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Algal growth model 

Similar to bacterial growth, algal growth model often consists of several phases following a logistic or 

sigmoid curve. The lag period duration (), the maximum specific growth rate (μmax) and the 

asymptotic value (A) are the most informative parameters of this curve (Fig. S1). When algal cells are 

inoculated into a limited volume of culture medium and exposed to suitable conditions of light, 

nutrients, and temperature, there is a lag phase, an exponential phase, a phase of declining relative 

growth rate and a stationary phase. During the lag phase, cell protein and nucleic acid contents 

increase and we may surmise that this phase is one of reconstitution, in which enzyme and substrate 

concentrations are built up to the degrees necessary for multiplication. In the exponential phase, the 

organisms have a high capacity for photosynthesis, and the products are used mainly for the synthesis 

of protein. In a static culture, the exponential phase ends after a time because of depletion of nutrients, 

accumulation of toxic by-products of metabolism, or simply because light becomes limiting as the 

culture becomes denser (Fogg 1957).  

Fig. S1. Schematic diagram representing temporal 

development of algal population size that follows 

main phases of the growth relevant for the study: lag 

phase and exponential increase that levels off reaching 

a stationary phase. Duration of the lag phase is 

denoted as , and μmax is maximal growth rate value. 

The lag phase just after t = 0 is characterized by zero 

growth; it is followed by the exponential phase with 

acceleration to a maximal value (μmax) and, finally, a 

stationary phase with zero growth. 

 

 

The Baranyi-Roberts model (Baranyi and Roberts 1994) based on a modified logistic equation was 

chosen to fit the growth profile of the algae under various 15N levels. This model is commonly 
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reported to produce a good fit for bacterial growth curves (Coleman et al. 2003; López et al. 2004), 

especially with varying lag phase (McKellar and Knight 2000; Pin et al. 2002; Baty et al. 2004; 

Fujikawa et al. 2004). In addition to the good fitting capacity for many microorganisms, the model is 

popular because most of the model parameters being biologically interpretable (McKellar and Knight 

2000; López et al. 2004; Van Impe et al. 2005). The Baranyi-Roberts model has been successfully 

used to model algae growth in culture (Lacerda et al. 2011; Tevatia et al. 2012; Halmi et al. 2014; 

Mohamed et al. 2014). Moreover, recent evaluations suggest its superiority in microorganism growth 

modeling (Van Impe et al. 2005), including algae (Halmi et al. 2014) under stress and limiting 

conditions. 

 

The model is based on the first-order differential equation predicting specific growth rate, (t) (h-1) of 

the cell population with time (Baranyi et al., 1993; Baranyi, 1997): 

 

(1) 

 

where X(t) is the algal concentration in the medium at time t (expressed as total fluorescence at 

constant culture volume), max is the maximum specific growth rate (d-1), α’(t) is the adjustment 

function, and f(t) is the inhibition function.  

Further, α’(t) in the Eq. (1) is a monotonously increasing function, being 0 ≤ α’(t) ≤ 1 and limt→∞α’(t) 

= 1 describes the adaptation of algal cells when entered in the new environment of the test conditions, 

i.e. during the lag phase. It is based on a kinetic assumption that the growth of cells in the lag phase is 

inhibited by a limiting intracellular substance following a Michaelis–Menten principle (Baranyi and 

Roberts, 1994; Baranyi, 1997) and expressed as (Perni et al., 2005): 

 

(2) 

 

where h0 is the dimensionless Baranyi-Roberts model parameter.  

Finally, f(t) in the Eq. (1) is a monotonous decreasing function with f(0) = 1 and limt→∞α’(t) = 1, which 

is described by the following logistic function: 



 

(3) 

 

where Xmax is maximal algal concentration observed in during the exposure and represented by the 

total fluorescence at constant test volume. 

After rearranging Eqs. (1)–(3), the rate of microalgae growth (dX/dt) becomes: 

 

(4) 

 

The cell population in a batch reactor at time t is modeled by integrating Eq. (4) at initial conditions: 

X(0) = X0 and X(t) = X(t): 

 

(4) 

 

 

Individual (i.e. well-specific) growth curves fitted to the fluorescence measured on each observation 

occasion were produced to calculate max and duration of the lag phase. For these calculations, DMFit 

software (www.combase.cc) was used applying models with no asymptote when cell population had 

not reached a stationary phase or a complete model when the stationary phase was detected. 

Altogether, about 50% of the metapopulations (wells) have reached the stationary phase during the 

exposure.  
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