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Method details 

Expanding the methods section in the main text, we add further details of the applied 

virtual screening method. 

 

Database generation 

The InChI strings given by the Dictionary of Food Compounds1 were first curated 

before 3D structure generation. Erroneous E/Z-configurations and amide tautomers, 

which are entirely represented as iminol structures, were corrected. The InChI strings 

do not contain any stereochemical information. Initially, we therefore did not search 

for the natural stereoisomer, but generated a random stereoisomer to be stored in the 

database instead. When retrieving chiral compounds as hits in the VS process, the 

CAS number (provided by the Dictionary of Food Compounds) allows searching for 

the natural stereoisomer, which can then be re-submitted to the VS workflow. 

Because the structure generator CORINA (available at http://www.molecular-

networks.com) cannot directly convert InChI to 3D structures, we first converted the 

InChI strings into SMILES strings by ChemDraw 12.0 and used those subsequently 

as input for CORINA. The final version of FCDB contains 12,579 different 

compounds, each one with a numerical index and compound name. The following 

compound-preparation steps involved tautomer generation, protonation at 

physiological pH and energy minimisation using the CHARMm force field. Afterwards, 

we calculated low-energy conformational sets using the BEST conformer generation 

algorithm with up to 150 conformers for every molecule and stored them in a 3D 

conformer database in Discovery Studio 3.1. 

http://www.molecular-networks.com/
http://www.molecular-networks.com/
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The considerably smaller size of the PhytoLab compound catalogue allowed us to 

generate the natural stereoisomers in ChemDraw 12.0 first for our natural compound 

VS database PhyDB. Hence, we used isomeric SMILES strings directly as input for 

CORINA. The compound-preparation steps were identical to those used for FCDB. 

The final version of PhyDB contains 987 different compounds. 

 

ParaAlign algorithm 

ParaAlign is a rigid-body alignment algorithm that uses electron density (ρ)2 and 

molecular electrostatic field (first derivative of the molecular electrostatic potential)3,4 

calculated on a grid around the ligands to be aligned using semi-empirical molecular 

orbital theory. The alignment algorithm depends on maximising the similarity between 

the template molecule conformer and the other dataset ligand conformers. The 

similarity between two molecules’ properties on the grid is calculated using Hodgkin’s 

similarity index5, and the Simplex algorithm6 is used to maximise the similarity. The 

use of quantum mechanics-derived properties makes this alignment protocol more 

accurate and more efficient in describing molecular steric and electrostatic properties 

than conventional molecular mechanics-based methods, which use atom-centred 

charges and Lennard-Jones potentials. Quantum mechanics-derived properties 

consider important features for Computer-Aided Drug Design, such as σ-holes7-10 

and polar flattening11-13 (responsible for halogen bonding), which cannot be described 

by conventional methods. Because ParaAlign is field-based, it is efficient in aligning 

chemically diverse ligands and finding chemically different ligands with similar binding 

properties, an important feature for scaffold hopping and discovery of new chemical 

entities to overcome patent limitations. Although ParaAlign uses quantum mechanics-

derived properties, it is computationally efficient. 
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Parameters for Common Feature Pharmacophore (HipHop) algorithm in Discovery 

Studio 3.1 

As the ligand conformers had been pre-computed and selected before, we set the 

conformer generation option to NONE. We chose hydrogen-bond acceptors, 

hydrogen-bond donors, hydrophobic, aromatic ring, and positive ionisable features to 

be used in model generation. A maximum of 25 pharmacophore models with a 

minimum inter-feature distance of 1.5 Å was generated during each run. Each 

pharmacophore model had to possess a minimum of three features and four feature 

points. To allow a limited number of actives to miss part of the pharmacophoric 

features, the number of leads that may miss, the feature misses, and the complete 

misses were set to “2” for D2R agonists and “1” for antagonists. For every active, the 

Principal and MaxOmitFeat values were set to “2”, meaning that none of the input 

actives is being prioritized when generating the pharmacophore model. Further, a 

MaxOmitFeat value of “2” for at least one compound is required when setting the 

complete misses value higher than zero. The other parameters were set to the 

default values. 

 

Docking procedure 

A representative cluster structure obtained during the simulations of the D2UpR model 

was taken for our docking procedure. To compare the binding modes of hordenine 

and dopamine, we removed dopamine from the binding pocket and docked 

hordenine, using AutoDockVina with the same parameters as above. One 

conformation of hordenine was selected based on the scoring function and on visual 
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inspection. The resulting receptor-ligand complex was submitted to energy 

minimisation using the SANDER module of the AMBER10 program package14. The 

all-atom force field ff99SB15 was used for the protein residues and the general 

AMBER force field (GAFF)16 for hordenine. Parameters for hordenine were assigned 

using antechamber14 and the charges were calculated by means of Gaussian 0917 at 

the HF/6-31(d) level and the RESP procedure according to the literature18. As 

hordenine was assumedly protonated under physiological pH, a formal charge of +1 

was attributed to it. The minimisation was carried out using 2500 steps of steepest 

descent method followed by 7500 steps of conjugate gradient minimisation. The 

minimisation steps were performed in a box of TIP3P water19 with periodic boundary 

conditions and a non-bonded cut-off of 10.0 Å. An appropriate number of chloride 

ions were added to neutralise the system. 
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B – TABLE 

Table S1: Molecular similarities for the tested virtual screening hits compared to the 

respective training set ligands expressed as Tanimoto coefficient Tc, calculated using 

Extended Connectivity Fingerprints 4 (ECFP4). 

Compound 
Tc compared to 

training set ligands 

D2R-agonist hits  

Clenbuterol 0.122 

Delphinidin 0.133 

Fumigaclavine A  0.288 

Hordenine 0.164 

Kukoamine A 0.169 

Leonurine 0.125 

Muscimol 0.128 

Pyrraline 0.094 

Salsolinol 0.324 

D2R-antagonist hits  

Ajmalicine 0.345 

Dihydroberberine 0.120 

Emetine 0.159 

Fenpropimorph 0.110 

Halofuginone 0.122 

Robenidine 0.133 

Roquefortine C 0.138 

Sarafloxacin 0.167 
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C - FIGURES 

Figure S1: The molecular property distributions of the newly generated screening 

databases depicted together with those of other types of freely available virtual 

screening databases.  

 

 

 

The blue lines represent the food compound database FCDB, the green lines depict 

PhytoLab natural products database PhyDB, the orange lines show a sample of the 

natural product library UNPD, the red lines a sample of the natural product library 

ZBC and the purple lines represent a sample of the drug-like ZAP subset. The 

relative abundance in the graphs indicates the number of compounds possessing a 

defined molecular property divided by the total number of compounds in the 

database or the random sample.
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Figure S2: Training set ligands for D2R-agonist pharmacophore model generation. 
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Figure S3: Training set ligands for D2R-antagonist pharmacophore model 

generation. 
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D – Databases  

The in silico 3D food compound database (FCDB, containing 12,579 compounds) 

based on molecules selected from the Dictionary of Food Compounds (CRC Press, 

2012) as well as the natural products database (PhyDB, containing 987 compounds) 

based on compounds from the catalogue of the vendor PhytoLab 

(Vestenbergsgreuth, Germany) are available online. 


