Supplementary information: Cooperative growth of *Geobacter* sulfurreducens and *Clostridium pasteurianum* with subsequent metabolic shift in glycerol fermentation

Roman Moscoviz, Florence de Fouchécour, Gaëlle Santa-Catalina, Nicolas Bernet and Eric Trably*

*Corresponding author: eric.trably@inra.fr

LBE, INRA, 102 Avenue des étangs, 11100 Narbonne, France

Figure S1: Simplified catabolic pathways of glycerol fermentation by *Clostridium pasteurianum*.

Table S1: Condensed metabolic pathways of glycerol fermentation

Reaction	Legend	Ref
$Glycerol + NADH \rightarrow PDO + H_2O$	(1)	1,2
Glycerol + $\frac{3}{4}$ NH ₃ + 7.5 ATP + 6 H ₂ O $\rightarrow \frac{3}{4}$ C ₄ H ₇ O ₂ N + NADH	(2)	1
$Glycerol + CoA \rightarrow Acetyl-CoA + CO_2 + H_2 + ATP + H_2O + 2 NADH$	(3)	1,2
Acetyl-CoA \rightarrow Acetate + ATP + CoA + H ₂ O	(4)	1–3
Acetyl-CoA + 2 NADH \rightarrow Ethanol + CoA	(5)	1–3
2 Acetyl-CoA + 2 NADH \rightarrow Butyryl-CoA + CoA + H ₂ O	(6)	3–5
Butyryl-CoA + Acetate \rightarrow Butyrate + Acetyl-CoA	(7)	3–5
Butyryl-CoA + 2 NADH \rightarrow Butanol	(8)	6,7

For more readability, NAD^+ , H^+ and ADP are omitted in the presented equations. $C_4H_7O_2N$ correspond to the mean raw formula of bacterial biomass¹.

	ΔrG°'	
Global reaction	(kJ.mol _{glycerol} ⁻¹)	
53 Glycerol + 3 NH ₃ \rightarrow 3 C ₄ H ₇ O ₂ N + 15 Acetate + 15 CO ₂ + 15 H ₂ + 34 PDO + 25 H ₂ O	-52.2	
38 Glycerol + 3 NH ₃ \rightarrow 3 C ₄ H ₇ O ₂ N + 30 Ethanol + 30 CO ₂ + 30 H ₂ + 4 PDO + 10 H ₂ O	-50.1	
48 Glycerol + 3 NH ₃ \rightarrow 3 C ₄ H ₇ O ₂ N + 10 Butyrate + 20 CO ₂ + 20 H ₂ + 24 PDO + 40 H ₂ O	-109.1	
38 Glycerol + 3 NH ₃ \rightarrow 3 C ₄ H ₇ O ₂ N + 15 Butanol + 30 CO ₂ + 30 H ₂ + 4 PDO + 25 H ₂ O	-92.3	

Table S2: Redox and ATP balanced reactions of glycerol metabolism

Equations were balanced using equations from Table S1. Standard Gibbs free energy of reaction ($\Delta r G^{\circ}$ ', for pH 7 and $T = 25 \ ^{\circ}C$) were calculated using Gibbs free energy of formation from Kleerebezem and Van Loosdrecht (2010)⁸.

Bibliography

- Zeng, A.-P., Biebl, H., Schlieker, H. & Deckwer, W.-D. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: regulation of reducing equivalent balance and product formation. *Enzyme Microb. Technol.* 15, 770–779 (1993).
- 2. Zeng, A.-P. Pathway and kinetic analysis of 1, 3-propanediol production from glycerol fermentation by Clostridium butyricum. *Bioprocess Eng.* **14**, 169–175 (1996).
- Temudo, M. F., Kleerebezem, R. & van Loosdrecht, M. Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study. *Biotechnol. Bioeng.* 98, 69–79 (2007).
- 4. Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. *FEMS Microbiol. Lett.* **294**, 1–8 (2009).
- 5. Vital, M., Howe, A. C. & Tiedje, J. M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. *MBio* **5**, e00889–14 (2014).
- Atsumi, S. *et al.* Metabolic engineering of Escherichia coli for 1-butanol production. *Metab. Eng.* 10, 305–311 (2008).
- Jin, C., Yao, M., Liu, H., Lee, C. F. & Ji, J. Progress in the production and application of nbutanol as a biofuel. *Renew. Sustain. Energy Rev.* 15, 4080–4106 (2011).
- Kleerebezem, R. & Van Loosdrecht, M. C. M. A Generalized Method for Thermodynamic State Analysis of Environmental Systems. *Crit. Rev. Environ. Sci. Technol.* 40, 1–54 (2010).