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Supplementary Materials and Methods 

 

1  Uncertainties in OHC estimation 

Ocean heat content is calculated by integrating the three dimensional product of 

temperature, density and heat capacity. An illustration on how OHC is calculated from 

in situ temperature profiles can be found in Cheng et al. (7). Here the uncertainties in 

OHC calculations are discussed. 

 

(i). Quality-Control (QC) of the data. As in-situ ocean temperature observations were 

collected by various instruments in different ocean conditions and on different 

platforms, it is unavoidable that some obtained measurements are erroneous and that 

the quality of measurements differs across the platforms. QC processes are designed 

to remove the spurious measurements. It is widely suspected that different QC process 

adapted in different groups impact the OHC estimates (21). There is no generally 

accepted best practice for QC though investigation is underway in the IQuOD project 

(http://www.iquod.org). Here, we apply QC flags in WOD13 dataset, which is the 

most widely used ocean subsurface dataset.  

 

(ii). Instrumental bias. Some ocean instruments have systematic errors in their 

measurements, such as Mechanical Bathythermographs – MBTs and eXpendable 

Bathythermographs - XBTs. These biases can significantly impact the OHC estimates 

(8, 22, 23, 31), especially for decadal and long-term changes. Hence correction of 

these biases is one of the key tasks in OHC estimation. Corrections have been 

comprehensively discussed in recent studies such as (21, 25). In the present study, we 

correct the MBT bias using the Ishii et al. (31) method, and the XBT bias using the 

Cheng et al. (26) method. The latter is the recommended method by the XBT 

community (25), which takes account of all known factors affecting XBT biases. 

After correction, the XBT bias on decadal scale can be substantially reduced, but there 

may be some uncertainties on inter-annual scales due to the lack of data. 

 

(iii). Choice of baseline - climatology. Ideally the choice of a baseline does not change 

the representation of long-term OHC variation. However, the observations are 

unevenly distributed in the ocean in the past, particularly before the Argo period  

(27, 30). The impact of the climatology originates from the irregular sampling and it 

is then dependent on the mapping method (21). A climatology constructed by using 

data with consistent geographical coverage is preferred, i.e. the Argo period 

climatology and WOA13 decadal climatologies. Alternatively, there is another option 

of removing the long-term trend in each grid cell before construction of the 

climatology. In the present study, we construct the climatology by using the data for 

the 1997–2005 period for both observations and models. However, use of such a short 

time period for the climatology could result in larger bias in the OHC estimate 

compared with a long-period climatology (28, 30). This bias, which arises from 

infilling data gaps, should be ascribed to the mapping method rather than the 

climatology 

 

(iv). Mapping method. The mapping method defines how the global OHC is 

calculated from observations with incomplete global coverage. It relates to how data 

gaps are filled and the reconstructed field is smoothed. The mapping method is the 

biggest error source in the OHC estimate (21). Bias due to mapping in the OHC 

estimate has been recognized in recent studies (28–30), suggesting that a careful 



 

evaluation of the available mapping methods is required. Here we introduce the 

general principles of a mapping method to give an impression of the error due to 

mapping. Most of the current available mapping methods follow a similar framework 

 

Xa(I) = Xb(i)+ W (O(j)) 

 

where the final analysis value (Xa) in a grid i is a combination of a prior guess (Xb) 

and a correction term according to the nearby observations (O) in grid j. W is a 

weight function that defines how the nearby observations impact the analysis grid and 

how the analysis field is smoothed. Current available mapping methods use different 

prior guesses and methods to represent the covariance characteristics. These factors 

are responsible for their different performance. 

 

In addition to mapping, a localization strategy is always applied which assumes that 

only data within a spatial area can be used during the analysis of a grid cell. The size 

of the area is defined by the influencing radius. Different mapping methods adopt 

different influencing radii, leading to their differences in their ability to filter noise and 

smooth data. This is also responsible for the differences in resultant OHC. 

 

In summary, it has been well established that there are various sources of uncertainty 

in OHC estimates, which limits its accurate determination. Major progress has been 

made to correct the instrumental bias and the choice of methodologies in the past 

years. Before the community fully addresses the impact of QC on OHC calculation, it 

is reasonable to assume that the error of the spurious measurements is white noise and 

thus plays a minor role in the OHC estimation. The major remaining issue is whether 

a reliable mapping method is possible with negligible sampling bias, as discussed in 

this study.  

 

2  Mapping method: iterative EnOI-DE/CMIP5 Method 

Cheng and Zhu, (CZ16) provided an objective method for reconstructing the ocean 

temperature field for the upper 700m by utilizing CMIP5 simulations, which was 

named the Ensemble Optimum Interpolation method with Dynamic Ensemble of 

CMIP5 simulations (EnOI-DE/CMIP5). This method mainly uses the spatial 

covariance of model outputs, and the error in temporal information from models does 

not significantly impact the reconstruction. A large influencing radius of 20 degrees is 

applied in CZ16 to reconstruct the temperature fields within 0–700m layers, and here  

25 degrees is used in the reconstructions for 700–2000m layers. Three iterative scans 

were performed by successively setting three different influencing radii (fig. S1): 

 

(i). Scan-1 uses the traditional EnOI-DE/CMIP5 mapping by setting a large influence 

radius (25 degrees for 700–2000m layers and 20 degrees for 0–700m layers).  

 

(ii). Scan-2 uses the reconstructed fields obtained by scan-1 as the prior guess. In this 

case, the results of the first scan inform the second scan, and provide the improved prior 

information. In scan-2, the influence radius is set to 8 degrees, consistent with the NCEI 

method and some other traditional methods. Note that NCEI method is also an iterative 

method with influencing radius of 8, 6 and 3 degrees. 

 

 



 

(iii). Scan-3 uses the reconstructed fields of the scan-2 as the prior guess, but the 

influence radius is set to 4 degrees. 

 

A comparison of the reconstructed fields after scan-1, scan-2 and scan-3 is shown in fig. 

S2. Smaller scale signals are included after scan-2 and scan-3 compared with scan-1.  

 

Figure S3 presents the reconstruction of the subsampled fields according to the 

observation locations in February 1962, 1972, 1982, 1992, 2002, 2012, and the 

corresponding reconstructed fields, where the gridded temperature anomalies in 

August of 2011 are used as truth. The temperature anomaly pattern from 30oS to 65oN 

can be well reconstructed in various sampling patterns since 1960s. There are some 

uncertainties regarding the reconstructed field from 60oS to 30oS especially in the 

South Pacific, where there was extremely poor sampling. For example, in February 

1972 (1962), less than 50 (20) grids contained observations in this region. Moreover, 

there are fluid eddies in that region which further affects accuracy. The zonal mean 

temperature anomalies for the truth and reconstructed fields are also presented in  

fig. S3. In August 2011, it shows warming signals from 50oS to 25oN, and from 40oN 

to 70oN, and cooling signals around 30oN and within 75oS–55oS. These large-scale 

structures can all be well reconstructed, especially north of 30oS. Larger uncertainty is 

found in the reconstructions around 30oN and 40oS, due to the presence of boundary 

currents and eddies. 

 

In the summer season of the Southern Hemisphere, as there is less sea ice coverage 

than in winter, there are more observations available. Therefore, it is also valuable to 

check the reconstruction in the winter season of Southern Hemisphere. Figure S4 

presents the reconstruction of the subsampled fields according to the sampling of 

September 1959, 1969, 1979, 1989, 1999, 2009, and the corresponding reconstructed 

fields, where the temperature anomalies in August of 2011 are used as truth. Because 

of the lack of data in ice-covered regions in the Southern Ocean (September), the 

reconstruction within 70oS–40oS contains larger errors than fig. S3. 

 

3  Evaluating the mapping method 

3.1 Choice of influencing radius 

CZ16 used 20 degrees as the influencing radius for the upper 700m. For deeper layers 

a different approach was selected. A subsample test was used first to determine the 

influencing radius for 700–2000m layers. A depth of 1200m was selected here as an 

example, however the results using other depths were similar. The subsample test was 

run multiple times with different influencing radii from 4 to 36 degree with 4-degree 

increments together with a separate run without using a localization strategy. 

 

The global mean temperature errors between the mapped and truth fields are shown 

by dots in fig. S5 as a function of the influencing radii. It appears that the error is 

reduced to near zero when the influencing radius is set to both ~15 and ~25 degrees. 

Consequently, 25 degrees was selected as the influencing radius to allow a broader 

propagation of information from the sampled to un-sampled regions, and also to 

ensure a global reconstruction. 

 

This test indicates that the model ensemble in our method is able to provide a proper 

covariance even though there are only weak zonal-mean correlations (~0.2) and 

meridional-mean correlations (~0.0) up to 25 degrees away (Fig. 2 in the main text). 



 

More results based on the subsample test in the following discussions confirm that 

there is insignificant error by using the large value of the influencing radius. 

 

3.2. Global/Basin mean sampling error at different layers 

The global/0-2000m averaged sampling error is shown in Fig. 3 in the main text; 

however, it is worthwhile investigating the sampling error for particular ocean layers, 

because there are different spatial and temporal variabilities. For instance, the 

inter-annual variation in the upper ocean (i.e. 0–300m) is dominated by ENSO 

variations, but below 300m, the inter-annual variation becomes much weaker. Also it 

is important to examine the error for six major ocean basins (fig. S6). 

 

Figures S7–S10 shows the global/basin mean sampling error at several depths: 20m, 

300m, 800m, and 1200m respectively.  

 

 At 20m (fig. S7), the global averaged temperature change reveals significant 

long-term warming and apparent ENSO variations on inter-annual scales. The 

sampling errors are around zero. Both the inter-annual and decadal variability are 

larger than the sampling error since 1960 (S/N ratio larger than 10 for decadal 

variability, larger than 8 for the inter-annual variability, fig. S7H, I). This 

indicates that both inter-annual and decadal variability can be accurately 

reconstructed near the sea surface for the global ocean. Similar conclusions can 

be drawn for the six major basins. In particular, the southern oceans show the 

smallest S/N ratio. The southern oceans near the surface experienced weaker 

long-term warming rate than most regions in the ocean. The lack of warming is a 

hot topic in climate community. 

 At 300m (fig. S8), the temperature signals are also detectable from the sampling 

errors on both global and regional scales on decadal scale (with S/N ratio from 

2:1 to 30:1, fig. S8H). However, the S/N ratio for the inter-annual variability 

(larger than 2 after 1970) is smaller than that in the upper 20m. This indicates 

that the inter-annual signals become more uncertain at 300m depth than near the 

sea surface. 

 At 800m (fig. S9), the decadal variation can be more robustly detected since the 

1990s; there is a dramatic increase of S/N ratio (larger than 2 after 1990s for 

global/regional signals). This change is mainly due to the WOCE (1990s) and 

Argo project (2000s). The S/N ratio for the inter-annual variations is larger than 

2 after 2010. This again suggests the inter-annual signals in the reconstructed 

field are uncertain in the deep ocean (below 700m), which explains the elevated 

noise in the time series in the North Pacific and Indian Ocean (fig. S9E and F) 

compared to other basins. 

 At 1200m (fig. S10), similar conclusions can be drawn compared with those at 

800m. The southern oceans and tropical/ subtropical Atlantic Ocean show the 

largest S/N ratio (fig. S10H, I), because these two ocean basins experienced 

much quicker long-term warming after the 1960s than the other basins in the 

deep ocean. In addition, the North Atlantic also shows a clear decadal variation.  

 

3.3. Local sampling error by subsample test 

The geographical distributions of the mean sampling error and two standard 

deviations in each 1o by 1o grid are presented in fig. S11 for 0–2000m averages, and 

fig. S12 for 20m and 1600m depths. It is seen that 

 As the mean sampling errors are around zero over the global ocean for 20m, 



 

1600m depths and for 0–2000m averages, there is no significant regional bias. 

 At 20m, there are larger 2σ sampling errors in the boundary currents regions, 

ACC regions, and the Eastern Pacific Ocean. 

 At 1600m, larger 2σ sampling errors occur in the North Atlantic, Western Indian 

Ocean and ACC regions (south of 30oS). There are much smaller 2σ sampling 

errors in the North Pacific than the other regions in the deep ocean, in contrast to 

the upper ocean (i.e. 20m).  

 

3.4. Importance of the iterative strategy 

The iterative strategy is expected to significantly improve the reconstruction by 

adding the ocean variability on different spatial scales. However, using an 

increasingly smaller influencing radius also affects the noise, including both 

unphysical noise due to instrumental errors, and small-scale ocean variability such as 

meso/sub-meso scale eddies. As we are interested in the large-scale (>1 degree in 

spatial distance) temperature changes (because we divide the ocean into a 1o by 1o 

grid), it is questionable whether this strategy will reduce the analysis error and 

positively affect the reconstruction. 

 Figure S13 shows the 2σ sampling error for the subsample tests at 20m, 300m, 

800m, 1200m and 1600m from scan-1 to scan-3. Significant reductions of 2σ 

sampling errors in scan-3 are found for each depth compared with the previous 

scan, suggesting a better reconstruction after 2000. It is interesting to note that in 

the deep ocean (i.e. 1200m and 1600m), the 2σ error increases in scan-2 and 

scan-3 compared with scan-1 before 2000. This is likely because the grid-by-grid 

variations in the deep ocean are mostly dominated by the instrumental error 

rather than the meso-scale variability. Hence the smoothing by the current 

method using a larger influencing radius could better reconstruct the large-scale 

ocean changes. 

 Figures S7–10 also attach the global and basin mean/2σ sampling error for all 

scans. Reduction of mean and 2σ sampling error for scan-3 (green error bars) on 

both global/basin scales is compared with the results of scan-1 and scan-2 (blue 

and orange lines and error bars). 

 

It is further questioned whether different scans will significantly modify the historical 

global OHC estimation. Figure S14 presents the OHC 0–700m, OHC 700–2000m 

based the reconstruction of scan1, scan2 and scan3 respectively. The OHC of scan-1 

provides a slightly smoother OHC time series than scan-2 and scan-3, but the decadal 

and long-term changes are nearly identical. 

 

4  Examining the underestimation of the current subsample strategy 

In the subsample test, we used 1-degree gridded averaged observations as truth 

(named 1degree grid method). By averaging the available observations in each 1o by 

1o grid, there should be a reduction in noise due to meso-scale ocean variance and 

from spurious errors. If there were more data in a grid box during the Argo period 

than the pre-Argo period, then the historical sampling error would be under-estimated, 

and vice versa. Therefore, this can have an impact because the observation system has 

changed. It is questioned whether this effect could significantly bias the estimate of 

sampling error.  

 

As a first-order global average, there are more data in the Argo period than the 

pre-Argo period. But there will be instances in each and every month where there are 



 

no data (~53% in fig. S15, at 20m) or less than 3 individual measurements (~72% in 

fig. S15, at 20m) in a 1degree grid in the Argo period. By comparison, in Jan1986, 

there are 71% grids without data and 84% grids with less than 3 data. Hence in most 

of the cases, it is difficult to average out the meso-scale signals in each grid box even 

in the Argo period. Furthermore, a good portion of pre-Argo year/month data are on 

or near continental shelves, in boundary currents, etc. which are areas where the Argo 

fleet does not have a significant presence.  

 

To make sure that this effect does not impact the sampling error estimate (by our 

1degree grid method). We applied a different subsample strategy (named raw-profile 

method). With this method, the truth values are the raw temperatures observed for 

each selected month during the Argo period (January and August from 2007 to 2014, 

similar to the 1degree grid method). Each truth field is subsampled by finding the 

nearest profiles related to the historical observations, and then these subsampled 

profiles are gridded and mapped by the current method. This test is applied for 20m 

and 1200m depths for the whole global domain, and it shows results consistent with 

the 1degree grid method (fig. S16). The 2σ sampling error, when using the raw-profile 

method, is 15% larger than the 1degree grid method at 20m. Below the sea surface, 

since there are more grids with less than 3 observations during the Argo period, the 

difference of the two methods should be less than 15%. 15% is the mean since 1950s, 

but there are some fluctuations for different sampling years (fig. S16). At 1200m, the 

difference between the two methods is negligible, ~3% (in fact the 1degree grid 

method results in a 3% larger error than the raw-profile method) (fig. S16). 

 

Even though there is about 15% underestimation of sampling error within the 

0–2000m (an upper bound), it does not impact the key conclusion. If the sampling 

error over 0–2000m were increased by 15%, we could still make the conclusion that 

the ocean temporal variation on decadal/multidecadal scale can be robustly 

reconstructed (S/N ratio ranges from 2:1 to 20:1), but the ocean inter-annual 

variability is comparable with sampling error (S/N ratio ranges from 0.2:1 to 5:1)  

(fig. S17). 

 



 

 
 

fig. S1. Illustration of the iterative EnOI-DE/CMIP5 method used in the current 

study. 

 



 

 
 

fig. S2. An example of the reconstructed fields after three iterative scans. The 

reconstructed field after (A) scan-1; (B) scan-2; and (C) scan-3 for 20m temperature 

anomaly in August 2012. (D) Temperature difference between scan-2 and scan-1; (E) 

temperature difference between scan-3 and scan-2; (F) zonal mean temperature 

anomalies for the three scans, and the differences between scan-2 and scan-1 (red) and 

scan-3 and scan-2 (blue). 



 

 
 

fig. S3. Reconstruction of temperature field at 1200 m in August 2011 for the 

historical sampling (in February). Subsampled temperature anomalies are shown on 

the left. The temperature anomaly field at 1200m in August 2011 was subsampled 

according to the location of observations in February of 1962, 1972, 1982, 1992, 2002, 

and 2012. The color shows the average temperature anomaly in each 1° by 1° grid. On 

the right, the fields mapped by using the proposed method are presented. The last 

panel shows the zonal mean temperature anomalies of the reconstructed fields 

compared with the truth (temperature anomaly field at 1200m in August 2011). The 

spatial correlations between the six reconstructions fields and the truth are 0.26 (1962), 

0.47 (1972), 0.45 (1982), 0.48 (1992), 0.49 (2002), and 0.75 (2012). The color shows 

the average temperature anomaly in each 1o by 1o grid box, where there are data 

present, in the left hand plots. 



 

 
 

fig. S4. Reconstruction of temperature field at 1200 m in August 2011 for the 

historical sampling (in September). Subsampled temperature anomalies are shown 

on the left. The temperature anomalies at 1200m in August 2011 were subsampled 

according to the location of observations in September of 1959, 1969, 1979, 1989, 

1999, and 2009. The color shows the average temperature anomaly in each 1° by 1° 

grid. On the right, the fields mapped by using the proposed method are presented. The 

final panel shows the zonal mean temperatures of the reconstructed fields associated 

with the truth (temperature anomaly field at 1200m in August 2011). The spatial 

correlations between the six reconstructions fields and the truth are 0.23 (1959), 0.42 

(1969), 0.43 (1979), 0.44 (1989), 0.47 (1999), and 0.68 (2009). The color shows the 

average temperature anomaly in each 1o by 1o grid box, where there are data present, 

in the left hand plots. 
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fig. S5. Mean temperature error as a function of different choices of the 

influencing radii between the reconstructed and truth fields. Each dot represents 

the averaged temperature error for each truth field and each influencing radius,  

where the errors at sampling years are averaged together. The red line and the error 

bar show the mean and standard deviation of the sampling error as a function of 

influencing radii, respectively. 

 

 

 
fig. S6. Six major ocean basins defined in this study. 
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fig. S7. Global and basin-averaged sampling error compared with reconstructed 

temperature change at 20 m. Dots represent the sampling errors corresponding to 16 

different truth fields (blue: scan-1; red: scan-2; green: scan-3), accompanied with the 

mean in solid lines and 2 standard deviation error bars (blue: scan-1; red: scan-2; 

green: scan-3). The grey line is the monthly temperature anomaly time series from 

1955 to 2015 based on the current analysis, and the blue stars denote the 16 different 

truth fields. The dark black line is the time series after a 7-year low-pass filter.  

(A) Global; (B) tropical/subtropical Pacific; (C) North Pacific; (D) Indian Ocean;  

(E) tropical/subtropical Atlantic; (F) North Atlantic; (G) southern oceans.  

(H and I) The S/N ratio of the temporal variability of our reconstruction on  

(H) decadal scales and (I) inter-annual scales related to the sampling error. 



 

 
 

fig. S8. Global and basin-averaged sampling error compared with reconstructed 

temperature change at 300 m. 

 



 

 
 

fig. S9. Global and basin-averaged sampling error compared with reconstructed 

temperature change at 800 m. 

 



 

 
 

fig. S10. Global and basin-averaged sampling error compared with reconstructed 

temperature change at 1200 m. 



 

 
 

fig. S11. Geographical distribution of mean and 2σ sampling error for 0- to 

2000-m average. (A) 1o by 1o gridded mean sampling error since 1960. (B) 2 

standard deviations of the sampling error since 1960.  

 

 

 
fig. S12. Geographical distribution of mean and 2σ sampling error in 1°-by-1° 

grid at 20 and 1600 m. (A) 1o by 1o gridded mean sampling error at 20m since 1960. 

(B) 2σ sampling error at 20m. (C) 1o by 1o gridded mean sampling error at 1600m 

since 1960. (D) 2σ sampling error at 1600m. 



 

 
fig. S13. 2σ sampling error for different scans at different depths. (A) 20m,  

(B) 300m, (C) 800m, (D) 1200m and (E) 1600m. Each dot represents a 2 standard 

deviation of the sampling errors in 1o by 1o grid boxes for each truth field at each 

sampling year. Results for the 16 different truth fields are shown in different dots, 

with the mean shown in lines. Results of the scan-1 are shown in blue, scan-2 in red 

and scan-3 in green. 
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fig. S14. Global OHC time series for the reconstructions after scan 1, scan 2, and 

scan 3. Both OHC0-700m and OHC700-2000m are shown. The shading shows the 2σ 

error bar of the time series after scan-3. 

 

 

 

fig. S15. Frequency distribution of temperature anomalies for the years 1986 and 

2015. Statistics of data amount in each 1o by 1o grid box at 20m depth in January 2015 

(A) and January 1986 (B). 

 



 

 

fig. S16. Sampling error as calculated by two subsample methods. Sampling error 

at 20m (A), and 1200m (B) by using two methods: raw-profile method (blue dots) and 

1degree grid method (orange dots). The mean sampling error is shown in blue and red 

curves for the raw-profile method and 1degree grid method respectively. The 2σ 

sampling errors are also attached in error bars. The reconstructed temperature time 

series at 20m and 1200m are shown in the grey curves, and the truths are marked as 

stars. (C) shows the percentage difference between the two methods (the raw-profile 

method related to our 1degree grid method). Black solid line is for 20m, and blue 

dashed line is for 1200m. 

 



 

 

fig. S17. S/N ratio analysis for two methods of subsample test. S/N ratio for 

0–2000m averaged temperature change is shown on global and regional scales.  

(A) S/N ratio for the decadal/multidecadal variation, and (B) for the inter-annual 

variation. The results using 1degree grid method (solid lines) and raw-profile method 

(assuming 15% larger sampling error) (dashed lines) are both shown for comparison. 



 

 
fig. S18. Comparison between OHC and sea level change since 1993. Linear trend 

of OHC0-2000m from 1993 to 2015 (in unit of 108 J/m2) in (A) compared with sea 

level trend (in unit of m/decade) in (C). The time series of OHC0-2000m within 

30°S-60°S and global ocean are shown in (B). Sea level time series are also presented 

in (D). 



 

 
fig. S19. Distribution of the ensemble anomalies. Distribution of the ensemble 

anomalies of the current analyses at 20m (A) and 1200m (B). -2σ and 2σ are marked in 

orange dashed lines. The current mapping method is an ensemble method, so we use the 

ensemble anomalies to get the uncertainty estimate. 



 

table S1. OHC trends obtained in this study for the 1960–1991 and 1992–2015 

periods. The ocean heating rate is applied over the entire surface area of the Earth. 

Both OHC 0-700m and OHC 700-2000m are presented. 

 OHC 0-700m 

(×1022 J/yr) 

Ocean heating rate 

within 0-700m 

(W/m2) 

OHC 

700m–2000m 

(×1022 J/yr) 

Ocean heating rate 

within 700–2000m 

(W/m2) 

1960–1991 

(linear trend) 

0.15±0.08 0.09±0.05 0.04±0.08 0.02±0.05 

1992–2015 

(linear trend) 

0.61±0.04 0.38±0.03 0.37±0.02 0.23±0.02 

 

 

 

 

table S2. Net OHC and EEI changes obtained in the current study compared 

with some independent estimates. The independent estimates come from several 

published studies including Cheng et al. (63), Allan et al. (65), and IPCC-AR5 (1). 

 Source Full-depth OHC 

(×1022 J) 

EEI (×1022 J)  

1960–2015 This study 33.5±7.0 36.0±7.5  

1970–2005 This study 26.5±4.8   

1970–2005 Adjusted 

observational 

OHCs and ORAS4 

(63) 

28.3±1.8   

1970–2005 CMIP5 (63) 26.6±4.4   

1993–2008 This study  18.7±1.1  

1993–2008 TOA (65)  16.7±17.2 
(0.65±0.67 W/m2) 

 

1971–2010 This study 28.8±4.4 31.0±4.7  

1971–2010 IPCC-AR5 (1) 25.5±6.1 27.4±7.8  

 

 


