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1 Derivation of Eq. (3)

Here, we derive the model equation (3) in the main manuscript in a different manner. We
assume that each motor bound to the filament moves via a one-dimensional random walk along
the filament, the driving force of which is generated by binding of the leading head to MT
associated with the motor step. The driving force is assumed to arise from thermal activation
or ATP hydrolysis, and is denoted by ηi = η(xi, t), which is given in the main text. We consider
the over-damped Langevin equation of the coordinate of each motor xi and filament y as

γxẋi = −kxi − νi + ηi,

γyẏ =
N∑
i

{νi − ηi}+ ξy(t), (S1)

where γx and γy are the friction coefficients of the motor with the surrounding medium and
the filament respectively, whereas k is the spring constant and ξy(t) the thermal random force
applied to the filament as ⟨ξy(t)ξy(t′)⟩ = 2Dyγ

2
yδ(t−t′). νi represents the frictional force between

the motor and the filament. It satisfies the no-slip condition, i.e., the relative distance between
each bound motor and the filament does not change unless ηi causes the filament to slide. From
these equations, we obtain

ẋi − ẏ =

(
1

γx
+

1

γy

)
ηi −

(kxi + νi)

γx
− 1

γy

N∑
i

νi +
1

γy

N∑
j ̸=i

ηj −
ξy
γy

. (S2)

The no-slip condition is simply formulated as ẋi− ẏ = (1/γx+1/γy)ηi for each i, because ẋi− ẏ
should be zero for ηi = 0.1 From the no-slip condition, we obtain

ẋi =
γx + γy
γxγy

ηi −
k

γy +Nγx

N∑
i

xi −
1

γy

γy + γx
γy +Nγx

N∑
i

ηi +
1

γy +Nγx
ξy, (S3)

ẏ = − k

γy +Nγx

N∑
i

xi −
1

γy

γy + γx
γy +Nγx

N∑
i

ηi +
1

γy +Nγx
ξy. (S4)

1In the main text, we adopt ẋi − ẏ ≃ 1
γx

ηi by assuming γx ≪ γy.
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We estimate the orders of the parameters as follows: The friction coefficient of the motor
head γx ∼ 10−7 [pN·s/nm] (the friction of a sphere with the diameter ∼ 10 nm in water); that
of the filament γy ∼ 10−3 [pN·s/nm] (the friction of a ∼ 20-µm-long microtubule in water for
the sliding assay [1]); N = 1–102; and k = 0.1–1 [pN/nm]. In addition, ηi is estimated as
|ηi/γx| ∼ 100 [nm/s] from the single molecular assay of Cin8 [2]. Using these values, each term
in Eq. (S3) is estimated as follows:∣∣∣∣γx + γy

γxγy
ηi

∣∣∣∣ ∼ 100 [nm/s],∣∣∣∣∣ k

γy +Nγx

N∑
i

xi

∣∣∣∣∣ ∼ 102 × 101 ×
√
N [nm/s],∣∣∣∣∣ 1γy γy + γx

γy +Nγx

N∑
i

ηi

∣∣∣∣∣ ≃ N
γx
γy

ηi
γx

∼ 10−4 × 102 ×N [nm/s],

1

(γy +Nγx)2
⟨ξ2y(t)⟩ ∼ Dy ∼ 104 [nm2/s], (S5)

which allows us to neglect the third term. After applying further approximations in the form of
γy + γx ≃ γy and γy +Nγx ≃ γy, we obtain Eq. (3).

2 Explicit Form of ρ(x) in Eq. (5)

When f(x) is given by a linear function f(x) = a0x, M1 can be represented by M1 = −ax+ b.
For N = 1, a and b are a = a0 + κ and b = v0, whereas for infinitely large N , a and b are
a = a0 and b = v0 − κ⟨x⟩, where ⟨x⟩ =

∫ ∆+

−∆−
xP (x, t)dx. Using the imaginary error function

erfi(x) = 2
∫ x
0 et

2
dt/

√
π, the explicit form of ρ(x) is given as follows:

for x < 0, (S6)

ρ(x) =
1

D
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a
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a
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,

for x ≥ 0, (S7)
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,

where D = Dx +Dy for N = 1 and D = Dx for infinitely large N . The density distribution of

x is then given by P (x) = M0ρ, where M0 = N/(
∫ ∆+

−∆−
ρ(x)dx+ 1/r).
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3 Explanation of the use of D = Dx in Eq.4 for infinitely large
N

Through transformation of the variable according to x̃i = xi − z, where z satisfies ż = −(Nκ+
α0)z + ξy/γy, ξy is eliminated from the ẋi equation in Eq. 3. Here, |z| ∼

√
Dy/(Nκ+ α0) is

negligible for large N (say ∼ 100). Thus, the contribution of ξy can be ignored, except for the
shifting of the parameters, ∆± → ∆± − |z|.

4 Explanation of Video S1 in Supplementary information

Representative examples of the simulation results for N = 1 and 100 are depicted. The following
parameters are used: v0 = −0.1 [µm/s]; Dx = 0.03 [µm2/s]; Dy = 0.04 [µm2/s]; κ = 10000 [s−1]
∆+ = 0.064 [µm]; ∆− = 0.048 [µm]; r = 20 [s−1]; r̃ = 0; and a0 = 90 [s−1].

5 Force-velocity relation for the single motor

Here, we address the force-velocity relation for the single motor under a situation in Fig. S2(a),
where the motor with applied force F walks along an immobile filament. Since the filament is
immobilized, the no-slip condition is written as ẋi = ηi/γx = v0+

√
2Dxξi(t)−f(xi). Considering

the balance with the force F = kx, the force-velocity relation for the single motor is obtained as

⟨ẋ⟩ = v0 − f(F/k) = v0 − a0F/k. (S8)

The stall force is calculated as F = v0k/a0. Figure S2(b) illustrates the force-velocity relation
for the parameters in Fig.2 in the main text. Note that, in Fig. S2(b), the speed for the build-in
direction of the motor (i.e., minus-end direction) is considered to be plus. The stall force in
Fig. S2(b) is F ∼ 0.1 [pN], which is much smaller than the experimentally estimated value ∼
8 [pN] for known kinesins. To be compatible with the experimental estimate, reasonable choice
of a0 value will be around a0 ∼ 2 [s−1]. Figure S2(c) illustrates the force-velocity relation for
a0 = 2 [s−1], k = 0.1[pN/nm] and v0 = 100 [nm/s]: in this case, the stall force is calculated as
5 [pN]. Even for such parameter, we confirmed that our conclusion is not altered as is shown in
Fig. S3. In this case, the directionality switches even for N = 2, and the value of dy/dt does not
show a monotonic decrease but overshoots at N = 2 (see S3(b)). This overshooting behavior
of dy/dt vanishes by introducing exponential dependencies of detachment rate on force, as is
described in the next section.

6 Exponential dependencies of detachment rate

Throughout the paper, we assumed the hard cutoff (i.e., ∆+ and ∆−) for the detachment of
the motors. In contrast, the exponential dependencies of detachment rate on force (koff (F ) =
k0e

F/Fc where Fc is critical force) has been well established [3, 4]. Here we show that all results
are not altered by incorporating the exponential detachment rate.

Instead of the detachment rule with the hard cutoff, we improve the spontaneous detachment
rate r̃ as r̃(x) = r̃0e

x/∆+ for x ≥ 0 and r̃0e
−x/∆− for x < 0. The parameter of a0 is set as

a0 = 2[s−1], where the force-velocity relation illustrated in S2(c) is obtained. The results are
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shown in Figs. S4, which indicate that the essentially same result as in the main text is obtained
with regards to the directionality switch. In this case, the overshooting behavior of dy/dt as in
S3(b) at N = 2 vanishes. Similar to Fig.2(b) and Fig.4(b), dy/dt monotonically decreases with
N .
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Figure S1: Behavior of the model with the asymmetric dependency of the motor’s velocity upon
the intramolecular strain, i.e., |f(x)| > |f(−x)|. (a) Time series of filament coordinate y for
varying N . (b) ẏ dependency on N . Both (a) and (b) illustrate the directionality transition
with increasing N . The upper and dashed lines in (b) indicate theoretical estimates for N = 1
and for sufficiently large N , respectively. (c) and (d) show the x distribution P (x) for N = 1
and 50, respectively. The lines and dots represent theoretical estimates and simulation results,
respectively. The insets exhibit the difference between P (x) for x > 0 and for x < 0, i.e.,
P (x) − P (−x). The following parameters are used: v0 = −100 [nm/s]; D = 3 × 104 [nm2/s];
Dy = 4× 104 [nm2/s]; κ = 1000 [s−1] (k = 0.1 [pN/nm] and γy = 10−4 [pN·s/nm]); D+ = D− =
64 [nm]; r = 20 [s−1]; r̃ = 0; a+ = 90 [s−1]; and a− = 106 [s−1].
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Figure S2: the force-velocity relation. (a) Schematic representation of the measurement of the
force-velocity relation. (b) the force-velocity relation for a0 = 90 [s−1], v0 = 100[nm/s] and
k = 0.1 [pN/nm]. (c) the force-velocity relation for a0 = 2 [s−1], v0 = 100[nm/s] and k = 0.1
[pN/nm].
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Figure S3: Behavior of the model with asymmetric strain-dependent detachment. (a) Time
series of filament coordinate y for varying N . (b) ẏ dependency on N . Both (a) and (b) exhibit
directionality transitions with increasing N . The upper and bottom dashed lines in (b) indicate
theoretical estimates for N = 1 and for a sufficiently large N , respectively. (c) and (d) show
the x distribution P (x) for N = 1 and 50, respectively. The lines and dots represent theoretical
estimates and simulation results, respectively. The following parameters are used: v0 = −100
[nm/s]; Dx = 3 × 104 [nm2/s]; Dy = 4 × 104 [nm2/s]; κ = 1000 [s−1] (k = 0.1 [pN/nm] and
γy = 10−4 [pN·s/nm]); ∆+ = 80 [nm]; ∆− = 72 [nm]; r = 20 [s−1]; r̃ = 0; and a0 = 2 [s−1].
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Figure S4: Behavior of model with exponential dependence of detachment rate as r̃(x) = r̃0e
x/∆+

for x ≥ 0 and r̃0e
−x/∆− for x < 0. (a) Time series of filament coordinate y for varying N . (b)

ẏ dependency on N . Both (a) and (b) exhibit directionality transitions with increasing N .
(c) and (d) show the x distribution P (x) for N = 1 and 50, respectively. The dots represent
simulation results. The following parameters are used: v0 = −100 [nm/s]; Dx = 3×104 [nm2/s];
Dy = 4 × 104 [nm2/s]; κ = 1000 [s−1] (k = 0.1 [pN/nm] and γy = 10−4 [pN·s/nm]); ∆+ = 80
[nm]; ∆− = 48 [nm]; r = 20 [s−1]; r̃0 = 5 [s−1]; and a0 = 2 [s−1].
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