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Introduction

This document supplements the main paper titled “Hierarchical models for clustered

semi-competing risks data with application to pancreatic cancer”. In Section A, we provide

technical details regarding the MVN-ICAR specification for baseline hazard functions in

PEM models. In Section B, we provide a detailed description of the Metropolis-Hastings-

Green algorithm to implement our proposed Bayesian framework (Weibull-MVN, Weibull-

DPM, PEM-MVN, PEM-DPM). In Section C, we examine the potential use of methods

proposed in Gorfine and Hsu (2011) and Liquet et al. (2012) in the context of the mo-

tivating application. In Section D, we provide results from simulation studies that were

not presented in the main paper. Finally, Section E supplements analyses of Medicare

data from New England in our main paper with i) some additional results, ii) a visual

assessment of convergence of the proposed MCMC schemes using potential scale reduction

factor, and iii) an extension for the semi-Markov Weibull-MVN in which the proportional

hazards assumption is relaxed.

In order to distinguish the two documents, alpha-numeric labels are used for sections,

tables, figures, and equations in this document while numeric labels are used in the main

paper.
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A MVN-ICAR Specification for λg

In MVN-ICAR, the specification of a prior for the components of λg is considered as a one-

dimensional spatial problem. The dependence between neighboring intervals are modeled

via a Gaussian intrinsic conditional autoregression (ICAR) (Besag and Kooperberg, 1995).

Let λ
(−k)
g denote the vector given by λg with the kth element removed. The full conditional

prior for λg,k is then taken to be the following normal distribution:

λg,k|λ(−k)
g ∼ Normal(νg,k, σ

2
g,k), (1)

where the conditional mean, νg,k = µλg +
∑

j 6=kW
g
kj(λg,j − µλg), is a marginal mean plus a

weighted sum of the deviations of the remaining intervals. Let ∆̄g
k = sg,k − sg,k−1 denote

the length of the Ig,k interval. We determine the weights for the intervals adjacent to the

kth intervals based on these lengths as follows:

W g
k(k−1) =

cλg(∆̄
g
k−1 + ∆̄g

k)

∆̄g
k−1 + 2∆̄g

k + ∆̄g
k+1

, W g
k(k+1) =

cλg(∆̄
g
k + ∆̄g

k+1)

∆̄g
k−1 + 2∆̄g

k + ∆̄g
k+1

, (2)

where the constant cλg ∈ [0, 1] dictates the extent to which λg,k is influenced by adjacent

intervals (Haneuse et al., 2008). The remaining weights corresponding to intervals which

are not directly adjacent to the kth interval are set to zero. The conditional variance σ2
g,k

in (1) is given by σ2
λg
Qg
k. The σ2

λg
is an overall measure of variation across the elements of

λg and the diagonal matrix Qg
k is given by

2

∆̄g
k−1 + 2∆̄g

k + ∆̄g
k+1

. (3)

Given (1), (2), and (3), we can see that λg jointly follows a (Kg+1)-dimensional multivariate

normal (MVN) distribution:

MVNKg+1(µλg1, σ
2
λgΣλg), (4)

where µλg is the overall (marginal) mean, σ2
λg

the overall variability in elements of λg. The

Σλg is given by (I −W g)−1Qg, where a (Kg + 1) × (Kg + 1) matrix W g
(k,j)=W

g
kj and a

(Kg + 1)× (Kg + 1) diagonal matrix Qg
(k,k)=Q

g
k.
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B Metropolis-Hastings-Green Algorithm

B.1 Weibull models

Let ΦW = {αw,1, αw,2, αw,1, κw,1, κw,2, κw,3,β1,β2,β3, ~γ, ~V } be a set of parameters in the

likelihood function of Weibull models. The observed data likelihood LW (D|ΦW ) is given

by

J∏
j=1

nj∏
i=1

(
γjiαw,1κw,1y

αw,1−1
ji1 ηji1

)δji1(1−δji2) (
γ2jiαw,1κw,1y

αw,1−1
ji1 ηji1αw,3κw,3y

αw,3−1
ji2 ηji3

)δji1δji2
×
(
γjiαw,2κw,2y

αw,2−1
ji2 ηji2

)δji2(1−δji1)
exp {−rW (yji1, yji2)} , (5)

where ηjig = exp
(
x>jigβg + Vjg

)
and

rW (tji1, tji2)

=

γji
{
κw,1t

αw,1
ji1 ηji1 + κw,2t

αw,2
ji1 ηji2 +

(
κw,3t

αw,3
ji2 − κw,3t

αw,3
ji1

)
ηji3
}
, for Markov model

γji
[
κw,1t

αw,1
ji1 ηji1 + κw,2t

αw,2
ji1 ηji2 + {κw,3(tji2 − tji1)αw,3} ηji3

]
, for semi-Markov model

For Weibull models, we use a random scan Gibbs sampling scheme, randomly selecting

and updating a (vector of) model parameter at each iteration.

B.1.1 Updating βg

Let Φ−(β) denote a set of parameters Φ with β removed. The full conditional posterior

distribution of β1 can be obtained by

π(β1|Φ−(β1)
W , θ,ΣV ) ∝ LW (D|ΦW ).

∝
J∏
j=1

nj∏
i=1

exp
(
δji1x

>
ji1β1 − γjiκw,1y

αw,1
ji1 ex

>
ji1β1+Vj1

)
.

Analogously, the full conditionals of β2 and β3 are given by

π(β2|Φ−(β2)
W , θ,ΣV ) ∝

J∏
j=1

nj∏
i=1

exp
{
δji2(1− δji1)x>ji2β2 − γjiκw,2y

αw,2
ji1 ex

>
ji2β2+Vj2

}
,

π(β3|Φ−(β3)
W , θ,ΣV ) ∝

J∏
j=1

nj∏
i=1

exp
{
δji1δji2x

>
ji3β3 − γjiκw,3

(
y
αw,3
ji2 − y

αw,3
ji1

)
ex
>
ji3β3+Vj3

}
.
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Since the full conditionals do not have standard forms, we use Metropolis Hastings (MH)

algorithm to update each element of βg, βg,1, . . . , βg,p1 . In our algorithm, the conventional

random walk MH is improved in convergence speed by taking some meaningful function of

the current value β
(t−1)
g,k for the mean and variance of Normal proposal density. Specifically,

let D1(βg,k) and D2(βg,k) denote the first and second gradients of log-full conditional of

βg with respect to βg,k, then a proposal β∗ is drawn from a Normal proposal density

that is centered at µ(β
(t−1)
g,k ) = β

(t−1)
g,k −D1(β

(t−1)
g,k )/D2(β

(t−1)
g,k ), the updated value from the

Newton-Raphson algorithm, with a variance σ2(β
(t−1)
g,k ) = −2.42/D2(β

(t−1)
g,k ), based on the

inverse Fisher information evaluated with β
(t−1)
g,k (Roberts et al., 2001; Gelman et al., 2013).

Therefore, the acceptance probability for βg,k is given by

π(β∗g |Φ
−(βg)
W , θ,ΣV )Normal

(
β
(t−1)
g,k |µ(β∗), σ2(β∗)

)
π(β

(t−1)
g |Φ−(βg)W , θ,ΣV )Normal

(
β∗|µ(β

(t−1)
g,k ), σ2(β

(t−1)
g,k )

) , (6)

where β
(t−1)
g is a sample of βg at current iteration and β∗g is the βg with k-th element

replaced by β∗.

B.1.2 Updating αw,g

The full conditional posterior distribution of αw,1 is given by

π(αw,1|Φ
−(αw,1)
W , θ,ΣV )

∝ LW (D|ΦW )× π(αw,1)

∝ α
aα,1−1
w,1 e−bα,1αw,1

J∏
j=1

nj∏
i=1

(
αw,1y

αw,1
ji1

)δji1 exp
(
γjiκw,1y

αw,1
ji1 ηji1

)
.

Analogously, the full conditionals of αw,2 and αw,3 are given by

π(αw,2|Φ
−(αw,2)
W , θ,ΣV ) ∝ α

aα,2−1
w,2 e−bα,2αw,2

J∏
j=1

nj∏
i=1

(
αw,2y

αw,2
ji2

)δji2(1−δji1) exp
(
−γjiκw,2y

αw,2
ji1 ηji2

)
,

π(αw,3|Φ
−(αw,3)
W , θ,ΣV ) ∝ α

aα,3−1
w,3 e−bα,3αw,3

J∏
j=1

nj∏
i=1

(
αw,3y

αw,3
ji2

)δji1δji2
× exp

{
−γjiκw,3

(
y
αw,3
ji2 − y

αw,3
ji1

)
ηji3

}
.

In MH algorithm to update αw,g, we generate a proposal α∗ from a Gamma distribution

with Gamma
(

(α
(t−1)
w,g )2/k0, α

(t−1)
w,g /k0

)
which corresponds to a distribution with a mean of
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α
(t−1)
w,g and a variance of k0. The value of k0 is specified such that the MH step for αw,g

achieves an acceptance rate of 25% ∼ 30%. Finally the acceptance probability to update

αw,g can be written as

π(α∗|Φ−(αw,g)W , θ,ΣV )G
(
α
(t−1)
w,g |(α∗w,g)2/k0, α∗w,g/k0

)
π(α

(t−1)
w,g |Φ−(αw,g)W , θ,ΣV )G

(
α∗w,g|(α

(t−1)
w,g )2/k0, α

(t−1)
w,g /k0

) .
B.1.3 Updating κw,g

The full conditional posterior distribution of κw,g can be obtained by

π(κw,g|Φ−(κw,g)W , θ,ΣV ) ∝ LW (D|ΦW )× π(κw,g).

We see that the full conditionals of κw,g are gamma distributions and the samples can be

drawn from following distributions:

κw,1|Φ
−(κw,1)
W , θ,ΣV ∼ Gamma

(
J∑
j=1

nj∑
i=1

δji1 + aκ,1,
J∑
j=1

nj∑
i=1

γjiy
αw,1
ji1 ηji1 + bκ,1

)
,

κw,2|Φ
−(κw,2)
W , θ,ΣV ∼ Gamma

(
J∑
j=1

nj∑
i=1

δji2(1− δji1) + aκ,2,
J∑
j=1

nj∑
i=1

γjiy
αw,2
ji1 ηji2 + bκ,2

)
,

κw,3|Φ
−(κw,3)
W , θ,ΣV ∼ Gamma

(
J∑
j=1

nj∑
i=1

δji1δji2 + aκ,3,
J∑
j=1

nj∑
i=1

γji
(
y
αw,3
ji2 − y

αw,3
ji1

)
ηji3 + bκ,3

)
.

B.1.4 Updating γji

The full conditional posterior distribution of γji is given by

π(γji|Φ
−(γji)
W , θ,ΣV )

∝ LW (D|ΦW )× π(γji|θ)

∝ γ
δji1+δji2+θ

−1−1
ji exp

[
−rW (yji1, yji2)− θ−1γji

]
.

Therefore, we sample γji from

Gamma
(
δji1 + δji2 + θ−1, rW (yji1, yji2; γji = 1) + θ−1

)
.
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B.1.5 Updating θ

Let ξ = 1/θ denote the precision parameter of frailty distribution. The full conditional

posterior distribution of ξ is given by

π(ξ|ΦW ,ΣV ) ∝ π(ξ)
J∏
j=1

nj∏
i=1

π(γji|ξ)

∝ ξnξ+bθ−1e−ξ(
∑J
j=1

∑nj
i=1 γji+aθ)

{Γ(ξ)}n
J∏
j=1

nj∏
i=1

γξ−1ji .

We revise the traditional random walk MH algorithm for updating ξ as done in Section

B.1.1 for βg. Let µξ(ξ) = ξ − min{0, D1,ξ(ξ)/D2,ξ(ξ)} and σ2
ξ (ξ) = −c0/D2,ξ(ξ), where

D1,ξ(ξ) and D2,ξ(ξ) are the first and second gradients of log π(ξ|Φ−(ξ)W ,ΣV ) with respect to

ξ. A proposal ξ∗ is generated from the following Gamma distribution

Gamma
(
µξ(ξ

(t−1))2/σ2
ξ (ξ

(t−1)), µ(ξ(t−1))/σ2
ξ (ξ

(t−1))
)
.

The value of c0 > 0 is specified such that the algorithm achieve the desired acceptance rate.

The acceptance probability to update ξ is then given by

π(ξ∗|ΦW ,ΣV )Gamma
(
ξ∗|µξ(ξ∗)2/σ2

ξ (ξ
∗), µ(ξ∗)/σ2

ξ (ξ
∗)
)

π(ξ(t−1)|ΦW ,ΣV )Gamma
(
ξ∗|µξ(ξ(t−1))2/σ2

ξ (ξ
(t−1)), µ(ξ(t−1))/σ2

ξ (ξ
(t−1))

) .
B.1.6 Updating Vj for Weibull-MVN model

The full conditional posterior distribution of Vj1 can be obtained by

π(Vj1|Φ
−(Vj1)
W , θ,ΣV ) ∝ LW (D|ΦW )× π(Vj|ΣV ).

∝ exp

{
nj∑
i=1

(
Vj1δji1 − γjiκw,1y

αw,1
ji1 ηji1

)
− 1

2
V >j Σ−1V Vj

}
.

Analogously, the full conditionals of Vj2 and Vj3 can be written as

π(Vj2|Φ
−(Vj2)
W , θ,ΣV ) ∝ exp

{
nj∑
i=1

(
Vj2δji2(1− δji1)− γjiκw,2y

αw,2
ji1 ηji2

)
− 1

2
V >j Σ−1V Vj

}
,

π(Vj3|Φ
−(Vj3)
W , θ,ΣV ) ∝ exp

{
nj∑
i=1

(
Vj3δji1δji2 − γjiκw,3(y

αw,3
ji2 − y

αw,3
ji1 )ηji3

)
− 1

2
V >j Σ−1V Vj

}
.

As done in Section B.1.1, in a MH step for updating Vjg, we sample a proposal V ∗ from

a Normal distribution that is centered at µV (V
(t−1)
jg ) = V

(t−1)
jg −D1,V (V

(t−1)
jg )/D2,V (V

(t−1)
jg )
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and has a variance of σ2
V (V (t−1)) = −2.42/D2,V (V (t−1)), where D1,V (Vjg) and D2,V (Vjg) are

the first and the second gradients of log π(Vjg|Φ
−(Vjg)
W , θ,ΣV ) with respect to Vjg. Finally,

the acceptance probability is given by

π(V ∗|Φ−(Vjg)W , θ,ΣV )Normal
(
V

(t−1)
jg |µV (V ∗), σ2

V (V ∗)
)

π(V
(t−1)
jg |Φ−(Vjg)W , θ,ΣV )Normal

(
V ∗|µV (V

(t−1)
jg ), σ2

V (V
(t−1)
jg )

) .
B.1.7 Updating ΣV for Weibull-MVN model

The full conditional posterior distribution of ΣV can be written as

π(ΣV |ΦW , θ) ∝ π(ΣV )
J∏
j=1

π(Vj|ΣV )

∝ |ΣV |−
J+ρv+4

2 exp

{
−1

2

(
J∑
j=1

VjV
>
j + Ψv

)
Σ−1V

}
.

Therefore, we update ΣV from the following inverse-Wishart distribution:

ΣV |ΦW , θ ∼ inverse-Wishart

(
J∑
j=1

VjV
>
j + Ψv, J + ρv

)
.

B.1.8 Updating Vj and ΣV for Weibull-DPM model

Towards developing this model, suppose that, instead of arising from a single distribution,

the Vj are draws from a finite mixture of M multivariate Normal distributions, each with

their own mean vector and variance-covariance matrix, (µm, Σm) for m = 1, . . . ,M . Let

mj ∈ {1, . . . ,M} denote the specific component or class to which the jth hospital be-

longs. Since the class-specific (µm, Σm) are not known they are taken to be draws from

some distribution, G0. Furthermore, since the ‘true’ class memberships are not known,

we denote the probability that the jth hospital belongs to any given class by the vector

p = (p1, . . . , pM) whose components add up to 1.0. In the absence of prior knowledge

regarding the distribution of class memberships for the J hospitals across the M classes, a

natural prior for p is the conjugate symmetric Dirichlet(τ/M, . . . , τ/M) distribution; the

hyperparameter, τ , is often referred to as the precision parameter (Walker and Mallick,
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1997). Jointly, this finite mixture distribution can be summarized by:

Vj|mj ∼ MVN(µmj ,Σmj),

(µm,Σm) ∼ G0, for m = 1, . . . ,M,

mj|p ∼ Discrete(mj| p1, . . . , pM),

p ∼ Dirichlet(τ/M, . . . , τ/M). (7)

Finally, letting M → ∞ the resulting specification is referred to as a Dirichlet process

mixture of multivariate Normal distributions (DPM-MVN) (Ferguson, 1973; Bush and

MacEachern, 1996). When M → ∞, we cannot explicitly represent the infinite num-

ber of (µm, Σm). Instead, following Neal (2000), we represent and implement the MCMC

sampling for only those (µm, Σm) that are currently associated with some observations at

each iteration. In this subsection, we provide a step-by-step detailed description of the MH

algorithm to update Vj in Weibull-DPM model.

First, we update a class membership mj based on mj|m(−j),Vj, j = 1, · · · , J . Letm−(j)

denote a set of all class memberships from clusters except the cluster j. After identifying

the “nm” unique classes of m−(j), we compute the following probabilities for each of the

unique values m.

P (mj = m|m(−j),Vj) = b
n−j,m

J − 1 + τ

∫
Normal(Vj|µmj ,Σmj)dH−j,m(µ,Σ),(8)

P (mj 6= mk, ∀k 6= j |m(−j),Vj) = b
τ

J − 1 + τ

∫
Normal(Vj|µ,Σ)dG0(µ,Σ), (9)

where H−j,m is the posterior distribution of (µ,Σ) based on the prior G0 and {Vk : k 6=
j,mk = c}. The normalizing constant b makes “nm + 1” probabilities above sum to 1. Let

A = {j : mj = m} and HA be the posterior distribution of (µ, σ) based on the prior G0 and

{Vj : j ∈ A}. It can be shown that the HA is also Normal-inverse Wishart distribution as

G0 is conjugate to multivariate normal distribution:

1. we draw a sample of a class membership.

i) For each mj, identify the nm unique values of m(−j).

ii) For each of the unique values m, compute the following probabilities:

P (mj = m|m(−j),Vj) = b
n−j,m

J − 1 + τ

∫
Normal(Vj|µmj ,Σmj)dH−j,m(µ,Σ),

(10)

P (mj 6= mk, ∀k 6= j |m(−j),Vj) = b
τ

J − 1 + τ

∫
Normal(Vj|µ,Σ)dG0(µ,Σ), (11)

9



where H−j,m is the posterior distribution of (µ,Σ) based on the prior G0 and {Vk :

k 6= j,mk = m}. The normalizing constant b makes nm + 1 probabilities above sum

to 1.0. Let A = {j : mj = m} and HA be the posterior distribution of (µ, σ) based on

the prior G0 and {Vj : j ∈ A}. It can be shown that the HA is also Normal-inverse

Wishart distribution as G0 is conjugate to multivariate normal distribution:

HA(µ,Σ|µA, ζA,ΨA, ρA),

where

µA =

1
ζ0
µ0 + |A|V̄A
1
ζ0

+ |A|
, ζA =

(
1

ζ0
+ |A|

)−1
, ρA = ρ0 + |A|,

ΨA = Ψ0 +
∑
j∈A

(
Vj − V̄A

) (
Vj − V̄A

)>
+

|A|
ζ0

1
ζ0

+ |A|
(
V̄A − µ0

) (
V̄A − µ0

)>
,(12)

with V̄A = 1
|A|
∑

k∈A Vk. Now we define

Q(Vj, µ0, ζ0,Ψ0, ρ0)

=

∫
fN3(Vj|µ,Σ)dFNIW (µ,Σ|µ0, ζ0,Ψ0, ρ0)

=
|Ψ0|

ρ0
2∣∣∣∣Ψ0 + VjV >j + 1

ζ0
µ0µ>0 −

(
1 + 1

ζ0

)−1 (
1
ζ0
µ0 + Vj

)(
1
ζ0
µ0 + Vj

)>∣∣∣∣
ρ0+1

2

× 1

(π
√

2(1 + ζ0))3
×

Γα,3(
ρ0+1
2

)

Γα,3(
ρ0
2

)
(13)

It follows that the integrals in (10) and (11) are equal to Q(Vj,µA, ζA,ΨA, ρA) and

Q(Vj,µ0, ζ0,Ψ0, ρ0), respectively.

iii) Sample m
(new)
j based on the probabilities given in (10) and (11).

2. For all m ∈ {m1, . . . ,mJ}, update (µm,Σm) using the posterior distribution that is

based on {Vj : j ∈ {k : mk = m}}.
3. For j = 1, . . . , J , update Vj using its full conditional using Metropolis-Hastings algo-

rithm.

4. We treat τ as random and assign gamma prior Gamma(aτ , bτ ) for τ . Following Escobar

and West (1995), we update τ by

i) sampling an c ∈ (0, 1) from Beta(τ + 1, J),

10



ii) sampling the new τ from the mixture of two gamma distributions:

pcGamma(aτ + nm, bτ − log(c)) + (1− pc)Gamma(aτ + nm − 1, bτ − log(c)),

where the weight pc is defined such that pc/(1− pc) = (aτ + nm− 1)/{J(bτ − log(c))}.

5. Finally we calculate the total variance-covariance matrix:

ΣV =
1

J

J∑
j=1

{(
µmj − µ̄

)(
µmj − µ̄

)>
+ Σmj

}
, (14)

where µ̄ =
∑J

j=1µmj/J .

11



B.2 PEM models

Let ΦP = {λ1,λ2,λ3,β1,β2,β3, ~γ, ~V } a set of parameters in the likelihood function of

PEM models. The observed data likelihood LP (D|ΦP ) is given by

J∏
j=1

nj∏
i=1

[
γjiηji1 exp

{
K1+1∑
k=1

λ1kI(s1,k−1 < yji1 ≤ s1,k)

}]δji1(1−δji2)

×

[
γ2jiηji1ηji3 exp

{
K1+1∑
k=1

λ1kI(s1,k−1 < yji1 ≤ s1,k) +

K3+1∑
k=1

λ3kI(s3,k−1 < yji2 ≤ s3,k)

}]δji1δji2

×

[
γjiηji2 exp

{
K2+1∑
k=1

λ2kI(s2,k−1 < yji2 ≤ s2,k)

}]δji2(1−δji1)
× exp {−rP (yji1, yji2)} , (15)

where ηjig = exp
(
x>jigβg + Vjg

)
and

rP (tji1, tji2)

=

γji
(
ηji1

∑K1+1
k=1 eλ1,k∆1

jik + ηji2
∑K2+1

k=1 eλ2,k∆2
jik + ηji3

∑K3+1
k=1 eλ3,k∆∗3jik

)
, for Markov model

γji

(
ηji1

∑K1+1
k=1 eλ1,k∆1

jik + ηji2
∑K2+1

k=1 eλ2,k∆2
jik + ηji3

∑K3+1
k=1 eλ3,k∆∗3jik

)
, for semi-Markov model

∆g
jik = max

{
0,min(yji1, sg,k)− sg,k−1

}
,

∆∗gjil =

max
{

0,min(yji2, sg,l)−max(yji1, sg,l−1)
}
, for Markov model,

max
{

0,min(yji2 − yji1, sg,l)− sg,l−1)
}
, for semi-Markov model.

B.2.1 Reversible jump MCMC algorithm

For PEM models, we use a random scan Gibbs sampling scheme, randomly selecting and

updating a (vector of) model parameter at each iteration. Let BIg and DIg denote a birth

and a death of a new time split for transition g ∈ {1, 2, 3}. The probabilities for the update

BIg and DIg are given by

π
Kg
BIg

= ρg min
{

1,
Poisson(Kg + 1|αKg)

Poisson(Kg|αKg)

}
= ρg min

{
1,

αKg
Kg + 1

}
,

π
Kg
DIg

= ρg min
{

1,
Poisson(Kg − 1|αKg)

Poisson(Kg|αKg)

}
= ρg min

{
1,

Kg

αKg

}
,
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where ρg is set such that π
Kg
BIg

+ π
Kg
DIg

< Cg and
∑3

g=1Cg < 1 for Kg = 1, . . . , Kg,max.

Kg,max is the preassigned upper limit on the number of time splits for transition g and we

set π
Kg,max

BIg
= 0. The probabilities of updating other parameters are equally specified from

remaining probability 1−
∑3

g=1(π
Kg
BIg

+ π
Kg
DIg

).

B.2.2 Updating βg

The full conditional posterior distribution of β1 can be obtained by

π(β1|Φ−(β1)
P ,µλ,σ

2
λ, θ,ΣV )

∝ LP (D|ΦP )

∝
J∏
j=1

nj∏
i=1

exp

(
δji1x

>
ji1β1 − γjiex

>
ji1β1+Vj1

K1+1∑
k=1

eλ1,k∆1
jik

)
,

where µλ = (µλ1 , µλ2 , µλ3)
> and σ2

λ = (σ2
λ1
, σ2

λ2
, σ2

λ3
)>. Analogously, the full conditionals of

β2 and β3 are given by

π(β2|Φ−(β2)
P ,µλ,σ

2
λ, θ,ΣV )

∝
J∏
j=1

nj∏
i=1

exp

{
δji2(1− δji1)x>ji2β2 − γjiex

>
ji2β2+Vj2

K2+1∑
l=1

eλ2,l∆2
jil

}
,

π(β3|Φ−(β3)
P ,µλ,σ

2
λ, θ,ΣV )

∝
J∏
j=1

nj∏
i=1

exp

(
δji1δji2x

>
ji3β3 − γjiex

>
ji3β3+Vj3

K3+1∑
m=1

eλ3,m∆∗3jim

)
.

As the full conditionals do not have standard forms, we use MH algorithm to update

each element of βg. A detailed description of the adapted random walk MH algorithm is

provided in Section B.1.1.

B.2.3 Updating λg

The full conditional posterior distribution of λ1 is given by

π(λ1|Φ−(λ1)
P ,µλ,σ

2
λ, θ,ΣV )

∝ LP (D|ΦP )π(λ1|µλ1 , σ2
λ1

)

∝
J∏
j=1

nj∏
i=1

exp
{
δji1λ1kI(s1,k−1 < yji1 ≤ s1,k)− γji∆1

jike
λ1kηji1

}
× exp

{
− 1

2σ2
λ1

(λ1 − µλ11)>Σ−1λ1 (λ1 − µλ11
}
,

13



where 1 denotes a Kg + 1 dimensional vector of 1’s. Analogously, the full conditionals of

λ2 and λ3 are given by

π(λ2|Φ−(λ2)
P ,µλ,σ

2
λ, θ,ΣV )

∝
J∏
j=1

nj∏
i=1

exp
{
δji2(1− δji1)λ2kI(s2,k−1 < yji2 ≤ s2,k)− γji∆2

jike
λ2kηji2

}
× exp

{
− 1

2σ2
λ2

(λ2 − µλ21)>Σ−1λ2 (λ2 − µλ21)

}
,

π(λ3|Φ−(λ3)
P ,µλ,σ

2
λ, θ,ΣV )

∝
J∏
j=1

nj∏
i=1

exp
{
δji1δji2λ3kI(s3,k−1 < yji2 ≤ s3,k)− γji∆∗3jikeλ3kηji3

}
× exp

{
− 1

2σ2
λ3

(λ3 − µλ31)>Σ−1λ3 (λ3 − µλ31)

}
,

Since the full conditionals do not follow known distributions, MH algorithm is used to

update each element of λg. We follow the adapted random walk MH algorithm described

in Section B.1.1.

B.2.4 Updating γji

The full conditional posterior distribution of γji is given by

π(γji|Φ
−(γji)
P ,µλ,σ

2
λ, θ,ΣV )

∝ LP (D|ΦP )× π(γji|θ)

∝ γ
δji1+δji2+θ

−1−1
ji exp

[
−rP (yji1, yji2)− θ−1γji

]
.

Therefore, we sample γji from

Gamma
(
δji1 + δji2 + θ−1, rP (yji1, yji2; γji = 1) + θ−1

)
.

B.2.5 Updating (µg, σ
2
g)

Full conditional posterior distributions for µλg and υg = 1/σ2
λg

, g = 1, 2, 3 are Normal

and Gamma distribution, respectively. Therefore, we use Gibbs sampling to update the

parameters. We obtain the posterior samples of µλg from

Normal

(
1>Σ−1λg λg

1>Σ−1λg 1
,

σ2
λg

1>Σ−1λg 1

)
,
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because the full conditional is given by

π(µλg |ΦP ,µ
−(µλg )
λ ,σ2

λ, θ,ΣV ) ∝ π(λg|µλg , σ2
λg)π(µλg)

∝ exp

1>Σ−1λg 1

2σ2
λg

(
µλg −

1>Σ−1λg λg

1>Σ−1λg 1

)2
 .

We update υg = 1/σ−2λg from a Gamma distribution given by

Gamma

(
aσ,g +

Kg + 1

2
, bσ,g +

1

2
(µλg1− λg)>Σ−1λg (µλg1− λg)

)
,

as the full conditional of υg is

π(υg|ΦP ,µλ, (σ
2
λ)
−(σ2

λg
)
, θ,ΣV )

∝ π(λg|µλg , σ2
λg)π(υg)

∝ (υg)
aσ,g+

Kg+1

2
−1 exp

[
−
{
bσ,g +

1

2
(µλg1− λg)>Σ−1λg (µλg1− λg)

}
υg

]
.

B.2.6 Updating θ

Updating the precision parameter ξ = 1/θ in PEM models requires the exactly same step

as that in Weibull models. Therefore, the readers are referred to Section B.1.5 for the full

conditional posterior distribution of ξ and the MH algorithm.

B.2.7 Updating Vj for PEM-MVN model

The full conditional posterior distribution of Vj1 can be obtained by

π(Vj1|Φ
−(Vj1)
P ,µλ,σ

2
λ, θ,ΣV ) ∝ LP (D|ΦP )× π(Vj|ΣV ).

∝ exp

{
nj∑
i=1

(
Vj1δji1 − γjiηji1

K1+1∑
k=1

eλ1,k∆1
jik

)
− 1

2
V >j Σ−1V Vj

}
.

Analogously, the full conditionals of Vj2 and Vj3 can be written as

π(Vj2|Φ
−(Vj2)
P ,µλ,σ

2
λ, θ,ΣV ) ∝ exp

{
nj∑
i=1

(
Vj2δji2(1− δji1)− γjiηji2

K2+1∑
l=1

eλ2,l∆2
jil

)
− 1

2
V >j Σ−1V Vj

}
,

π(Vj3|Φ
−(Vj3)
P ,µλ,σ

2
λ, θ,ΣV ) ∝ exp

{
nj∑
i=1

(
Vj3δji1δji2 − γjiηji3

K3+1∑
m=1

eλ3,m∆∗3jim

)
− 1

2
V >j Σ−1V Vj

}
.

For updating each element of Vj, we use the adapted random walk MH algorithm provided

in Section B.1.6.
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B.2.8 Updating ΣV for PEM-MVN model

The full conditional posterior distribution of ΣV in PEM-MVN model is the exactly same as

that in Weibull-MVN model. Readers are referred to Section B.1.7 for the Gibbs sampling

step for updating ΣV .

B.2.9 Updating Vj and ΣV for PEM-DPM model

Updating Vj and ΣV in PEM-DPM requires the exactly same step as that in Weibull-DPM.

Therefore, the readers are referred to Section B.1.8 for detailed algorithm to update Vj and

ΣV . Note that in step 3 of the algorithm, the full conditional of Vj needs to be obtained

based on LP (D|ΦP ) for PEM-DPM.

B.2.10 Update BI

We specify log h0(t) =
∑Kg+1

k=1 λg,kI(t ∈ Ig,k) for the baseline hazard function corresponding

to transition g with partition (Kg, sg). Updating (Kg, sg) requires generating a proposal

partition and then deciding whether or not to accept the proposal. For update BI (a birth

move), we first select a proposal split time s∗ uniformly from among the observed event

times which are not included in the current partition. Suppose s∗ lies between the (k−1)th

and kth split times in the current partition. The proposal partition is then defined as

(0 = sg,0, ..., sg,k−1, s
∗, sg,k, ..., sg,K1+1 = sg,max)

≡ (0 = s∗g,0, ..., s
∗
g,k−1, s

∗
g,k, s

∗
g,k+1, ..., s

∗
g,K1+2 = sg,max).

A height of the two new intervals created by the split at time s∗ also needs to be proposed.

In order to make the old height be a compromise of the two new heights, the former is

taken to be the weighted mean of the latter on the log scale:

(s∗ − sg,k−1)λ∗g,k + (sg,k − s∗)λ∗g,k+1 = (sg,k − sg,k−1)λg,k.

Defining the multiplicative perturbation exp(λ∗g,j+1)/ exp(λ∗g,j) = (1 − U)/U , where U ∼
Uniform(0, 1), the new heights are given by

λ∗g,k = λg,k −
sg,k − s∗

sg,k − sg,k−1
log

(
1− U
U

)
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and

λ∗g,k+1 = λg,k +
s∗ − sg,k−1
sg,k − sg,k−1

log

(
1− U
U

)
.

The acceptance probability in the Metropolis-Hastings-Green step can be written as the

product of the likelihood ratio, prior ratio, proposal ratio, and Jacobian. For g = 1, they

are given by

likelihood ratio =
LP (D|Φ∗P )

LP (D|ΦP )
,

prior ratio =
Poisson(K1 + 1|αK1)×MVNK1+2(λ

∗
1|µλ11, σ2

λ1
Σ∗λ1)

Poisson(K1|αK1)×MVNK1+1(λ1|µλ11, σ2
λ1

Σλ1)

×(2K1 + 3)(2K1 + 2)(s∗ − s1,k−1)(s1,k − s∗)
s21,max(s1,k − s1,k−1)

,

proposal ratio =
πDI × (1/(K1 + 1))

πBI × (1/]{yji1 : δji1 = 1})× Uniform(U |0, 1)

=
ρmin(1, (K1 + 1)/αK1)]{yji1 : δji1 = 1}

ρmin(1, αK1/(1 +K1))(K1 + 1)
=
]{yji1 : δji1 = 1}

αK1

,

Jacobian =

∣∣∣∣∣∣ dλ∗1,k/dλ1,k dλ∗1,k/dU

dλ∗1,k+1/dλ1,k dλ∗1,k+1/dU

∣∣∣∣∣∣ =
1

U(1− U)
, (16)

where Φ∗P is ΦP with λ1 replaced by λ∗1.

B.2.11 Update DI

For update DI (a death or reverse move), we first sample one of the Kg split times, sg,k.

The proposal for time splits is given by

(0 = sg,0, ..., sg,k−1, sg,k+1, ..., sg,Kg+1 = sg,max)

≡ (0 = s∗g,0, ..., s
∗
g,k−1, s

∗
g,k, ..., s

∗
g,Kg = sg,max).

Following Green (1995):

(sg,k − sg,k−1)λg,k + (sg,k+1 − sg,k)λg,k+1 = (sg,k+1 − sg,k−1)λ∗g,k,

perturbation :
eλg,k+1

eλg,k
=

1− U∗

U∗
.
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Then the acceptance probability can be obtained as the product of following four compo-

nents (for g = 1):

likelihood ratio =
LP (D|Φ∗P )

LP (D|ΦP )
,

prior ratio =
Poisson(K1 − 1|αK1)×MVNK1(λ

∗
1|µλ11, σ2

λ1
Σ∗λ1)

Poisson(K1|αK1)×MVNK1+1(λ1|µλ11, σ2
λ1

Σλ1)

×
s21,max(s1,k+1 − s1,k−1)

(2K1 + 1)2K1(s1,k − s1,k−1)(s1,k+1 − s1,k)
,

proposal ratio =
πBI × (1/]{yji1 : δji1 = 1})

πDI × (1/K1)

=
ρmin(1, αK1/K1)K1

ρmin(1, K1/αK1)]{yji1 : δji1 = 1}
=

αK1

]{yji1 : δji1 = 1}
,

Jacobian =

∣∣∣∣∣∣ dλ1k/dλ
∗
1k dλ1k/dλ

∗
1,k+1

dU∗/dλ∗1k dU∗/dλ∗1,k+1

∣∣∣∣∣∣ = U∗(1− U∗).
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C The potential use of existing methods

The methods in the main manuscript were developed specifically for on-going collaboration

examining the risk of readmission following a diagnosis of pancreatic cancer. As indicated

in the manuscript, the current standard for the analysis of cluster-correlated readmission

data is a logisitic-Normal generalized linear mixed model. This model ignores death as a

competing risk, however, and, as such, is inappropriate in for the study of pancreatic cancer

due to its strong force of mortality.

Viewing the data arising in the pancreatic cancer as cluster-correlated semi-competing

risks data, the existing literature does have a number of options that could be considered.

Here we review two of these options, specifically those proposed in Liquet et al. (2012) and

Gorfine and Hsu (2011). For the former, we note that the methods have been implemented

in the frailtypack package for R.

For convenience, expressions (4)-(6) from the main manuscript that the describe the

key features of the proposed hierarchical model are repeated here:

h1(tji1; γji,Xji1, Vj1) = γji h01(tji1) exp{XT
ji1β1 + Vj1}, tji1 > 0

h2(tji2; γji,Xji2, Vj2) = γji h02(tji2) exp{XT
ji2β2 + Vj2}, tji2 > 0

h3(tji2|tji1; γji,Xji3, Vj3) = γji h03(tji2|tji1) exp{XT
ji3β3 + Vj3}, tji2 > tji1,

C.1 Liquet et al. (2012)

The R package frailtypack provides several classes of frailty models for multivariate

survival data including shared frailty models, additive frailty models, nested frailty models,

joint frailty models (Rondeau et al., 2012). Among these, the shared frailty model and the

joint frailty model are most relevant the context we consider; additionally, these models

form the basis for the analyses presented in Liquet et al. (2012). Here we provide a summary

of these two classes using the notation developed in the manuscript, as well as an overview

of their drawbacks in regard to the analysis of cluster-correlated semi-competing risks data.
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C.1.1 The shared frailty model

In the shared frailty model, the hazard function for the subject i in the cluster j conditional

on the cluster-specific shared frailty term ηj = (ηj1, ηj2, ηj3) is given by

h1(tji1;Xji1, ηj1) = ηj1h01(tji1) exp{XT
ji1β1}, tji1 > 0

h2(tji2;Xji2, ηj2) = ηj2h02(tji2) exp{XT
ji2β2}, tji2 > 0

h3(tji2|tji1;Xji3, ηj3) = ηj3h03(tji2 − tji1) exp{XT
ji3β3}, tji2 > tji1, (17)

Key features of this model, in relation to the proposed framework are:

• Cluster-specific effects are represented via the (ηj1, ηj2, ηj3), each of which is assigned

an independent univariate parametric distribution (either a log-Normal or a Gamma).

As such, the model does not permit the characterization of covariation between the

cluster-specific random effects. In contrast, the proposed methods provides analysts

with two choices for the joint distribution of the Vj’s: a parametric MVN or a non-

parametric DPM-MVN.

• There is no patient-specific term, analogous to the γji in the proposed model. As

such a potentially important source of within-subject correlation between T1 and T2

is not accounted for.

• Similar to the propose methods, however, is that the baseline hazard function for

h3() can be specified non-parametrically (via a spline) or parametrically (using the

Weibull distribution).

• Although not evident from the model specification, estimation of the shared frailty

model is based on three separate fits of the three models. In contrast, because the

proposed model considers several components of covariation (i.e. covariation among

the Vj’s and the patient-specific γji’s) we perform estimation/inference using single

likelihood. Indeed for the shared frailty model to accommodate these components of

covariation, a completely new framework for estimation/inference would need to be

developed.

• Estimation of the (ηj1, ηj2, ηj3) proceeds using empirical Bayes (after estimation of the

remaining components via an integrated likelihood). Uncertainty for these estimates

are only available when their distributions are taken to be Gamma distributions.
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C.1.2 The joint frailty model

Two variations of a joint frailty model have been implemented in the frailtypack package.

The first was developed for the analysis of a recurrent non-terminal event and a terminal

event and specifies a single hazard function for each. Specifically, the model is given by:

h1(tki1|ωi) = ωir0(tki1) exp{XT
i1β1}, for recurrent non-terminal event

h2(ti2|ωi) = ωαi h0(ti2) exp{XT
i2β2}, for the terminal event

ωi ∼ Gamma(1/θ, 1/θ). (18)

where ωi is a common subject-specific frailty representing unobserved covariates that impact

both events. We note that this is specification is similar to the model proposed by Liu et al.

(2004).

The second joint frailty model implemented in the frailtypack package is for model-

ing two clustered survival outcomes. Specifically, the model posits that the event-specific

hazard functions for the jth cluster are structured as follows:

h(tji1|ηj) = h01(tji1) exp{XT
ji1β1 + ηj}, for any event

h(tji2|ηj) = h02(tji2) exp{XT
ji2β2 + αηj}, for the terminal event

ηj ∼ Normal(0, σ2) (19)

In relation to the context we consider, the central limitation of these models is that they

only consider a single level of the two-level hierarchy inherent to cluster-correlated semi-

competing risks data. Specifically, as applied and described in the fraitypack package,

the first model only considers patient-specific effects while the second model only considers

cluster-specific effects. As such neither model would be appropriate for our motivating

application since (i) ignoring cluster-specific effects means that one cannot address several

of our key scientific questions and (ii) ignoring patient-level effects can result in substantial

bias (see the simulation studies in Section 5 of the main manuscript).

We also note that a second limitation is that model (19) does not consider the transition

from the non-terminal event to the terminal event; that is there is no analogue for h3() in

the model. This represents a limitation in the sense that information readily available in

the data is ignored. In the motivating application in the main manuscript, for example, the

fact that the time of death following readmission within 90 days is known for 608 (11.5%)

21



patients is ignored. Finally, although model (18) does permit a patient to transition from

the non-terminal state to the terminal state, this transition is assumed to occur at the

same rate at which a patient who is in the initial state transitions directly into the terminal

state; that is, in contrast to the proposed model that distinguishes h2() from h3(), model

(18) only has a single hazard for the terminal event.

C.2 Gorfine and Hsu (2011)

Gorfine and Hsu (2011) explicitly consider the related but distinct problem of analyzing

cluster correlated competing risk data for which T1 and T2 are both terminal events (i.e.

death due to two causes). Towards analyzing such data, they propose the following hierar-

chical model:

h(tji1|Xji, εj1(tji1)) = h01(tji1) exp{XT
jiβ1 + εj1(tji1)}, for cause 1

h(tji2|Xji, εj2(tji2)) = h02(tji2) exp{XT
jiβ2 + εj2(tji2)}, for cause 2 (20)

to describe the risk of transitioning into one of the two terminal states for the ith patient in

the jth cluster. As part of their development, Gorfine and Hsu (2011) provide a framework

within which the distribution of the cluster-specific εjg(t) terms can be flexibly specified.

While this flexibility is very appealing, direct application of this model to our motivating

application would be subject to a number of limitations mainly because the method was

not designed for the cluster-correlated semi-competing risks setting. Specifically,

• Similar to the joint frailty model given by (19), the application of model (20) means

that one would ignore information in the data on the transition from the non-terminal

event to the terminal event; that is, there is not analogue of h3().

• Although model (20) includes cluster-specific random effects, it does not include

specification of patient-specific terms analogous to γji in the proposed model. As is

clear from the simulations presented in Section 5 of the main manuscript, ignoring this

component of variation can lead to substantial bias in estimation and poor inferential

properties in the cluster-correlated semi-competing risks setting.
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D Simulation Results

In order to supplement the results from simulation studies, we provide estimated percent

bias, coverage probability, and average relative width of 95% credible/confidence inter-

vals for β1, β2, β3, and θ for our four proposed models and four types of SF models of

Liquet et al. (2012) in Table D.1-D.6. We also provide estimated transition-specific base-

line survival functions for the models under simulation scenarios 2,3, and 5 in Figure D.1.

Note that since results from SF models are almost identical between models that adopt

the independent gamma distributions for cluster-specific random effects and those that

adopt the independent log-Normal distributions, we only present the results from SF mod-

els with the gamma cluster-specific random effects in Figure D.1. We also present Table

D.7 that augments Table 6 in the main manuscript by additionally presenting results for

the Liquet et al. (2012)’s models that adopt independent log-Normal distributions for the

cluster-specific random effects.

The results presented in this section are generally consistent with the conclusions we

drew in the main paper: contrary to the existing SF models, our proposed models yielded a

small bias and coverage probability estimated to be close to the nominal 0.95 for regression

parameters and θ (except scenario 4 for which θ=0); all four of the proposed models estimate

the three baseline survival functions very well.
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Table D.1: Estimated percent bias and coverage probability for β1 and θ for six analyses described in Section 5.2, across six

simulation scenarios given in Table 3. Throughout values are based on results from R=500 simulated datasets.
Percent Bias Coverage Probability

Scenario True Weibull Weibull Weibull Weibull PEM PEM Spline Spline Weibull Weibull Weibull Weibull PEM PEM Spline Spline

value -MVN -DPM -SFG
a -SFLN

b -MVN -DPM -SFG -SFLN -MVN -DPM -SFG -SFLN -MVN -DPM -SFG -SFLN

β11 0.50 0.1 0.2 -19.8 -21.3 0.4 0.4 -21.0 -20.8 0.96 0.96 0.01 0.01 0.95 0.96 0.00 0.00

1 β12 0.80 0.2 0.3 -19.7 -21.3 0.5 0.4 -21.0 -20.8 0.95 0.95 0.00 0.00 0.96 0.97 0.00 0.00

β13 -0.50 0.3 0.3 -19.8 -18.8 0.3 0.3 -21.2 -20.9 0.97 0.96 0.31 0.31 0.96 0.96 0.25 0.26

θ 0.50 1.0 1.3 1.4 1.2 0.95 0.95 0.93 0.94

β11 0.50 -0.1 -0.0 -31.8 -33.4 0.1 0.1 -32.8 -32.8 0.94 0.94 0.00 0.00 0.94 0.93 0.00 0.00

2 β12 0.80 0.1 0.2 -31.7 -33.3 0.4 0.3 -32.7 -32.7 0.97 0.97 0.00 0.00 0.94 0.95 0.00 0.00

β13 -0.50 1.2 1.3 -31.1 -29.2 1.1 1.1 -32.2 -32.2 0.94 0.95 0.05 0.05 0.94 0.94 0.04 0.04

θ 1.00 0.4 0.7 0.7 0.6 0.94 0.95 0.94 0.95

β11 0.50 0.3 0.3 -19.9 -20.7 0.7 0.7 -21.0 -20.9 0.94 0.94 0.00 0.00 0.93 0.94 0.00 0.00

3 β12 0.80 0.4 0.4 -19.8 -20.7 0.8 0.8 -20.9 -20.8 0.94 0.94 0.00 0.00 0.94 0.94 0.00 0.00

β13 -0.50 0.4 0.3 -20.1 -19.7 0.5 0.6 -21.2 -21.2 0.96 0.96 0.31 0.29 0.95 0.96 0.27 0.27

θ 0.50 2.0 2.1 3.2 3.2 0.96 0.96 0.93 0.95

β11 0.50 3.7 3.7 0.2 -2.9 4.7 4.6 0.3 0.6 0.87 0.86 0.96 0.91 0.81 0.83 0.96 0.95

4 β12 0.80 3.6 3.6 -0.0 -3.1 4.5 4.5 0.1 0.4 0.80 0.79 0.95 0.89 0.69 0.70 0.95 0.95

β13 -0.50 4.0 4.0 0.2 7.3 4.8 4.7 0.2 0.6 0.93 0.94 0.94 0.88 0.93 0.93 0.93 0.94

θ 0.00

β11 0.50 -0.3 0.1 -20.3 -24.6 0.0 0.3 -21.1 -20.9 0.94 0.95 0.00 0.00 0.96 0.96 0.00 0.00

5 β12 0.80 0.0 0.3 -20.0 -24.6 0.3 0.6 -20.9 -20.7 0.95 0.95 0.00 0.00 0.96 0.96 0.00 0.00

β13 -0.50 -0.2 0.2 -20.4 -13.7 -0.2 0.2 -21.3 -21.1 0.94 0.94 0.29 0.26 0.94 0.94 0.25 0.26

θ 0.50 -0.2 1.0 0.4 1.3 0.95 0.95 0.95 0.96

β11 0.50 9.3 9.4 -22.1 -23.6 0.4 0.3 -25.9 -25.1 0.58 0.57 0.00 0.00 0.94 0.94 0.00 0.00

6 β12 0.80 9.7 9.8 -22.0 -23.5 0.5 0.5 -25.8 -25.0 0.20 0.20 0.00 0.00 0.94 0.95 0.00 0.00

β13 -0.50 10.2 10.2 -21.6 -18.2 0.8 0.7 -26.1 -24.9 0.81 0.80 0.21 0.21 0.93 0.94 0.10 0.10

θ 0.50 52.8 53.0 1.8 1.7 0.00 0.00 0.95 0.96

a The SF models that adopt the independent gamma distributions for cluster-specific random effects

b The SF models that adopt the independent log-Normal distributions for cluster-specific random effects
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Table D.2: Estimated percent bias and coverage probability for β2 for six analyses described in Section 5.2, across six simulation

scenarios given in Table 3. Throughout values are based on results from R=500 simulated datasets.
Percent Bias Coverage Probability

Scenario True Weibull Weibull Weibull Weibull PEM PEM Spline Spline Weibull Weibull Weibull Weibull PEM PEM Spline Spline

value -MVN -DPM -SFG
a -SFLN

b -MVN -DPM -SFG -SFLN -MVN -DPM -SFG -SFLN -MVN -DPM -SFG -SFLN

β21 0.50 -0.1 -0.0 -27.9 -25.9 -0.2 -0.3 -26.1 -26.1 0.93 0.93 0.00 0.00 0.94 0.94 0.00 0.00

1 β22 0.80 0.3 0.4 -27.9 -25.6 0.2 0.1 -25.8 -25.7 0.96 0.96 0.00 0.00 0.96 0.96 0.00 0.00

β23 -0.50 1.3 1.4 -26.5 -21.1 0.9 0.9 -25.2 -25.1 0.94 0.93 0.34 0.35 0.95 0.95 0.34 0.34

β21 0.50 -0.1 0.1 -39.2 -39.2 -0.2 -0.2 -39.9 -39.8 0.96 0.96 0.00 0.00 0.96 0.96 0.00 0.00

2 β22 0.80 0.2 0.3 -39.1 -39.0 0.0 0.0 -39.6 -39.6 0.96 0.97 0.00 0.00 0.96 0.97 0.00 0.00

β23 -0.50 1.3 1.4 -38.5 -38.3 0.8 0.8 -39.2 -39.2 0.93 0.94 0.07 0.07 0.93 0.93 0.06 0.06

β21 0.50 0.3 0.3 -27.4 -24.9 0.3 0.3 -25.7 -25.6 0.95 0.95 0.01 0.01 0.95 0.96 0.00 0.00

3 β22 0.80 0.5 0.5 -27.5 -24.8 0.5 0.5 -25.5 -25.4 0.95 0.95 0.00 0.00 0.94 0.95 0.00 0.00

β23 -0.50 2.5 2.5 -24.9 -23.2 2.3 2.5 -24.2 -24.1 0.95 0.95 0.37 0.38 0.94 0.94 0.35 0.36

β21 0.50 4.5 4.5 -4.9 -4.4 4.7 4.7 -0.6 -0.6 0.89 0.89 0.91 0.90 0.87 0.88 0.96 0.96

4 β22 0.80 4.6 4.6 -5.2 -4.6 4.8 4.8 -0.6 -0.5 0.78 0.78 0.88 0.88 0.76 0.79 0.92 0.92

β23 -0.50 5.4 5.4 25.8 18.1 5.4 5.5 -0.1 -0.0 0.92 0.92 0.88 0.88 0.91 0.93 0.93 0.92

β21 0.50 -0.3 0.2 -26.6 -25.1 -0.4 -0.0 -26.1 -25.8 0.94 0.95 0.00 0.00 0.94 0.95 0.00 0.00

5 β22 0.80 -0.4 0.1 -26.8 -25.3 -0.5 -0.1 -26.2 -25.9 0.96 0.96 0.00 0.00 0.96 0.96 0.00 0.00

β23 -0.50 0.1 0.5 -27.2 -24.9 -0.4 0.1 -26.1 -25.8 0.95 0.95 0.33 0.35 0.95 0.95 0.30 0.31

β21 0.50 9.2 9.3 -25.1 -23.8 0.1 0.1 -25.0 -25.0 0.70 0.70 0.01 0.01 0.95 0.95 0.00 0.01

6 β22 0.80 9.7 9.7 -25.4 -23.8 0.4 0.3 -24.8 -24.8 0.40 0.39 0.00 0.00 0.94 0.95 0.00 0.00

β23 -0.50 10.4 10.4 -26.6 -13.6 0.8 0.8 -24.5 -24.5 0.85 0.85 0.47 0.47 0.94 0.95 0.36 0.35

a The SF models that adopt the independent gamma distributions for cluster-specific random effects

b The SF models that adopt the independent log-Normal distributions for cluster-specific random effects

25



Table D.3: Estimated percent bias and coverage probability for β3 for six analyses described in Section 5.2, across six simulation

scenarios given in Table 3. Throughout values are based on results from R=500 simulated datasets.
Percent Bias Coverage Probability

Scenario True Weibull Weibull Weibull Weibull PEM PEM Spline Spline Weibull Weibull Weibull Weibull PEM PEM Spline Spline

value -MVN -DPM -SFG
a -SFLN

b -MVN -DPM -SFG -SFLN -MVN -DPM -SFG -SFLN -MVN -DPM -SFG -SFLN

β31 1.00 0.4 0.5 -21.8 -12.5 0.7 0.8 -13.3 -13.2 0.94 0.94 0.08 0.09 0.94 0.94 0.06 0.06

1 β32 1.00 0.2 0.3 -20.5 -9.0 0.6 0.6 -9.7 -9.7 0.96 0.96 0.28 0.32 0.93 0.94 0.27 0.28

β33 -1.00 0.2 0.3 44.3 -12.5 0.4 0.4 -13.4 -13.3 0.94 0.94 0.47 0.53 0.94 0.94 0.49 0.50

β31 1.00 0.1 0.3 -24.1 -25.3 0.6 0.6 -24.8 -24.7 0.95 0.95 0.00 0.00 0.95 0.95 0.00 0.00

2 β32 1.00 0.4 0.5 -22.8 -24.1 0.8 0.8 -23.3 -23.3 0.94 0.94 0.00 0.00 0.95 0.95 0.00 0.00

β33 -1.00 0.2 0.4 -23.8 -22.6 0.4 0.4 -24.6 -24.5 0.96 0.96 0.08 0.07 0.95 0.95 0.06 0.07

β31 1.00 0.6 0.6 -21.4 -14.4 1.1 1.1 -12.6 -12.5 0.96 0.96 0.10 0.14 0.95 0.95 0.09 0.09

3 β32 1.00 0.7 0.8 -19.2 -11.2 1.2 1.2 -9.0 -8.9 0.95 0.95 0.35 0.40 0.94 0.94 0.37 0.38

β33 -1.00 0.3 0.3 13.1 -10.1 0.5 0.6 -12.6 -12.5 0.95 0.95 0.52 0.57 0.93 0.94 0.54 0.54

β31 1.00 3.4 3.4 -0.6 11.9 4.1 3.9 11.0 11.3 0.87 0.88 0.11 0.12 0.84 0.86 0.15 0.15

4 β32 1.00 3.4 3.5 5.6 19.2 4.2 4.0 18.3 18.6 0.88 0.88 0.00 0.00 0.83 0.86 0.00 0.00

β33 -1.00 3.0 3.0 20.6 11.6 3.3 3.5 10.3 10.7 0.95 0.95 0.51 0.57 0.94 0.94 0.62 0.61

β31 1.00 -0.0 0.5 -22.4 -16.0 0.4 0.8 -14.2 -14.0 0.97 0.96 0.05 0.07 0.96 0.97 0.04 0.05

5 β32 1.00 0.0 0.6 -20.2 -12.4 0.4 0.9 -10.4 -10.1 0.96 0.95 0.27 0.31 0.95 0.95 0.25 0.26

β33 -1.00 0.0 0.5 36.3 -11.4 0.3 0.6 -14.1 -13.9 0.94 0.94 0.44 0.49 0.95 0.94 0.46 0.47

β31 1.00 8.4 8.5 -28.5 -28.5 0.5 0.5 -30.4 -30.3 0.31 0.30 0.00 0.00 0.96 0.95 0.00 0.00

6 β32 1.00 8.9 9.0 -20.3 -20.3 0.6 0.6 -22.0 -21.8 0.28 0.27 0.00 0.00 0.95 0.95 0.00 0.00

β33 -1.00 8.8 8.9 -27.9 -27.8 0.4 0.4 -30.2 -30.1 0.67 0.67 0.00 0.00 0.95 0.95 0.00 0.00

a The SF models that adopt the independent gamma distributions for cluster-specific random effects

b The SF models that adopt the independent log-Normal distributions for cluster-specific random effects
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Figure D.1: Estimated transition-specific baseline survival functions, S0g(·)=exp(−H0g(·)),
for each six analyses described in Section 5 under simulation scenarios 2, 3 and 5.
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Table D.4: Average relative width of 95% credible/confidence intervals for β1 and θ, with

the Weibull-MVN model taken as the referent, across six simulation scenarios given in

Table 3. Throughout values are based on results from R=500 simulated datasets.

Scenario Weibull Weibull Weibull Weibull PEM PEM Spline Spline

-MVN -DPM -SFG
a -SFLN

b -MVN -DPM -SFG -SFLN

β11 1.00 1.00 0.81 0.78 1.02 1.02 0.81 0.81

1 β12 1.00 1.00 0.77 0.74 1.04 1.04 0.77 0.77

β13 1.00 1.00 0.84 0.81 1.00 1.01 0.83 0.84

θ 1.00 1.00 1.10 1.12

β11 1.00 1.00 0.73 0.70 1.02 1.02 0.73 0.73

2 β12 1.00 1.00 0.69 0.66 1.03 1.04 0.69 0.69

β13 1.00 1.00 0.76 0.72 1.00 1.00 0.76 0.76

θ 1.00 1.00 1.12 1.14

β11 1.00 1.00 0.81 0.78 1.02 1.02 0.81 0.81

3 β12 1.00 1.00 0.76 0.74 1.04 1.04 0.77 0.77

β13 1.00 1.00 0.83 0.80 1.00 1.01 0.83 0.83

θ 1.00 1.00 1.10 1.13

β11 1.00 1.00 0.95 0.90 1.02 1.01 0.96 0.96

4 β12 1.00 1.00 0.94 0.88 1.03 1.03 0.95 0.95

β13 1.00 1.00 0.96 0.90 1.01 1.01 0.96 0.96

θ 1.00 1.00 1.09 1.09

β11 1.00 1.00 0.81 0.74 1.02 1.02 0.81 0.81

5 β12 1.00 1.00 0.77 0.70 1.03 1.03 0.77 0.77

β13 1.00 1.00 0.83 0.76 1.00 1.00 0.83 0.83

θ 1.00 1.00 1.09 1.09

β11 1.00 1.00 0.74 0.71 0.94 0.95 0.73 0.74

6 β12 1.00 1.00 0.72 0.69 0.96 0.97 0.71 0.72

β13 1.00 1.00 0.76 0.72 0.93 0.93 0.75 0.75

θ 1.00 1.00 0.89 0.90

a The SF models that adopt the independent gamma distributions for cluster-specific random effects

b The SF models that adopt the independent log-Normal distributions for cluster-specific random effects
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Table D.5: Average relative width of 95% credible/confidence intervals for β2, with the

Weibull-MVN model taken as the referent, across six simulation scenarios given in Table

3. Throughout values are based on results from R=500 simulated datasets.

Scenario Weibull Weibull Weibull Weibull PEM PEM Spline Spline

-MVN -DPM -SFG
a -SFLN

b -MVN -DPM -SFG -SFLN

β21 1.00 1.00 0.80 0.82 1.01 1.01 0.84 0.84

1 β22 1.00 1.00 0.75 0.78 1.02 1.02 0.79 0.79

β23 1.00 1.00 0.83 0.85 1.00 1.00 0.87 0.87

β21 1.00 1.00 0.77 0.77 1.01 1.01 0.78 0.78

2 β22 1.00 1.00 0.72 0.72 1.02 1.02 0.73 0.73

β23 1.00 1.00 0.80 0.80 1.00 1.00 0.80 0.80

β21 1.00 1.00 0.80 0.83 1.01 1.01 0.83 0.83

3 β22 1.00 1.00 0.75 0.78 1.02 1.03 0.79 0.79

β23 1.00 1.00 0.82 0.86 1.00 1.00 0.86 0.86

β21 1.00 1.00 0.90 0.90 1.01 1.01 0.96 0.96

4 β22 1.00 1.00 0.88 0.88 1.01 1.01 0.95 0.95

β23 1.00 1.00 0.91 0.91 1.00 1.00 0.97 0.97

β21 1.00 1.00 0.81 0.83 1.01 1.01 0.84 0.84

5 β22 1.00 1.00 0.77 0.78 1.02 1.02 0.79 0.79

β23 1.00 1.00 0.84 0.86 1.00 1.00 0.86 0.86

β21 1.00 1.00 0.78 0.79 0.96 0.96 0.82 0.82

6 β22 1.00 1.00 0.75 0.76 0.97 0.97 0.80 0.80

β23 1.00 1.00 0.79 0.80 0.95 0.95 0.84 0.84

a The SF models that adopt the independent gamma distributions for cluster-specific random effects

b The SF models that adopt the independent log-Normal distributions for cluster-specific random effects
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Table D.6: Average relative width of 95% credible/confidence intervals for β3, with the

Weibull-MVN model taken as the referent, across six simulation scenarios given in Table

3. Throughout values are based on results from R=500 simulated datasets.

Scenario Weibull Weibull Weibull Weibull PEM PEM Spline Spline

-MVN -DPM -SFG
a -SFLN

b -MVN -DPM -SFG -SFLN

β31 1.00 1.00 0.72 0.83 1.01 1.01 0.83 0.83

1 β32 1.00 1.00 0.73 0.83 1.01 1.02 0.83 0.83

β33 1.00 1.00 0.75 0.86 1.00 1.00 0.86 0.86

β31 1.00 1.00 0.77 0.75 1.01 1.01 0.77 0.77

2 β32 1.00 1.00 0.77 0.75 1.01 1.02 0.77 0.77

β33 1.00 1.00 0.81 0.79 1.00 1.00 0.81 0.81

β31 1.00 1.00 0.73 0.81 1.01 1.01 0.84 0.84

3 β32 1.00 1.00 0.74 0.81 1.01 1.02 0.84 0.84

β33 1.00 1.00 0.76 0.84 1.00 1.00 0.87 0.87

β31 1.00 1.00 0.85 0.97 1.01 1.01 0.98 0.98

4 β32 1.00 1.00 0.87 0.99 1.01 1.01 1.00 1.00

β33 1.00 1.00 0.85 0.96 1.00 1.00 0.97 0.97

β31 1.00 1.00 0.73 0.79 1.01 1.01 0.83 0.83

5 β32 1.00 1.00 0.73 0.80 1.01 1.01 0.83 0.84

β33 1.00 1.00 0.76 0.82 1.00 1.00 0.86 0.86

β31 1.00 1.00 0.69 0.69 0.96 0.96 0.69 0.69

6 β32 1.00 1.00 0.72 0.72 0.97 0.97 0.72 0.72

β33 1.00 1.00 0.73 0.73 0.94 0.94 0.73 0.73

a The SF models that adopt the independent gamma distributions for cluster-specific random effects

b The SF models that adopt the independent log-Normal distributions for cluster-specific random effects
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Table D.7: Mean squared error of prediction (×10−2) for cluster-specific random effects

based on six analyses described in Section 5.2, across six data scenarios given in Table 3.

Throughout values are based on results from R=500 simulated datasets.

Scenario Weibull Weibull Weibull Weibull PEM PEM Spline Spline

-MVN -DPM -SFG
a -SFLN

b -MVN -DPM -SFG -SFLN

%F %F† %F %F

V1 5.25 5.27 6.40 10355.30 5.27 5.27 6.39 10397.30

1 V2 7.66 7.70 8.70 17.8 11199.69 6.6 7.67 7.72 8.68 0.2 11131.71 0.8

V3 9.91 9.95 12.13 11221.04 9.91 9.96 12.11 11214.38

V1 6.36 6.41 8.10 10535.62 6.37 6.41 8.09 10476.70

2 V2 8.76 8.85 10.23 10.4 11328.83 7.8 8.77 8.86 10.20 0.0 11208.54 0.6

V3 11.13 11.19 13.85 11417.49 11.13 11.19 13.91 11449.00

V1 5.03 5.04 6.27 10398.49 5.04 5.04 6.22 10329.00

3 V2 6.34 6.34 8.28 15.8 11357.53 9.2 6.36 6.36 8.24 0.0 11348.16 0.6

V3 7.55 7.49 11.66 10932.18 7.57 7.55 11.69 10895.77

V1 3.84 3.85 4.99 9798.48 3.87 3.87 5.01 9765.63

4 V2 6.25 6.27 7.19 12.8 11076.72 12.4 6.25 6.27 7.12 0.4 11102.66 5.4

V3 7.89 7.90 9.57 10893.62 7.90 7.91 9.52 10886.70

V1 6.95 6.26 10.87 10005.24 6.96 6.27 10.86 9869.41

5 V2 11.52 10.50 14.95 12.8 11090.98 78.4 11.50 10.52 14.92 0.2 10976.78 76.4

V3 15.46 14.66 25.04 11156.06 15.46 14.72 24.94 11073.46

V1 5.05 5.01 6.34 9670.25 4.89 4.85 6.26 9804.42

6 V2 7.58 7.55 8.60 5.4 11259.19 9.2 7.41 7.39 8.49 1.4 11272.07 0.4

V3 6.72 6.65 13.42 10095.61 6.44 6.40 13.70 10233.22

a The SF models that adopt the independent gamma distributions for cluster-specific random effects

b The SF models that adopt the independent log-Normal distributions for cluster-specific random effects

† % of times SF models yield at least one of V̂j being −∞, resulting in MSEP being ∞
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E Application to Medicare data from New England

E.1 Additional Results

In our main paper, posterior summaries for hazard ratio (HR) parameters for readmission,

exp(β1), from models for which a semi-Markov specification was adopted for h03(·) are

presented. In Table E.1-E.4, we provide posterior summaries for HR parameters for death

without readmission, exp(β2), and those for death following readmission, exp(β3), from

both Markov and semi-Markov models. We also provide the posterior estimates of exp(β1)

from Markov models in Table E.5.

From Table 4 (in the main paper) and Table E.1-E.5, we see the little difference in poste-

rior estimates of HR parameters between Markov and semi-Markov models in this particular

application. Therefore, our analyses in this document mainly focus on HR parameters for

death (exp(β2) and exp(β3)) under semi-Markov models. As seen in Table E.1 and Table

E.2, our proposed framework show how risk for death changes depending on whether or

not a patient experiences the readmission. For example, whereas there is evidence of an

increased risk of death for long hospital stay among individuals who have not been read-

mitted (HR 1.10; 95% CI 1.04, 1.18 in PEM-DPM), the same conclusion cannot be drawn

for individuals who have been readmitted (HR 0.98; 95% CI 0.87, 1.09 in PEM-DPM).

In addition, the association between death and two of covariates (age and Charlson/Deyo

score) is stronger in this magnitude (i.e. farther from zero) while the association between

death and some other covariates (sex, source of entry to initial hospitalization, length of

stay, discharged location, and whether or not patients underwent a procedure during the

hospitalization) is weakened among patient who have been readmitted. In general, our

analyses show evidence of increased risk for death for patients with male gender, older age,

initially hospitalized via some route other than ER, higher comorbidity score, a procedure

during the hospitalization, a discharge to a place other than home (without care).
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Table E.1: Posterior medians (PM) and 95% credible intervals (CI) for hazard ratio pa-

rameters for death without readmission (exp(β2)) from semi-competing risks data analyses

based on semi-Markov models.

Weibull-MVN Weibull-DPM PEM-MVN PEM-DPM

PM (95%CI) PM (95%CI) PM (95%CI) PM (95%CI)

Sex

Male 1.00 1.00 1.00 1.00

Female 0.69 (0.60, 0.79) 0.69 (0.61, 0.78) 0.75 (0.67, 0.83) 0.75 (0.67, 0.83)

Age∗ 1.09 (1.04, 1.13) 1.09 (1.04, 1.14) 1.07 (1.03, 1.11) 1.07 (1.03, 1.11)

Race

White 1.00 1.00 1.00 1.00

Non-white 0.93 (0.70, 1.22) 0.93 (0.70, 1.22) 0.94 (0.74, 1.17) 0.94 (0.75, 1.18)

Source of entry to initial

hospitalization

Emergency room 1.00 1.00 1.00 1.00

Other facility 1.61 (1.41, 1.85) 1.61 (1.41, 1.86) 1.50 (1.33, 1.70) 1.49 (1.32, 1.68)

Charlson/Deyo score

≤ 1 1.00 1.00 1.00 1.00

> 1 1.40 (1.12, 1.71) 1.39 (1.13, 1.73) 1.26 (1.08, 1.50) 1.27 (1.06, 1.51)

Procedure during hospitalization

No 1.00 1.00 1.00 1.00

Yes 0.09 (0.07, 0.12) 0.09 (0.07, 0.12) 0.13 (0.10, 0.16) 0.13 (0.10, 0.16)

Length of stay∗∗ 1.15 (1.07, 1.24) 1.15 (1.06, 1.24) 1.10 (1.04, 1.18) 1.10 (1.04, 1.18)

Care after discharge

Home 1.00 1.00 1.00 1.00

Home with care 2.41 (2.00, 2.91) 2.45 (2.02, 2.94) 2.22 (1.85, 2.63) 2.21 (1.90, 2.61)

Hospice 22.99 (18.08, 30.16) 23.71 (18.28, 31.20) 13.94 (11.22, 17.43) 13.85 (11.33, 17.08)

ICF/SNF 5.22 (4.29, 6.39) 5.33 (4.32, 6.45) 4.25 (3.57, 5.06) 4.25 (3.66, 5.01)

Other 4.81 (3.48, 6.70) 4.93 (3.58, 6.84) 3.79 (2.91, 4.98) 3.81 (2.94, 4.91)

∗ standardized so that 0 corresponds to an age of 77 years and so that one unit increment corresponds to 10 years

∗∗ standardized so that 0 corresponds to 10 days and so that one unit increment corresponds to 7 days
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Table E.2: Posterior medians (PM) and 95% credible intervals (CI) for hazard ratio param-

eters for death following readmission (exp(β3)) from semi-competing risks data analyses

based on semi-Markov models.

Weibull-MVN Weibull-DPM PEM-MVN PEM-DPM

PM (95%CI) PM (95%CI) PM (95%CI) PM (95%CI)

Sex

Male 1.00 1.00 1.00 1.00

Female 0.81 (0.66, 1.00) 0.81 (0.66, 0.98) 0.84 (0.70, 1.00) 0.84 (0.71, 1.01)

Age∗ 1.10 (1.02, 1.19) 1.10 (1.02, 1.19) 1.09 (1.02, 1.17) 1.09 (1.02, 1.17)

Race

White 1.00 1.00 1.00 1.00

Non-white 1.15 (0.77, 1.67) 1.14 (0.79, 1.65) 1.12 (0.79, 1.54) 1.11 (0.78, 1.54)

Source of entry to initial

hospitalization

Emergency room 1.00 1.00 1.00 1.00

Other facility 1.54 (1.25, 1.90) 1.55 (1.25, 1.91) 1.42 (1.17, 1.72) 1.42 (1.16, 1.72)

Charlson/Deyo score

≤ 1 1.00 1.00 1.00 1.00

> 1 1.51 (1.11, 2.06) 1.52 (1.11, 2.07) 1.41 (1.06, 1.85) 1.40 (1.05, 1.84)

Procedure during hospitalization

No 1.00 1.00 1.00 1.00

Yes 0.21 (0.15, 0.29) 0.21 (0.15, 0.29) 0.28 (0.20, 0.39) 0.28 (0.21, 0.39)

Length of stay∗∗ 1.01 (0.89, 1.13) 1.01 (0.89, 1.13) 0.98 (0.88, 1.09) 0.98 (0.87, 1.09)

Care after discharge

Home 1.00 1.00 1.00 1.00

Home with care 1.44 (1.13, 1.81) 1.44 (1.13, 1.82) 1.35 (1.08, 1.68) 1.34 (1.08, 1.65)

Hospice 10.23 (4.66, 22.01) 10.43 (4.83, 22.33) 6.46 (3.33, 12.58) 6.35 (3.30, 12.29)

ICF/SNF 2.54 (1.87, 3.45) 2.57 (1.87, 3.46) 2.08 (1.52, 2.77) 2.07 (1.56, 2.76)

Other 2.78 (1.64, 4.49) 2.72 (1.61, 4.44) 2.24 (1.40, 3.48) 2.25 (1.41, 3.43)

∗ standardized so that 0 corresponds to an age of 77 years and so that one unit increment corresponds to 10 years

∗∗ standardized so that 0 corresponds to 10 days and so that one unit increment corresponds to 7 days
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Table E.3: Posterior medians (PM) and 95% credible intervals (CI) for hazard ratio pa-

rameters for death without readmission (exp(β2)) from semi-competing risks data analyses

based on Markov models.

Weibull-MVN Weibull-DPM PEM-MVN PEM-DPM

PM (95%CI) PM (95%CI) PM (95%CI) PM (95%CI)

Sex

Male 1.00 1.00 1.00 1.00

Female 0.69 (0.60, 0.79) 0.69 (0.60, 0.79) 0.75 (0.67, 0.84) 0.75 (0.67, 0.83)

Age∗ 1.08 (1.04, 1.13) 1.08 (1.04, 1.13) 1.07 (1.03, 1.11) 1.07 (1.03, 1.11)

Race

White 1.00 1.00 1.00 1.00

Non-white 0.92 (0.69, 1.21) 0.92 (0.70, 1.22) 0.94 (0.75, 1.18) 0.94 (0.75, 1.16)

Source of entry to initial

hospitalization

Emergency room 1.00 1.00 1.00 1.00

Other facility 1.61 (1.42, 1.84) 1.62 (1.42, 1.86) 1.49 (1.32, 1.67) 1.49 (1.33, 1.69)

Charlson/Deyo score

≤ 1 1.00 1.00 1.00 1.00

> 1 1.40 (1.12, 1.73) 1.39 (1.12, 1.72) 1.26 (1.06, 1.49) 1.27 (1.06, 1.51)

Procedure during hospitalization

No 1.00 1.00 1.00 1.00

Yes 0.09 (0.07, 0.12) 0.09 (0.07, 0.12) 0.13 (0.10, 0.16) 0.13 (0.11, 0.17)

Length of stay∗∗ 1.15 (1.07, 1.23) 1.15 (1.07, 1.23) 1.10 (1.04, 1.17) 1.10 (1.04, 1.17)

Care after discharge

Home 1.00 1.00 1.00 1.00

Home with care 2.44 (2.04, 2.91) 2.42 (2.02, 2.93) 2.20 (1.86, 2.62) 2.20 (1.90, 2.61)

Hospice 23.52 (17.98, 30.13) 23.55 (18.05, 30.53) 13.72 (11.22, 17.49) 13.78 (11.10, 17.1)

ICF/SNF 5.30 (4.36, 6.43) 5.29 (4.38, 6.47) 4.23 (3.61, 5.16) 4.25 (3.62, 5.02)

Other 4.88 (3.59, 6.72) 4.87 (3.54, 6.73) 3.78 (2.93, 4.99) 3.82 (2.92, 4.97)

∗ standardized so that 0 corresponds to an age of 77 years and so that one unit increment corresponds to 10 years

∗∗ standardized so that 0 corresponds to 10 days and so that one unit increment corresponds to 7 days
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Table E.4: Posterior medians (PM) and 95% credible intervals (CI) for hazard ratio param-

eters for death following readmission (exp(β3)) from semi-competing risks data analyses

based on Markov models.

Weibull-MVN Weibull-DPM PEM-MVN PEM-DPM

PM (95%CI) PM (95%CI) PM (95%CI) PM (95%CI)

Sex

Male 1.00 1.00 1.00 1.00

Female 0.81 (0.66, 0.98) 0.81 (0.67, 0.99) 0.84 (0.71, 1.01) 0.85 (0.71, 1.02)

Age∗ 1.11 (1.02, 1.19) 1.10 (1.03, 1.20) 1.10 (1.03, 1.18) 1.09 (1.02, 1.18)

Race

White 1.00 1.00 1.00 1.00

Non-white 1.14 (0.78, 1.64) 1.15 (0.79, 1.67) 1.13 (0.81, 1.55) 1.14 (0.79, 1.58)

Source of entry to initial

hospitalization

Emergency room 1.00 1.00 1.00 1.00

Other facility 1.58 (1.28, 1.97) 1.58 (1.28, 1.97) 1.44 (1.18, 1.75) 1.46 (1.21, 1.77)

Charlson/Deyo score

≤ 1 1.00 1.00 1.00 1.00

> 1 1.53 (1.12, 2.11) 1.53 (1.12, 2.11) 1.40 (1.02, 1.84) 1.40 (1.06, 1.86)

Procedure during hospitalization

No 1.00 1.00 1.00 1.00

Yes 0.20 (0.14, 0.28) 0.20 (0.14, 0.28) 0.27 (0.19, 0.37) 0.27 (0.19, 0.36)

Length of stay∗∗ 1.00 (0.89, 1.13) 1.01 (0.89, 1.13) 0.98 (0.88, 1.09) 0.98 (0.88, 1.08)

Care after discharge

Home 1.00 1.00 1.00 1.00

Home with care 1.44 (1.15, 1.82) 1.44 (1.13, 1.81) 1.32 (1.06, 1.63) 1.33 (1.07, 1.66)

Hospice 11.81 (5.18, 25.66) 11.6 (5.08, 24.49) 6.95 (3.49, 12.75) 6.79 (3.24, 13.28)

ICF/SNF 2.70 (1.96, 3.68) 2.69 (1.99, 3.61) 2.12 (1.59, 2.81) 2.17 (1.63, 2.87)

Other 2.92 (1.74, 4.77) 2.89 (1.74, 4.68) 2.32 (1.46, 3.65) 2.36 (1.47, 3.67)

∗ standardized so that 0 corresponds to an age of 77 years and so that one unit increment corresponds to 10 years

∗∗ standardized so that 0 corresponds to 10 days and so that one unit increment corresponds to 7 days
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Table E.5: Posterior medians (PM) and 95% credible intervals (CI) for hazard ratio param-

eters for readmission (exp(β1)) from semi-competing risks data analyses based on Markov

models.

Weibull-MVN Weibull-DPM PEM-MVN PEM-DPM

PM (95%CI) PM (95%CI) PM (95%CI) PM (95%CI)

Sex

Male 1.00 1.00 1.00 1.00

Female 0.79 (0.70, 0.91) 0.80 (0.70, 0.91) 0.85 (0.76, 0.95) 0.85 (0.76, 0.95)

Age∗ 0.90 (0.86, 0.95) 0.90 (0.86, 0.95) 0.91 (0.87, 0.94) 0.91 (0.87, 0.95)

Race

White 1.00 1.00 1.00 1.00

Non-white 1.11 (0.86, 1.45) 1.11 (0.86, 1.44) 1.12 (0.89, 1.40) 1.11 (0.89, 1.38)

Source of entry to initial

hospitalization

Emergency room 1.00 1.00 1.00 1.00

Other facility 1.18 (1.03, 1.35) 1.19 (1.03, 1.36) 1.12 (0.99, 1.26) 1.12 (0.99, 1.27)

Charlson/Deyo score

≤ 1 1.00 1.00 1.00 1.00

> 1 1.49 (1.19, 1.84) 1.50 (1.19, 1.85) 1.40 (1.15, 1.68) 1.39 (1.15, 1.68)

Procedure during hospitalization

No 1.00 1.00 1.00 1.00

Yes 0.45 (0.37, 0.53) 0.45 (0.37, 0.53) 0.57 (0.49, 0.66) 0.57 (0.48, 0.66)

Length of stay∗∗ 1.15 (1.07, 1.23) 1.15 (1.07, 1.23) 1.12 (1.05, 1.19) 1.12 (1.05, 1.19)

Care after discharge

Home 1.00 1.00 1.00 1.00

Home with care 0.95 (0.82, 1.11) 0.95 (0.82, 1.11) 0.89 (0.78, 1.02) 0.89 (0.78, 1.01)

Hospice 0.39 (0.23, 0.62) 0.38 (0.22, 0.64) 0.27 (0.16, 0.42) 0.27 (0.16, 0.43)

ICF/SNF 0.88 (0.73, 1.06) 0.88 (0.73, 1.07) 0.76 (0.63, 0.90) 0.76 (0.64, 0.90)

Other 1.05 (0.77, 1.43) 1.04 (0.77, 1.45) 0.89 (0.68, 1.18) 0.89 (0.67, 1.18)

∗ standardized so that 0 corresponds to an age of 77 years and so that one unit increment corresponds to 10 years

∗∗ standardized so that 0 corresponds to 10 days and so that one unit increment corresponds to 7 days
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E.2 Convergence diagnostics

For our proposed models, we assess the convergence of our MCMC scheme by evaluating

the potential scale reduction factor (PSRF) of Gelman et al. (2013). The potential problem

with PSRF is that it has not converged but happens to be close to 1 by chance even though

the PSRF is actually fluctuating. Therefore, for each parameter, the PSRF was calculated

at several points in time with the first half discarded as burn-in. Then, we summarize

the results using mean, maximum, and minimum value of PSRF for all model parameters

at different iterations. The results are shown in Figure E.1. As the number of MCMC

iterations increases, the mean PSRF converges toward 1 and the maximum of PSRF is less

than 1.05 indicating that all model parameters have converged well.
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Figure E.1: The mean, maximum, and minimum value of the potential scale reduction

factor (PSRF) of all model parameters from the analysis of Medicare data.
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E.3 Checking the Proportional Hazards Assumption

The proposed hierarchical models assume constant hazard ratios over time conditional on

the cluster-specific and patient-specific random effects. We can check the proportional haz-

ards assumption for our proposed models by adopting the heteroscedastic hazards regres-

sion model (Hsieh, 2001; Nikulin et al., 2006). This approach permits the shape parameters

for each of the three Weibull baseline hazard functions to depend upon covariate values.

Therefore, we consider the following semi-Markov heteroscedastic Weibull-MVN model:

h1(tji1; γji,Xji1,Zji1, Vj1) = γji α1κ1e
ZTji1β

∗
1 tα1e

ZTji1β
∗
1−1

ji1 exp{XT
ji1β

0
1 + Vj1}, tji1 > 0,

h2(tji2; γji,Xji2,Zji2, Vj2) = γji α2κ2e
ZTji2β

∗
2 tα2e

ZTji2β
∗
2−1

ji2 exp{XT
ji2β

0
2 + Vj2}, tji2 > 0,

h3(tji2|tji1; γji,Xji3,Zji3, Vj3) = γji α3κ3e
ZTji3β

∗
3 (tji2 − tji1)α3e

ZTji3β
∗
3−1 exp{XT

ji3β
0
3 + Vj3}, tji2 > tji1,

(21)

where Zjig is a vector of covariates for the ith patient in the jth hospital. Note that

when β∗g=0, this model reduces to our proposed Weibull-MVN model. Therefore, the

proportional hazards assumption can be tested under the nested Weibull-MVN model (H0:

β∗kg=0 for the kth covariate) within the model (21) (H1: β
∗
kg 6=0) while setting Xjig=Zjig.

We conducted two sets of analyses: one by including all of the covariates at the same

time (multivariable analysis) and the other by including one covariate at a time (one-

covariate analysis). We present the estimates of β∗g and β0
g from the multivariate analysis

in Table E.6 and the estimated hazard ratios over time in Figure E.2-E.4. It appears that

the proportional hazards assumption for death with and without readmission holds for

all of the covariates except whether or not the patient underwent a procedure during the

hospitalization. Interestingly, a number of covariates did exhibit non-proportionality in

their impact on the risk of readmission including source of entry and whether or not the

patient underwent a procedure during their hospitalization. We also provide the estimates

of β∗g and β0
g from one-covariate analysis in Table E.7.
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Table E.6: Posterior medians (PM) and 95% credible intervals (CI) for β∗g and β0
g from the multivariable

analysis using the heteroscedastic Weibull-MVN model.

eβ
∗
1 eβ

∗
2 eβ

∗
3 eβ

0
1 eβ

0
2 eβ

0
3

PM (95%CI) PM (95%CI) PM (95%CI) PM (95%CI) PM (95%CI) PM (95%CI)

Sex: Female 0.99 (0.91, 1.06) 1.00 (0.94, 1.07) 0.90 (0.78, 1.03) 0.82 (0.61, 1.13) 0.66 ( 0.48, 0.89) 1.12 (0.70, 1.86)

Age 0.98 (0.96, 1.01) 1.00 (0.98, 1.02) 0.99 (0.95, 1.05) 0.96 (0.86, 1.07) 1.08 ( 0.97, 1.20) 1.12 (0.93, 1.33)

Race: Non-white 1.07 (0.92, 1.24) 0.98 (0.85, 1.13) 0.96 (0.73, 1.24) 0.85 (0.43, 1.61) 1.03 ( 0.50, 1.92) 1.31 (0.52, 2.92)

Entry: Others 1.15 (1.06, 1.25) 1.04 (0.97, 1.11) 1.10 (0.96, 1.26) 0.73 (0.51, 1.03) 1.43 ( 1.03, 2.00) 1.18 (0.74, 1.89)

Deyo: > 1 1.14 (1.00, 1.28) 0.98 (0.88, 1.08) 1.11 (0.90, 1.36) 0.93 (0.53, 1.59) 1.63 ( 1.02, 2.63) 1.14 (0.51, 2.30)

Procedure: Yes 0.67 (0.60, 0.75) 0.69 (0.58, 0.81) 0.93 (0.72, 1.20) 1.78 (1.16, 2.60) 0.42 ( 0.21, 0.83) 0.25 (0.10, 0.57)

Length of stay 1.03 (0.99, 1.07) 0.99 (0.96, 1.03) 1.01 (0.94, 1.09) 1.03 (0.87, 1.20) 1.19 ( 1.01, 1.38) 0.97 (0.74, 1.25)

Discharge: Home with care 0.95 (0.86, 1.04) 1.10 (0.97, 1.21) 1.00 (0.84, 1.19) 1.21 (0.84, 1.76) 1.57 ( 0.95, 2.94) 1.48 (0.81, 2.67)

Discharge: Hospice 1.35 (1.02, 1.74) 1.05 (0.93, 1.20) 1.07 (0.69, 1.56) 0.17 (0.04, 0.54) 23.25 (13.64, 41.08) 10.95 (2.96, 35.14)

Discharge: ICF/SNF 1.12 (0.99, 1.24) 1.03 (0.91, 1.14) 1.01 (0.81, 1.27) 0.62 (0.39, 1.01) 4.90 ( 3.03, 9.25) 2.70 (1.29, 5.63)

Discharge: Other 1.14 (0.95, 1.35) 0.96 (0.80, 1.15) 1.19 (0.83, 1.67) 0.68 (0.31, 1.42) 6.00 ( 2.71, 13.24) 1.69 (0.41, 5.67)

Table E.7: Posterior medians (PM) and 95% credible intervals (CI) for β∗g and β0
g from one-covariate

analyses using the heteroscedastic Weibull-MVN model.

eβ
∗
1 eβ

∗
2 eβ

∗
3 eβ

0
1 eβ

0
2 eβ

0
3

PM (95%CI) PM (95%CI) PM (95%CI) PM (95%CI) PM (95%CI) PM (95%CI)

Sex: Female 0.98 (0.91, 1.06) 1.09 (1.02, 1.18) 0.91 (0.79, 1.05) 0.83 (0.60, 1.14) 0.63 (0.47, 0.84) 1.22 (0.76, 1.93)

Age 1.04 (1.01, 1.06) 1.06 (1.03, 1.08) 0.99 (0.94, 1.05) 0.81 (0.73, 0.90) 1.07 (0.97, 1.18) 1.23 (1.02, 1.47)

Race: Non-white 1.10 (0.94, 1.29) 1.00 (0.85, 1.15) 1.03 (0.79, 1.32) 0.88 (0.44, 1.68) 1.25 (0.68, 2.27) 1.34 (0.54, 2.99)

Entry: Others 1.37 (1.26, 1.48) 1.17 (1.09, 1.26) 1.09 (0.95, 1.26) 0.47 (0.33, 0.66) 1.72 (1.27, 2.31) 1.89 (1.17, 3.05)

Deyo: > 1 1.24 (1.08, 1.40) 1.02 (0.91, 1.14) 1.12 (0.89, 1.38) 0.76 (0.42, 1.34) 1.83 (1.17, 2.81) 1.31 (0.59, 2.72)

Procedure: Yes 0.62 (0.56, 0.68) 0.72 (0.61, 0.86) 0.97 (0.76, 1.21) 2.57 (1.80, 3.65) 0.32 (0.16, 0.57) 0.25 (0.11, 0.52)

Length of stay 0.97 (0.92, 1.01) 0.95 (0.92, 0.99) 1.00 (0.93, 1.07) 1.13 (0.95, 1.33) 1.17 (1.03, 1.33) 0.90 (0.70, 1.13)

Discharge: Home with care 0.79 (0.72, 0.86) 1.18 (1.09, 1.28) 0.97 (0.83, 1.12) 2.15 (1.54, 3.01) 0.30 (0.20, 0.44) 0.93 (0.56, 1.52)

Discharge: Hospice 1.47 (1.08, 1.90) 1.21 (1.10, 1.32) 1.16 (0.74, 1.69) 0.16 (0.04, 0.52) 8.67 (6.07, 12.32) 9.79 (2.56, 29.95)

Discharge: ICF/SNF 1.16 (1.05, 1.28) 1.17 (1.08, 1.25) 0.97 (0.81, 1.15) 0.48 (0.31, 0.74) 1.10 (0.80, 1.51) 1.64 (0.92, 2.85)

Discharge: Other 1.10 (0.91, 1.31) 0.99 (0.85, 1.15) 1.18 (0.84, 1.58) 0.72 (0.32, 1.53) 1.49 (0.80, 2.67) 0.85 (0.23, 2.55)
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Figure E.2: Pointwise posterior median and 95% CIs for the hazard ratio associated with each of the covariates for readmission

from the analysis of the New England Medicare data using the heteroscedastic Weibull-MVN model.
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Figure E.3: Pointwise posterior median and 95% CIs for the hazard ratio associated with each of the covariates for death without

readmission from the analysis of the New England Medicare data using the heteroscedastic Weibull-MVN model.
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Figure E.4: Pointwise posterior median and 95% CIs for the hazard ratio associated with each of the covariates for death

following readmission from the analysis of the New England Medicare data using the heteroscedastic Weibull-MVN model.
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