In pursuit of synergy: An investigation of the PI3K/mTOR/MEK co-targeted inhibition strategy in NSCLC

SUPPLEMENTARY FIGURES AND TABLE

Layout	01	02	03	04	05	06	07	08	09	10	11	12
A	Akt1	Akt1s1	Akt2	Akt3	Cab39	Cab39I	Cdc42	Chuk	Ddit4	Ddit4l	Deptor	Eif4b
	- 1.74	165.10	5.42	- 36.56	2.40	- 57.08	3.24	- 2.15	2.89	- 9.14	-28.38	16.99
	OKAY	A	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY
в	Eif4e	Eif4ebp1	Eif4ebp2	Fkbp1a	Fkbp8	Gsk3b	Hif1a	Hras1	Hspa4	Igf1	Igfbp3	Ikbkb
	1.07	2706.94	- 7.73	2.16	- 5.83	3.93	- 2.02	-1.12	5.44	- 1007.08	- 1.16	- 73.96
	OKAY	A	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY	OKAY
с	Ilk	Ins2	Insr	Irs1	Mapk1	Mapk3	Mapkap1	Mlst8	Mtor	Myo1c	Pdpk1	Pik3c3
	- 3.27	- 7215.66	- 26.92	-2.05	1717.71	1.80	2.41	- 3.21	951.67	-1.55	1.01	- 2.46
	OKAY	A	OKAY	OKAY	A	OKAY	OKAY	OKAY	A	OKAY	OKAY	OKAY
D	Pik3ca	Pik3cb	Pik3cd	Pik3cg	Pld1	Pld2	Ppp2ca	Ppp2r2b	Ppp2r4	Prkaa1	Prkaa2	Prkab1
	-1.04	- 3.91	- 23.61	- 2536.82	-3.63	- 1.26	7606.65	- 451.23	5.93	- 7.40	984.27	- 7.10
	OKAY	OKAY	OKAY	A	OKAY	OKAY	A	A	OKAY	OKAY	A	OKAY
E	Prkab2	Prkag1	Prkag2	Prkag3	Prkca	Prkcb	Prkcg	Prkce	Pten	Rheb	Rhoa	Rictor
	1.15	-1.69	- 19.66	- 3564.03	-2.56	-12.16	34.90	- 4565.00	3634.11	2.82	3078.48	- 4.30
	OKAY	OKAY	OKAY	A	OKAY	OKAY	A	A	A	OKAY	A	OKAY
F	Rps6	Rps6ka1	Rps6ka2	Rps6ka5	Rps6kb1	Rps6kb2	Rptor	Rraga	Rragb	Rragc	Rragd	Sgk1
	-2.10	-1.17	- 6.50	-1.39	2.70	63.40	1.04	- 1.94	140.59	-1.46	- 77.26	4.10
	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY	OKAY	A	OKAY	OKAY	OKAY
G	Stk11	Stradb	Telo2	Trp53	Tsc1	Tsc2	Ulk1	Ulk2	Vegfa	Vegfb	Vegfc	Ywhaq
	- 2.42	1.20	- 1.29	- 43.42	- 4.86	-2.15	- 20.97	- 3.06	2.93	4.02	-6.22	12.32
	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY

Supplementary Figure S1: mTOR pathway mRNA up/down-regulation in H460 cells compared to and A549s. RNA was extracted from H460 and A549 cells. cDNA was synthesized, which was then added to mTOR pathway RT² Profiler Arrays. H460 gene expression was compared to A549 gene expression. A heat map was constructed using SABiosciences online software, with fold changes shown below, where 'A' refers to genes which amplified late (>30 cycles) in either sample, 'B' refers to genes which amplified late (>30 cycles) in either sample, 'B' refers to genes which amplified late (>30 cycles) in either sample. 27 genes were upregulated >2 fold and 39 genes were downregulated >2 fold) in H460 cells compared with A549 cells.

Magnitude of log2(Fold Change)

Layout	01	02	03	04	05	06	07	08	09	10	11	12
A	Akt1	Akt1s1	Akt2	Akt3	Cab39	Cab39I	Cdc42	Chuk	Ddit4	Ddit4l	Deptor	Eif4b
	- 2.03	130.99	3.48	- 4396.99	7.96	- 124.22	3.22	- 2.69	-1.13	-21929.11	-4.72	14.73
	OKAY	A	OKAY	A	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY	OKAY
в	Eif4e	Eif4ebp1	Eif4ebp2	Fkbp1a	Fkbp8	Gsk3b	Hif1a	Hras1	Hspa4	Igf1	Igfbp3	Ikbkb
	-1.21	4548.62	- 12.88	3.91	-12.14	6.12	2.07	-1.68	5.29	- 16289.27	- 126.95	-111.27
	OKAY	A	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY	OKAY
с	Ilk	Ins2	Insr	Irs1	Mapk1	Mapk3	Mapkap1	Mlst8	Mtor	Myolc	Pdpk1	Pik3c3
	- 3.11	-6120.15	- 27.85	- 4.71	2447.82	1.82	3.56	-5.85	1015.72	- 4.23	1.21	-5.41
	OKAY	A	OKAY	OKAY	A	OKAY	OKAY	OKAY	A	OKAY	OKAY	OKAY
D	Pik3ca	Pik3cb	Pik3cd	Pik3cg	Pld1	Pld2	Ppp2ca	Ppp2r2b	Ppp2r4	Prkaa1	Prkaa2	Prkab1
	2.33	-2.07	- 11.48	- 2151.67	- 45.77	-1.77	5895.18	- 382.72	3.85	- 6.59	- 2.60	- 19.54
	OKAY	OKAY	OKAY	A	OKAY	OKAY	A	A	OKAY	OKAY	C	OKAY
E	Prkab2	Prkag1	Prkag2	Prkag3	Prkca	Prkcb	Prkcg	Prkce	Pten	Rheb	Rhoa	Rictor
	2.58	-5.82	-14.47	-3022.93	-2.36	-5913.82	27.31	-2757.04	1055.37	2.85	2040.93	-5.98
	OKAY	OKAY	OKAY	A	OKAY	A	A	A	A	OKAY	A	OKAY
F	Rps6	Rps6ka1	Rps6ka2	Rps6ka5	Rps6kb1	Rps6kb2	Rptor	Rraga	Rragb	Rragc	Rragd	Sgk1
	-1.69	-2.26	- 1.36	1.18	1.98	98.95	-1.79	-2.50	43.38	-1.37	- 500.88	1.63
	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY	OKAY	A	OKAY	A	OKAY
G	Stk11	Stradb	Telo2	Trp53	Tsc1	Tsc2	Ulk1	Ulk2	Vegfa	Vegfb	Vegfc	Ywhaq
	-2.53	-1.04	1.56	- 23.51	- 3.91	- 4.88	-358.85	- 8.76	16.27	4.89	- 2130.25	15.31
	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY

Supplementary Figure S2: mTOR pathway mRNA up/down-regulation in H1975 cells compared to and A549 cells. RNA was extracted from H1975 and A549 cells. cDNA was synthesized, which was then added to mTOR pathway RT² Profiler Arrays. H1975 gene expression was compared to A549 gene expression. A heat map was constructed using SABiosciences online software, with fold changes shown below, where 'A' refers to genes which amplified late (>30 cycles) in either sample, 'B' refers to genes which amplified late (>30 cycles) in both samples, and 'C' refers to samples where no expression was detected in either sample. 26 genes were upregulated >2 fold and 41 genes were downregulated >2 fold in H1975 cells compared with A549 cells.

Magnitude of log2(Fold Change)

Layout	01	02	03	04	05	06	07	08	09	10	11	12
A	Akt1	Akt1s1	Akt2	Akt3	Cab39	Cab39I	Cdc42	Chuk	Ddit4	Ddit4l	Deptor	Eif4b
	- 1.17	- 1.26	- 1.56	- 120.27	3.31	- 2.18	- 1.01	- 1.25	- 3.26	- 2399.85	6.01	- 1.15
	OKAY	OKAY	OKAY	A	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY	OKAY
в	Eif4e	Eif4ebp1	Eif4ebp2	Fkbp1a	Fkbp8	Gsk3b	Hif1a	Hras1	Hspa4	Igf1	Igfbp3	Ikbkb
	- 1.29	1.68	- 1.67	1.81	- 2.08	1.56	4.17	-1.51	- 1.03	- 16.17	- 109.24	- 1.50
	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	B	OKAY	OKAY
С	Ilk	Ins2	Insr	Irs1	Mapk1	Mapk3	Mapkap1	Mlst8	Mtor	Myo1c	Pdpk1	Pik3c3
	1.05	1.18	- 1.03	- 2.29	1.43	1.01	1.48	- 1.83	1.07	- 2.73	1.20	- 2.20
	OKAY	C	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY
D	Pik3ca	Pik3cb	Pik3cd	Pik3cg	Pld1	Pld2	Ppp2ca	Ppp2r2b	Ppp2r4	Prkaa1	Prkaa2	Prkab1
	2.44	1.89	2.06	1.18	- 12.61	- 1.41	-1.29	1.18	- 1.54	1.12	- 2560.61	- 2.75
	OKAY	OKAY	OKAY	C	OKAY	OKAY	OKAY	C	OKAY	OKAY	A	OKAY
E	Prkab2	Prkag1	Prkag2	Prkag3	Prkca	Prkcb	Prkcg	Prkce	Pten	Rheb	Rhoa	Rictor
	2.24	- 3.45	1.36	1.18	1.08	- 486.53	-1.28	1.66	- 3.44	1.01	-1.51	- 1.39
	OKAY	OKAY	OKAY	C	OKAY	A	OKAY	B	OKAY	OKAY	OKAY	OKAY
F	Rps6	Rps6ka1	Rps6ka2	Rps6ka5	Rps6kb1	Rps6kb2	Rptor	Rraga	Rragb	Rragc	Rragd	Sgk1
	1.24	- 1.93	4.78	1.64	- 1.37	1.56	- 1.86	- 1.29	- 3.24	1.07	- 6.48	- 2.51
	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY
G	Stk11	Stradb	Telo2	Trp53	Tsc1	Tsc2	Ulk1	Ulk2	Vegfa	Vegfb	Vegfc	Ywhaq
	-1.05	-1.25	2.02	1.85	1.24	- 2.27	- 17.11	- 2.86	5.56	1.22	- 342.61	1.24
	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY

Supplementary Figure S3: mTOR pathway mRNA up/down-regulation in H1975 cells compared to and H460 cells. RNA was extracted from H1975 and H460 cells. cDNA was synthesized, which was then added to mTOR pathway RT² Profiler Arrays. H1975 gene expression was compared to H460 gene expression. A heat map was constructed using SABiosciences online software, with fold changes shown below, where 'A' refers to genes which amplified late (>30 cycles) in either sample, 'B' refers to genes which amplified late (>30 cycles) in both samples, and 'C' refers to samples where no expression was detected in either sample. 9 genes were upregulated > 2 fold and 23 genes were downregulated in H1975 cells compared with H460 cells.

Layout	01	02	03	04	05	06	07	08	09	10	11	12
A	ABCB1	ABCC1	ABCC2	АВССЗ	АВСС5	ABCG2	AHR	AP1S1	APC	AR	ARNT	ATM
	250.43	- 13.71	-4.42	- 9.53	- 3.29	- 2.99	- 5.12	- 4.66	- 3.62	- 5.42	- 3.60	- 5.40
	A	OKAY	OKAY	ОКАҮ	ОКАҮ	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY
в	ВАХ	BCL2	BCL2L1	BLMH	BRCA1	BRCA2	CCND1	CCNE1	CDK2	CDK4	CDKN1A	CDKN1B
	- 9.59	2.71	- 30.74	- 4.37	- 4.45	- 4.22	-9.59	- 16.98	- 4.75	- 4.72	- 6.90	- 7.24
	ОКАҮ	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY
С	CDKN2A	CDKN2D	CLPTM1L	CYP1A1	CYP1A2	CYP2B6	CYP2C19	CYP2C8	CYP2C9	CYP2D6	CYP2E1	CYP3A4
	-3.15	- 6.79	- 3.49	-10.40	- 3.15	- 3.15	- 5.38	-1.08	- 3.15	- 8.62	7.26	- 11.60
	C	OKAY	OKAY	A	C	C	B	B	C	OKAY	A	B
D	CYP3A5	DHFR	EGFR	ELK1	EPHX1	ERBB2	ERBB3	ERBB4	ERCC3	ESR1	ESR2	FGF2
	12.36	- 8.97	- 16.57	- 3.58	-1.22	- 2.86	- 5.27	- 3.15	- 3.19	122.26	- 5.98	- 9.46
	A	OKAY	OKAY	OKAY	OKAY	OKAY	A	C	OKAY	A	B	OKAY
E	FOS	GSK3A	GSTP1	HIF1A	IGF1R	IGF2R	MET	MSH2	MVP	MYC	NAT2	NFKB1
	-12345286.65	- 2.50	-5.48	- 15.68	- 8.90	- 1.36	-18.83	- 5.18	- 23.78	- 4.01	- 2.76	-4.47
	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY
F	NFKB2	NFKBIB	NFKBIE	PPARA	PPARD	PPARG	RARA	RARB	RARG	RB1	RELB	RXRA
	865.93	14.96	-3.90	- 2.87	- 6.74	- 26.55	- 7.80	- 25.22	- 5.08	- 4.49	-12.72	- 5.26
	A	A	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY
G	RXRB	SOD1	SULT1E1	TNFRSF11A	TOP1	TOP2A	TOP2B	TP53	ТРМТ	UGCG	ХРА	ХРС
	89.25	14609.22	-97118311.28	-102.30	- 4.56	- 7.87	-10.02	- 14.59	- 5.55	- 10.74	- 5.20	245.80
	A	A	A	A	OKAY	OKAY	OKAY	OKAY	ОКАҮ	OKAY	ОКАҮ	ОКАҮ

Supplementary Figure S4: Cancer drug resistance mRNA up/down-regulation in H460 cells compared to A549 cells. RNA was extracted from H460 and A549 cells. cDNA was synthesized, which was then added to cancer drug resistance RT² Profiler Arrays. H460 gene expression was compared to A549 gene expression. A heat map was constructed using SABiosciences online software, with fold changes shown below, where 'A' refers to genes which amplified late (>30 cycles) in either sample, 'B' refers to genes which amplified late (>30 cycles) in both samples, and 'C' refers to samples where no expression was detected in either sample. 9 genes were upregulated > 2 fold and 65 genes were downregulated > 2 fold in H460 cells compared with A549 cells.

Magnitude of log2(Fold Change)

Layout	01	02	03	04	05	06	07	08	09	10	11	12
A	ABCB1	ABCC1	ABCC2	ABCC3	ABCC5	ABCG2	AHR	AP1S1	APC	AR	ARNT	ATM
	-14.11	-17.49	-1049.74	-16.09	1.10	- 5.77	- 2.80	-1.88	- 17.80	- 39194.01	- 712.26	- 10.01
	B	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	A	A	OKAY
в	ВАХ	BCL2	BCL2L1	BLMH	BRCA1	BRCA2	CCND1	CCNE1	CDK2	CDK4	CDKN1A	CDKN1B
	-10.73	-16.90	-8.68	-12.84	-3.70	-17.38	-6.07	-5.32	-2.81	-2.58	-11.61	-13.50
	ОКАҮ	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY
с	CDKN2A	CDKN2D	CLPTM1L	CYP1A1	CYP1A2	CYP2B6	CYP2C19	CYP2C8	CYP2C9	CYP2D6	CYP2E1	CYP3A4
	362.66	-17.64	-4.16	-1.39	-1.47	-18.17	-31.04	4.75	-18.17	-2.14	-1.05	-137.74
	A	OKAY	OKAY	OKAY	B	C	B	A	C	OKAY	A	B
D	CYP3A5	DHFR	EGFR	ELK1	EPHX1	ERBB2	ERBB3	ERBB4	ERCC3	ESR1	ESR2	FGF2
	2.07	-27.37	-4.05	-3.57	-11.00	-1.46	6.17	-18.17	- 9.76	-18.17	19.92	- 3952.55
	A	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	C	OKAY	C	A	OKAY
E	FOS	GSK3A	GSTP1	HIF1A	IGF1R	IGF2R	MET	MSH2	MVP	MYC	NAT2	NFKB1
	- 35994733.47	- 3.63	-5.96	-4.55	- 18.37	- 2.88	-19.18	-19.16	-17.41	1.10	-15.00	-4.68
	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY
F	NFKB2	NFKBIB	NFKBIE	PPARA	PPARD	PPARG	RARA	RARB	RARG	RB1	RELB	RXRA
	683.36	15.74	-5.80	-4.74	1.28	-8.63	-4.72	-17159.69	1.33	- 12.08	-8.24	-2.58
	A	A	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY	OKAY	OKAY	OKAY
G	RXRB	SOD1	SULT1E1	TNFRSF11A	TOP1	TOP2A	TOP2B	тр53	ТРМТ	UGCG	ХРА	XPC
	145.52	6595.14	-429817058.38	-9.64	-3.38	-10.49	-17.45	- 6.75	- 4.68	- 4.66	- 45.43	-110.60
	A	A	A	OKAY	OKAY	OKAY	OKAY	ОКАҮ	ОКАҮ	OKAY	ОКАҮ	OKAY

Supplementary Figure S5: Cancer drug resistance mRNA up/down-regulation in H1975 cells compared to A549 cells. RNA was extracted from H1975 and A549 cells. cDNA was synthesized, which was then added to cancer drug resistance RT^2 Profiler Arrays. H1975 gene expression was compared to A549 gene expression. A heat map was constructed using SABiosciences online software, with fold changes shown below, where 'A' refers to genes which amplified late (>30 cycles) in either sample, 'B' refers to genes which amplified late (>30 cycles) in both samples, and 'C' refers to samples where no expression was detected in either sample. 9 genes were upregulated > 2 fold and 60 genes were downregulated > 2 fold in H1975 cells compared with A549 cells.

Magnitude of log2(Fold Change)

Layout	01	02	03	04	05	06	07	08	09	10	11	12
A	ABCB1	ABCC1	ABCC2	ABCC3	АВСС5	ABCG2	AHR	AP1S1	APC	AR	ARNT	АТМ
	-3532.55	-1.28	- 237.48	-1.69	3.63	- 1.93	1.83	2.47	- 4.92	- 7231.58	- 197.97	- 1.85
	A	OKAY	OKAY	OKAY	ОКАҮ	OKAY	OKAY	OKAY	OKAY	A	A	ОКАҮ
в	BAX	BCL2	BCL2L1	BLMH	BRCA1	BRCA2	CCND1	CCNE1	CDK2	CDK4	CDKN1A	CDKN1B
	-1.12	- 45.81	3.54	- 2.94	1.20	-4.12	1.58	3.19	1.69	1.83	- 1.68	- 1.86
	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY
с	CDKN2A	CDKN2D	CLPTM1L	CYP1A1	CYP1A2	CYP2B6	CYP2C19	CYP2C8	CYP2C9	CYP2D6	CYP2E1	CYP3A4
	1141.35	- 2.60	-1.19	7.49	2.14	- 5.77	- 5.77	5.13	- 5.77	4.03	- 7.59	-11.87
	A	OKAY	OKAY	A	B	C	C	A	C	OKAY	OKAY	B
D	СҮРЗА5	DHFR	EGFR	ELK1	EPHX1	ERBB2	ERBB3	ERBB4	ERCC3	ESR1	ESR2	FGF2
	- 5.97	-3.05	4.09	1.00	-9.00	1.96	32.54	- 5.77	- 3.06	- 2221.47	119.11	- 417.78
	ОКАҮ	OKAY	OKAY	OKAY	OKAY	OKAY	A	C	OKAY	A	A	OKAY
E	FOS	GSK3A	GSTP1	HIF1A	IGF1R	IGF2R	MET	MSH2	MVP	MYC	NAT2	NFKB1
	- 2.92	-1.45	-1.09	3.44	- 2.06	-2.12	-1.02	-3.70	1.37	4.42	- 5.44	-1.05
	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY
F	NFKB2	NFKBIB	NFKBIE	PPARA	PPARD	PPARG	RARA	RARB	RARG	RB1	RELB	RXRA
	-1.27	1.05	- 1.49	- 1.65	8.64	3.08	1.65	- 680.38	6.73	- 2.69	1.54	2.04
	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	OKAY	A	OKAY	OKAY	OKAY	OKAY
G	RXRB	SOD1	SULT1E1	TNFRSF11A	TOP1	TOP2A	ТОР2В	TP53	ТРМТ	UGCG	ХРА	XPC
	1.63	-2.22	-4.43	10.62	1.35	-1.33	- 1.74	2.16	1.19	2.31	- 8.74	-27186.46
	OKAY	OKAY	B	A	OKAY	OKAY	ОКАҮ	OKAY	ОКАҮ	OKAY	ОКАҮ	OKAY

Supplementary Figure S6: Cancer drug resistance mRNA up/down-regulation in H1975 cells compared to H460 cells. RNA was extracted from H1975 and H460 cells. cDNA was synthesized, which was then added to cancer drug resistance RT² Profiler Arrays. H1975 gene expression was compared to H460 gene expression. A heat map was constructed using SABiosciences online software, with fold changes shown below, where 'A' refers to genes which amplified late (>30 cycles) in either sample, 'B' refers to genes which amplified late (>30 cycles) in both samples, and 'C' refers to samples where no expression was detected in either sample. 20 genes were upregulated >2 fold and 26 genes were downregulated in H1975 cells compared with H460 **cells**.

www.impactjournals.com/oncotarget/

Supplementary Figure S7: Effect of GDC-0980 and/or GDC-0973 treatment on phosphoprotein expression in H460 cells. Protein was isolated from H460 cells untreated (4hrs) and treated with GDC-0980 (1 μ M, 4hrs), GDC-0973 (1 μ M, 4hrs) and a 1:1 mix of the 2 drugs using Cell Signalling lysis buffer. Phosphoprotein expression was explored using PathScan arrays (duplicate spots, n=3). Spot intensity was quantified through ImageJ software and data were expressed as relative mean \pm SEM.

www.impactjournals.com/oncotarget/

Supplementary Figure S8: Effect of GDC-0980 and/or GDC-0973 treatment on phosphoprotein expression in A549 cells. Protein was isolated from A549 cells untreated (4hrs) and treated with GDC-0980 (1 μ M, 4hrs), GDC-0973 (1 μ M, 4hrs) and a 1:1 mix of the 2 drugs using Cell Signalling lysis buffer. Phosphoprotein expression was explored using PathScan arrays (duplicate spots, n=3). Spot intensity was quantified through ImageJ software and data were expressed as relative mean ± SEM.

www.impactjournals.com/oncotarget/

Oncotarget, Supplementary Materials 2016

Supplementary Figure S9: Effect of GDC-0980 and/or GDC-0973 treatment on phosphoprotein expression in H1975 cells. Protein was isolated from H1975 cells untreated (4hrs) and treated with GDC-0980 (1 μ M, 4hrs), GDC-0973 (1 μ M, 4hrs) and a 1:1 mix of the 2 drugs using Cell Signalling lysis buffer. Phosphoprotein expression was explored using PathScan arrays (duplicate spots, n=3). Spot intensity was quantified through ImageJ software and data were expressed as relative mean ± SEM.

Supplementary Figure S10: Baseline phosphoprotein expression in H460, A549 and H1975 cells. Protein was isolated from H460, A549 and H1975 cells (untreated) using Cell Signalling lysis buffer. Phosphoprotein expression was explored using PathScan arrays (duplicate spots, n=3). Spot intensity was quantified through ImageJ software and data were expressed as relative mean \pm SEM. */**/***: p<0.05/0.01/0.001 respectively, from one way ANOVA with Tukey test.

Supplementary Table S1: Fluidigm gene panel 13-gene. 175 Irish NSCLC tumour samples were profiled by Fluidigm Technology, using an allele-specific test covering 13 genes (150 mutations).

See Supplementary File 1