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S2 Appendix. Lazy User-centric PageRank. In order to elaborate on our first
improvement, we consider the lazy Markov chain transition matrix
Wy = M + (1 — A) D7 A, where we call \ the laziness factor, i.e. the probability that
the agent performs a self-loop at any step . The motivation behind the addition of
self-loops |1] with probability A = /5 was their leading to a faster distribution
convergence and the reinforcement of vertices near the seed by slowing probability
diffusion. This idea was adopted in the fast PageRank method by [2]. We generalize the
system by parameterizing by X to show that this is an unnecessary and misleading
artifact in the calculation of the user-centric PageRank vector.

Due to A, the single element PageRank and residual update rules are altered as in
Eqs[12] [[3] Laziness implies self-loops in W and hence probability equal to
(1 — p)Ar® (u) remains on () (u) after each iteration. If this probability is more than
ed(u), an additional number of iterations on the same vertex are needed until
T(")/d(u) <E.

1
K = k0, +r1, (12
P = O, + (1= N (1 — p)Wor®, (13)

At this point, we argue that these additional iterations can be omitted by considering
the application of a very large number of updates on element u such that 7(u) — 0. The
probability that would be pushed from r(u) to ky,,(u) equals to the limit of the
geometric sequence in Eq[I4] As we have mentioned before, we set the initial residual
distribution to be equal to e, for uniformity. This is why we multiply the updates of
Egs 3 (in the main article) and [12| by a factor of p, which is also found in the calculation
of the limit in Eq Similarly, the probability from r(u) that is distributed to u’s
neighbors is described in Eq
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One might have arrived at the same result by considering the steady-state solution
k,(,tTH) = k,(,tr) = kl(f;o) of the PageRank definition, described in Eq
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We have shown a statement, parameterized by A, that clearly exposes the distinction
between regular and lazy PageRank. Indeed, the introduction of laziness in approximate
user-centric PageRank is misleading, as it implies a different PageRank vector with a

A-dependent effective restart probability perr = %.
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Given that the laziness factor leads to a different PageRank result that is reachable
through non-lazy approximate methods (that obviate unnecessary computational costs
by exploiting the observations in Eqs — , we opt to remove it from the
approximate PageRank calculation. The computational gain is made by the fact that
only one iteration is required on u for satisfying the threshold "(*)/ d(w) < E-
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