
S2 Appendix. Lazy User-centric PageRank. In order to elaborate on our first
improvement, we consider the lazy Markov chain transition matrix
Wλ = λI + (1− λ)D−1A, where we call λ the laziness factor, i.e. the probability that
the agent performs a self-loop at any step t. The motivation behind the addition of
self-loops [1] with probability λ = 1/2 was their leading to a faster distribution
convergence and the reinforcement of vertices near the seed by slowing probability
diffusion. This idea was adopted in the fast PageRank method by [2]. We generalize the
system by parameterizing by λ to show that this is an unnecessary and misleading
artifact in the calculation of the user-centric PageRank vector.

Due to λ, the single element PageRank and residual update rules are altered as in
Eqs 12, 13. Laziness implies self-loops in W and hence probability equal to
(1− ρ)λr(t)(u) remains on r(t)(u) after each iteration. If this probability is more than
εd(u), an additional number of iterations on the same vertex are needed until
r(u)/d(u) < ε.

k
(t+1)
λpr = k

(t)
λpr + r(t)Iu (12)

r(t+1) = r(t) − λr(t)Iu + (1− λ)(1− ρ)Wu:r
(t), (13)

At this point, we argue that these additional iterations can be omitted by considering
the application of a very large number of updates on element u such that r(u)→ 0. The
probability that would be pushed from r(u) to kλpr(u) equals to the limit of the
geometric sequence in Eq 14. As we have mentioned before, we set the initial residual
distribution to be equal to ev, for uniformity. This is why we multiply the updates of
Eqs 3 (in the main article) and 12 by a factor of ρ, which is also found in the calculation
of the limit in Eq 14. Similarly, the probability from r(u) that is distributed to u’s
neighbors is described in Eq 15.

∞∑
t=0

ρr(t)(u)(1− ρ)tλt = ρr(t)(u)
1−λ(1−ρ) = ρeffr

(t)(u) (14)

∞∑
t=0

r(t)(u)(1− λ)(1− ρ)t+1λt = (1−λ)(1−ρ)r(t)(u)
1−λ(1−ρ) = (1− ρeff )r(t)(u), (15)

One might have arrived at the same result by considering the steady-state solution

k
(t+1)
pr = k

(t)
pr = k

(∞)
pr of the PageRank definition, described in Eq 16.

k(∞)
pr = ρev + (1− ρ)k(∞)

pr Wλ (16)

= ρev + (1− ρ)k(∞)
pr (λI + (1− λ)W ) (17)

= ρ
1−λ(1−ρ)ev +

(1−λ)(1−ρ)
1−λ(1−ρ) k

(∞)
pr W (18)

= ρeffev + (1− ρeff )k(∞)
pr W, (19)

We have shown a statement, parameterized by λ, that clearly exposes the distinction
between regular and lazy PageRank. Indeed, the introduction of laziness in approximate
user-centric PageRank is misleading, as it implies a different PageRank vector with a
λ-dependent effective restart probability ρeff = ρ

1−λ(1−ρ) .
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Given that the laziness factor leads to a different PageRank result that is reachable
through non-lazy approximate methods (that obviate unnecessary computational costs
by exploiting the observations in Eqs 14 - 16), we opt to remove it from the
approximate PageRank calculation. The computational gain is made by the fact that
only one iteration is required on u for satisfying the threshold r(u)/d(u) < ε.
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