skill growth with inexpensive memory
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Figure K: Indeterminate skill growth with inexpensive memory and exponential competence. In E, skill level

does not plateau. Parameters are as in Fig. 3E-H in the main text, except that here Bk = 1 MJ/y/skill rather than

Bk = 50 MJ/y/skill.
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8.6 Large, yet inconsistent-with-data encephalization with exceedingly expensive mem-

ory
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Figure L: Larger EQ than that in Fig. 3 in the main text with exponential competence, but predicted body mass

is less consistent with observation. Parameters are as in Fig. 3E-H in the main text, except that here Bk = 60

MJ/y/skill rather than Bk = 50 MJ/y/skill.
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Figure M: Larger EQ than that in Fig. 3 in the main text with exponential competence, but predicted body mass

is less consistent with observation. Parameters are as in Fig. 3E-H in the main text, except that here Bk = 70

MJ/y/skill rather than Bk = 50 MJ/y/skill.
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Figure N: Larger EQ than that in Fig. 3 in the main text with exponential competence, but predicted body mass

is less consistent with observation. Parameters are as in Fig. 3E-H in the main text, except that here Bk = 80

MJ/y/skill rather than Bk = 50 MJ/y/skill.
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8.7 Reproduction without growth and body collapse for certain parameter values
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Figure O: Reproduction without substantial growth with exponential competence when the environment is

exceedingly challenging. Parameters are as in Fig. 3E-H in the main text, except that here α = 1.5 rather than

1.15. The mass of reproductive tissue grows from 0 kg at birth, to 0.77 g at the age of tm ≈ 6 months, and reaches

a peak of 4.64 g at tb ≈ 8 months.
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Figure P: Brain and body collapse with exponential competence when the newborn is overly skilled. Parame-

ters are as in Fig. 3E-H in the main text, except that here xk(0) = 8 skill units rather than 0.
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8.8 A large brain is also favored by small metabolic costs of learning, small innate skill,

and intermediate allocation of brain metabolic rate to skills

In sections 8.8 and 8.9 we vary the values of the remaining parameters that were not estimated from data to

assess their effect on the predicted switching times and adult body and brain mass.

We obtain that later ages at brain growth arrest, at maturity, and at adulthood are favored by costly learning,

small skill at birth, and smaller brain allocation to skills (Fig. Q). Despite quantitative variation in the switching

times, the sequence of childhood, adolescence, and adulthood remains (Fig. Q).
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Figure Q: Predicted ages at brain growth onset, brain growth arrest, maturity, and adulthood vs other parameter

values with exponential competence. See legend of Fig. 5 in the main text.
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Adult brain and body mass decrease with increasing learning costs, and with exceedingly expensive learn-

ing, body and brain mass fail to grow (Fig. R panel A). This is because with increasingly expensive learning,

skill grows more slowly and thus there is less growth metabolic rate at each age. Similarly, adult body mass

decreases with increasing learning costs. Consequently and in contrast with memory costs (Figs. 5C and 6C in

the main text), while increasing learning costs delay the ages at maturity and brain growth arrest (Fig. Q panel

A), learning costs do not affect EQ within the range where adult brain and body mass are substantially greater

than zero (Fig. R panel D).

With respect to newborn skill level, larger adult brain and body mass are predicted when the newborn has

small skill (Fig. R panel B). If the newborn is overly skilled, the individual grows more during the maternal

care period than what it can maintain when maternal care is absent, causing brain and body collapse during

adulthood (Fig. R panel B and Fig. P).

With respect to allocation of brain metabolic rate to energy-extraction skills, brain mass is predicted to be

larger with a decreasing, but not exceedingly, small brain allocation to skills (Fig. R panel C). With an exceed-

ingly small brain allocation to skills, the individual reproduces without substantial growth because skill grows

little and the individual is unable to support itself when maternal care becomes absent. Above a threshold,

an increasing brain allocation to skills predicts a decreasing adult brain mass because the energetic input to

skill growth is larger without the brain having to be as large (Eq. 24b). In contrast to brain mass and EQ, the

predicted adult skill level increases with brain allocation to skills (Fig. R panel F).
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Figure R: Predicted adult body and brain mass, EQ, and skill vs other parameter values with exponential com-

petence. See legend of Fig. 6 in the main text.
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Comparative predictions with power competence are similar to those with exponential competence (Figs. S

and T).
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Figure S: Predicted ages at brain growth onset, brain growth arrest, maturity, and adulthood vs other parameter

values with power competence. See legend of Fig. 5 in the main text.
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Figure T: Predicted comparative patterns with power competence. See legend of Fig. 6 in the main text. In

(A,G) adult body and brain mass also collapse for exceedingly large environmental difficulty but in this case

the error tolerance is not satisfied so the point is not shown. In (H,K) jitter in EQ is due to near zero adult body

mass. In (I) the point at Ek = 900 MJ/skill may be due to the solver stalling near a minimum (the objective is

≈ 0.6).
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8.9 Dependence on maternal care parameters

Finally, we vary the parameter values controlling maternal care to assess their effect on predictions. We find

that later ages at brain growth arrest, at maturity, and at adulthood are favored by decreasing maternal facili-

tation for newborns and by faster decrease in maternal care (Fig. U). That is, maternal care allows for earlier

switching times.
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Figure U: Predicted ages at brain growth onset, brain growth arrest, maturity, and adulthood vs maternal care

parameter values with power competence. See legend of Fig. 5 in the main text.
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Maternal care parameters have minor effects on the adult body and brain mass attained (Fig. V). Such

invariance is likely to vanish if maternal care is allowed to affect newborn mortality, which we did not consider

for simplicity.
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Figure V: Predicted adult body and brain mass, EQ, and skill vs maternal care parameter values with power

competence. See legend of Fig. 6 in the main text.
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Similar results for the effects of maternal care are obtained with either power or exponential competence

(Figs. W and X). In sum, maternal care only triggers earlier switching times in the model.
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Figure W: Predicted ages at brain growth onset, brain growth arrest, maturity, and adulthood vs maternal care

parameter values with exponential competence. See legend of Fig. 5 in the main text.
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Figure X: Predicted adult body and brain mass, EQ, and skill vs maternal care parameter values with exponen-

tial competence. See legend of Fig. 6 in the main text.
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[28] Metz JAJ, Staňková K, Johanson J. The canonical equation of adaptive dynamics for life histories: from

fitness-returns to selection gradients and Pontryagin’s maximum principle. J Math Biol. 2016;72:1125–

1152.

[29] Metz JAJ, Geritz SAH. Frequency dependence 3.0: an attempt at codifying the evolutionary ecology per-

spective. J Math Biol. 2016;72:1011–1037.

[30] Charlesworth B. Evolution in age-structured populations. 2nd ed. Cambridge Univ. Press; 1994.

42


