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1 MCMC steps for posterior inferences

The posterior inferences are implemented by the following MCMC steps:

S1. For each i and t, draw eit ∼ Bernoulli(p∗1) where

p∗1 =
exp

(
αi +

∑
j∼i βijejt

)
· p(yit|eit = 1, µi, σ

2
i )∑

e∗∈{0,1} exp
(
αie∗ +

∑
j∼i βij e

∗ ejt

)
· p(yit|eit = e∗, µi, σ2i )

.

S2. For each i, draw µi from its full conditional distribution,

µi ∼ N

(
σ2i θµ + τ2µ

∑
{t:eit=1} log yit

σ2i + τ2µni
,

σ2i τ
2
µ

σ2i + τ2µni

)

where ni = #{t : eit = 1}.

S3. For each i, draw σ2i from its full conditional distribution,

σ2i ∼ IG

(
aσ +

ni
2
, bσ +

∑
{t:eit=1}(log yit − µi)2

2

)

where ni = #{t : eit = 1}

S4. For each i, update αi with the Metropolis-Hastings:

1. Propose αqi from q(αqi |αi) = N(αqi ;αi, s
2
α). We set sα = 0.1.

2. Update αi = αqi with the acceptance probability

min

[
1,

{
T∏
t=1

C(α,β,G)

C(αq,β,G)

exp(αqi eit)

exp(αieit)

}
p(αqi )

p(αi)

]

where αq = (α1, . . . , αi−1, α
q
i , αi+1, . . . , αn).

S5. For each (i, j) such that E(i, j) = 1, update βij with the Metropolis-Hastings:

1. Propose βqij from the truncated normal proposal distribution bounded above zero, q(βqij |βij) =

N+(βqij ;βij , s
2
β). We set sβ = 0.1.

2. Update βij = βqij with the acceptance probability

min

[
1,

{
T∏
t=1

C(α,β,G)

C(α,βq,G)

exp(βqijeitejt)

exp(βijeitejt)

}
p(βqij |E(i, j))

p(βij |E(i, j))

q(βij |βqij)
q(βqij |βij)

]

where βq = (β12, β13, . . . , βi,j−1, β
q
ij , βi,j+1, . . . , βn−1,n−2, βn−1,n).
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S6. For a randomly chosen (i, j), update (βij ,G) by the reversible jump process:

1. Let |E| denote the number of edges in the current graphG, i.e., |E| =
∑
{(i,j):i 6=j}E(i, j).

Propose the number of edges Eq from the proposal distribution,

q(Eq | |E|) = 0.5 I [Eq = |E| − 1] + 0.5 I [Eq = |E|+ 1] .

If |E| = 0, Eq = 1 with probability 1. If |E| = |E|max, Eq = |E|max− 1 with probability

1 where |E|max denotes the maximum number of possible edges, i.e., |E|max =
(
n
2

)
.

2. Propose Gq from the proposal distribution q(Gq|G, Eq) and then βqij from the proposal

distribution q(βqij |G
q, Eq).

(a) For the case where Eq > |E|, randomly select a pair of (i, j) such that E(i, j) = 0

and let E(i, j)q = 1 with the proposal distribution

q(Gq|G, Eq) =
1

#{(i∗, j∗) : Gi∗j∗ = 0}
=

1

|E|max − |E|

while Gqi∗j∗ = Gi∗j∗ for all other (i∗, j∗). Propose βqij from q(βqij |E(i, j)q, Eq) =

Γ(βqij ; aβG , bβG). We set aβG = bβG = 1.

(b) For the case where Eq < |E|, randomly select a pair of (i, j) such that E(i, j) = 1

and let E(i, j)q = 0 with the proposal distribution

q(Gq|G, Eq) =
1

#{(i∗, j∗) : Gi∗j∗ = 1}
=

1

|E|

while Gqi∗j∗ = Gi∗j∗ for all other (i∗, j∗). Propose βqij from q(βqij |E(i, j)q, Eq) =

δ0(β
q
ij).

3. Update (βij ,G) = (βqij ,G
q) with the acceptance probability

min

[
1,

{
T∏
t=1

C(α,β,G)

C(α,βq,Gq)

exp(βqijeitejt)

exp(βijeitejt)

}
p(βqij |E(i, j)q)p(Gq)

p(βij |E(i, j))p(G)

q(βij |G, |E|)q(G|Gq, |E|)q(|E||Eq)
q(βqij |G

q, Eq)q(Gq|G, Eq)q(Eq||E|)

]

where βq = (β12, β13, . . . , βi,j−1, β
q
ij , βi,j+1, . . . , βn−1,n−2, βn−1,n) and

Gq = (G12, G13, . . . , Gi,j−1, E(i, j)q, Gi,j+1, . . . , Gn−1,n−2, Gn−1,n).

Note that p(βij |E(i, j)) = q(βij |G, |E|) when Eq > q and p(βqij |E(i, j)q) = q(βqij |G
q, Eq)

when Eq < q and, so they are cancelled out from the acceptance probability.
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2 Simulation studies: Parameter estimation performance
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(b) Comparison of true vs. estimated βij .
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(d) Comparison of true vs. estimated σi.

Figure A: Simulation studies: Parameter estimation performance. The dots represent point esti-
mates with their 95% credible intervals represented by the bars. Note that true values (x-axis)
were jittered for better visualization in (c) and (d).
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3 Simulation studies: False discovery rate control performance
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(a) Nominal FDR level vs. FDR for P1.
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(b) Nominal FDR level vs. FDR for P7.

Figure B: Simulation studies: False discovery rate control performance of graph-GPA. Phenotype
P1 (a) represents a phenotype that is highly genetically correlated with other phenotypes while
phenotype P7 (b) represents an independent phenotype. False discovery rates were well controlled
at various nominal levels in both cases.
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4 Simulation studies: Association mapping

Table A: Simulation studies (joint analysis using graph-GPA): Numbers of SNPs identified to be
associated with each pair of phenotypes by controlling the global FDR at nominal level of 10%.
Diagonal elements show the number of SNPs inferred to be associated with each phenotype when
the global FDR is controlled at the same level.

P1 P2 P3 P4 P5 P6 P7
P1 692 591 170 81 77 29 7
P2 591 1339 219 114 114 52 22
P3 170 219 285 111 93 14 3
P4 81 114 111 913 767 34 19
P5 77 114 93 767 1199 39 20
P6 29 52 14 34 39 1102 19
P7 7 22 3 19 20 19 558

Table B: Simulation studies (joint analysis using GPA): Numbers of SNPs identified to be associated
with each pair of phenotypes by controlling the global FDR at nominal level of 10%. Diagonal
elements show the number of SNPs inferred to be associated with each phenotype when the global
FDR is controlled at the same level. Note that for the diagonal elements, we show the number of
associated SNPs averaged over the pairs estimated to be correlated with each phenotype (P1 - P5)
or over all possible pairs (P6 and P7).

P1 P2 P3 P4 P5 P6 P7
P1 628 697 164 38 34 19 3
P2 697 1270 245 36 53 29 14
P3 164 245 222 99 60 8 2
P4 38 36 99 941 1084 27 15
P5 34 53 60 1084 1193 40 12
P6 19 29 8 27 40 1081 16
P7 3 14 2 15 12 16 560
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Table C: Simulation studies (separate analysis): Numbers of SNPs identified to be associated with
each pair of phenotypes by controlling the global FDR at nominal level of 10%. Diagonal elements
show the number of SNPs inferred to be associated with each phenotype when the global FDR is
controlled at the same level.

P1 P2 P3 P4 P5 P6 P7
P1 497 118 43 25 27 19 5
P2 118 1055 34 27 46 31 17
P3 43 34 187 42 26 7 12
P4 25 27 42 761 362 27 16
P5 27 46 26 362 1059 38 15
P6 19 31 7 27 38 1102 19
P7 5 17 2 16 15 19 558
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5 Simulation studies: Receiver operating characteristic curves
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(d) P4.

Figure C: Simulation studies: Receiver operating characteristic (ROC) curves for phenotypes P1
− P4.
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Figure D: Simulation studies: Receiver operating characteristic (ROC) curves for phenotypes P5
− P7.
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6 GWAS of 12 phenotypes: Evaluation of the standard normal

assumption for background SNPs

In order to confirm the appropriateness of the theoretical null distribution assumption, we imple-

mented exploratory analyses of real GWAS data. Specifically, we first determined “background

SNPs” for each GWAS data using the criterion that the local FDR of a SNP is larger than 0.50.

Then, we compared the histogram of transformed p-values for these background SNPs with N(0,1).

In addition, we also statistically evaluated the violation of theoretical null distribution assumption

using Sharpiro-Wilk test (using the R implementation shapiro.test()). These results are provided

in Figures E − G and they confirmed that there is no significant violation of the theoretical null

distribution assumption.
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Figure E: Histogram of transformed p-values for background SNPs, overlaid with standard normal
distribution, for phenotypes ADHD, ASD, BPD, and MDD.
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Figure F: Histogram of transformed p-values for background SNPs, overlaid with standard normal
distribution, for phenotypes SCZ, RA, UC, and CD.
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Figure G: Histogram of transformed p-values for background SNPs, overlaid with standard normal
distribution, for phenotypes HDL, T2D, CAD, and SBP.
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7 GWAS of 12 phenotypes: Evaluation of the log-normal assump-

tion for associated SNPs

In order to confirm the appropriateness of the log-normal distribution as the non-null distribution,

we implemented a posterior predictive checking, i.e., compared the distribution of tranformed p-

values with those simulated from the fitted graph-GPA model. These posterior predictive checking

results for real data are provided in Figures H − J. They indicate that the proposed model (i.e., a

mixture of standard normal and log-normal distributions) fits the data nicely, which confirms the

appropriateness of using log-normal distribution as the non-null distribution.
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(d) MDD.

Figure H: Posterior predictive checking results for phenotypes ADHD, ASD, BPD, and MDD.
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Figure I: Posterior predictive checking results for phenotypes SCZ, RA, UC, and CD.
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Figure J: Posterior predictive checking results for phenotypes HDL, T2D, CAD, and SBP.
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8 GWAS of 12 phenotypes: Alternative emission distribution for

associated SNPs

In order to evaluate robustness of the proposed graph-GPA model, we considered an alternative

emission distribution for associated SNPs. Specifically, we replaced the distributional assumption

of yit in (1) of the main text with

p(yit|eit, ay, byi) = eit Γ(yit; ay, byi) + (1− eit)N(yit; 0, 1),

where Γ(y; a, b) denotes the gamma density with mean a/b evaluated at y. For convenience, we

fixed ay = 2 and put the conjugate prior distribution for byi such that byi ∼ Γ(ν, υ). We put

ν = υ = 1 where the prior mean and variance of byi are one. For posterior inference, we replace

the Steps S1 − S3 of the original MCMC for the log-normal setting with the following steps:

S1. For each i and t, draw eit ∼ Bernoulli(p∗1) where

p∗1 =
exp

(
αi +

∑
j∼i βijejt

)
· p(yit|eit = 1, ay, byi)∑

e∗∈{0,1} exp
(
αie∗ +

∑
j∼i βij e

∗ ejt

)
· p(yit|eit = e∗, ay, byi)

.

S2. No update for ay.

S3. For each i, draw byi from its full conditional distribution,

byi ∼ Γ

ν + niay, υ +
∑

{t:eit=1}

yit


where ni = #{t : eit = 1}.

Table D shows the association mapping results for the case that we use Gamma density for

the emission distribution for associated SNPs. The results are similar to the case that we use

log-normal density for the emission distribution for associated SNPs and our conclusion essentially

remains the same. Moreover, we found that using Gamma density for non-null distribution rather

resulted in weaker sensitivity. Hence, we believe that this result justifies our choice of log-normal

density for the emission distribution for associated SNPs.
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Table D: GWAS of 12 phenotypes (graph-GPA analysis, when we use Gamma density for the
emission distribution for associated SNPs): Numbers of SNPs identified to be associated with each
pair of phenotypes by controlling the global FDR at nominal level of 10%. Diagonal elements
show the number of SNPs inferred to be associated with each phenotype when the global FDR is
controlled at the same level.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD 0 0 0 0 0 0 0 0 0 0 0 0
ASD 0 6 0 0 0 1 0 0 0 0 0 0
BPD 0 0 32 0 8 1 1 0 0 0 0 0
MDD 0 0 0 8 0 0 0 0 0 0 0 0
SCZ 0 0 8 0 248 44 25 22 18 1 8 6
RA 0 1 1 0 44 442 173 150 14 12 6 9
CD 0 0 1 0 25 173 1258 466 53 9 21 5
UC 0 0 0 0 22 150 466 966 58 9 21 5
HDL 0 0 0 0 18 14 53 58 526 29 49 9
T2D 0 0 0 0 1 12 11 9 29 136 16 7
CAD 0 0 0 0 8 6 16 21 49 16 160 14
SBP 0 0 0 0 6 9 7 5 9 7 14 81
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9 GWAS of 12 phenotypes: Convergence diagnostics

We check the convergence of MCMC run used in by trace plots. In Figure K, we can see that

the MCMC chain quickly moves to a stationary marginal distribution with regard to six selected

parameters: |E|, µ1, σ22, α3, β34, and β16. The patterns of µi, σ
2
i and αi are similar for all the

phenotypes i. The trace plot of β34 shows a typical pattern of trace plots for correlated pairs of

phenotypes, while the pattern in β16 shows a typical pattern of trace plots for uncorrelated pairs

of phenotypes. Note that we used the last 40,000 iterations in posterior inference by tossing out

the first 10,000 iterations as burn-in.

Figure K: Trace plots of six selected parameters for 50,000 iterations. The MCMC chain quickly
moves to a stationary marginal distribution with regard to the parameters arbitrarily selected. The
patterns of other parameters’ trace plots are similar to those in this figures.
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10 GWAS of 12 phenotypes: Model robustness to prior distribu-

tions

The proposed model is designed to use weakly informative prior distributions. In order to evaluate

the robustness of the proposd model with respect to specification of prior distributions, we checked

model sensitivity to aσ, bσ, aβ and bβ among the hyperparameters. For this purpose, we repeated

the analysis in the main text by changing these hyperparameters, while all the other parameters

were fixed as described in the main text.

Model A. Set aβ = 0.5 and bβ = 0.5, so that prior mean and variance of βij are 1 and 2.

Model B. Set aσ = 3 and bσ = 6, so that prior mean and variance of σ2 are 3 and 9. Note

that the sample ranges of logarithm-transformed values of yi are from 4.1 to 9.4 for the 12

phenotypes and the sample standard deviations are around 1.05 for all phenotypes.
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Table E: Numbers of SNPs identified from Model A by controlling the global FDR for phenotypes i
and j at nominal level of 10%. Diagonal elements show the number of SNPs identified by controlling
the global FDR for phenotype i at nominal level of 10%.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD 0 0 0 0 0 0 0 0 0 0 0 0
ASD 0 8 0 0 0 0 0 0 0 0 0 0
BPD 0 0 79 0 32 7 13 2 3 0 0 0
MDD 0 0 0 19 0 0 0 0 0 0 0 0
SCZ 0 0 32 0 413 70 59 45 38 2 18 17
RA 0 0 7 0 70 686 291 262 38 11 16 17
CD 0 0 13 0 59 291 2336 846 133 23 39 21
UC 0 0 2 0 45 262 846 1786 111 14 34 12
HDL 0 0 3 0 38 38 133 111 890 66 96 15
T2D 0 0 0 0 2 11 23 14 66 275 56 12
CAD 0 0 0 0 18 16 39 34 96 56 318 47
SBP 0 0 0 0 17 17 21 12 15 12 47 168

Table F: Numbers of SNPs identified from Model B by controlling the global FDR for phenotypes i
and j at nominal level of 10%. Diagonal elements show the number of SNPs identified by controlling
the global FDR for phenotype i at nominal level of 10%.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD 0 0 0 0 0 0 0 0 0 0 0 0
ASD 0 9 0 0 0 0 0 0 0 0 0 0
BPD 0 0 65 0 11 5 7 1 2 0 0 0
MDD 0 0 0 15 0 0 0 0 0 0 0 0
SCZ 0 0 11 0 410 70 47 41 39 0 17 14
RA 0 0 5 0 70 684 290 259 32 9 17 17
CD 0 0 7 0 47 290 2321 828 135 21 40 20
UC 0 0 1 0 41 259 828 1768 112 13 35 12
HDL 0 0 2 0 39 32 135 112 876 46 103 14
T2D 0 0 0 0 0 9 21 13 46 257 54 7
CAD 0 0 0 0 17 17 40 35 103 54 331 47
SBP 0 0 0 0 14 17 20 12 14 7 47 161
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11 GWAS of 12 phenotypes: Graph estimation

Table G: GWAS of 12 phenotypes: Estimates of p(E(i, j)|Y ). The blanked cell indicates the zero
estimated value.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD – 0.04 1.00 0.04 0.01 0.02 1.00 0.02 1.00 0.02
ASD 0.04 – 0.03 1.00 0.01 0.64 0.30 0.75
BPD 1.00 0.03 – 1.00 1.00 0.07 0.43 1.00 0.02 0.37
MDD 0.04 1.00 – 1.00 0.88 1.00
SCZ 0.01 1.00 1.00 – 1.00 1.00 1.00 1.00
RA 0.02 1.00 0.07 0.88 1.00 – 1.00 1.00 1.00 0.01 0.01
CD 1.00 0.01 0.43 1.00 1.00 – 1.00 0.41 1.00 0.21 1.00
UC 0.02 1.00 1.00 – 1.00
HDL 1.00 1.00 1.00 1.00 1.00 0.41 1.00 – 1.00 1.00 0.10
T2D 0.64 0.01 1.00 1.00 – 1.00 0.57
CAD 0.30 0.02 0.21 1.00 1.00 – 1.00
SBP 0.02 0.75 0.37 1.00 0.01 1.00 0.10 0.57 1.00 –

Table H: GWAS of 12 phenotypes: Posterior mean estimates of βij . The blanked cell indicates that
p(E(i, j)|Y ) is estimated as zero and the bold number indicates that the 95% credible interval βij
does not contain zero.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD – 0.02 2.00 0.04 0.00 0.01 1.28 0.01 1.55 0.01
ASD 0.02 – 0.02 1.70 0.01 0.53 0.30 1.07
BPD 2.00 0.02 – 1.17 1.54 0.04 0.17 0.99 0.01 0.27
MDD 0.04 1.17 – 1.33 0.80 0.99
SCZ 0.00 1.54 1.33 – 1.21 0.42 0.75 1.17
RA 0.01 1.70 0.04 0.80 1.21 – 1.90 1.44 1.20 0.00 0.00
CD 1.28 0.01 0.17 0.42 1.90 – 2.46 0.29 0.68 0.10 0.85
UC 0.01 1.44 2.46 – 1.14
HDL 1.55 0.99 0.99 0.75 1.20 0.29 1.14 – 1.82 2.21 0.06
T2D 0.53 0.00 0.68 1.82 – 1.54 0.46
CAD 0.30 0.01 0.10 2.21 1.54 – 2.82
SBP 0.01 1.07 0.27 1.17 0.00 0.85 0.06 0.46 2.82 –
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12 GWAS of 12 phenotypes: graph-GPA analysis using RA sub-

cohorts

ADHD

ASD

BPD

MDD

SCZ

RA

CD
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HDL

T2D

CAD

SBP

(a) Phenotype graph estimated using graph-GPA
based on the GWAS data with the first RA co-
hort group.

ADHD

ASD

BPD

MDD

SCZ

RA

CD

UC

HDL

T2D

CAD
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(b) Phenotype graph estimated using graph-GPA
based on the GWAS data with the second RA
cohort group.

Figure L: GWAS of 12 phenotypes: Phenotype graph estimated using the graph-GPA model for
GWAS data with two different RA cohort groups.
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Table I: Numbers of SNPs identified from the graph-GPA model applied to the GWAS data with
the first RA cohort group, by controlling the global FDR for phenotypes i and j at nominal level
of 10%. Diagonal elements show the number of SNPs identified by controlling the global FDR for
phenotype i at nominal level of 10%.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD 0 0 0 0 0 0 0 0 0 0 0 0
ASD 0 10 0 0 0 0 0 0 0 0 0 0
BPD 0 0 89 0 39 4 15 0 4 0 0 0
MDD 0 0 0 21 0 1 0 0 0 0 0 0
SCZ 0 0 39 0 420 55 64 35 44 5 19 18
RA 0 0 4 1 55 444 216 170 10 9 12 15
CD 0 0 15 0 64 216 2294 796 129 18 38 21
UC 0 0 0 0 35 170 796 1695 79 18 36 13
HDL 0 0 4 0 44 10 129 79 869 67 97 16
T2D 0 0 0 0 5 9 18 18 67 277 59 14
CAD 0 0 0 0 19 12 38 36 97 59 317 46
SBP 0 0 0 0 18 15 21 13 16 14 46 172

Table J: Numbers of SNPs identified from the separate analyses with the GWAS data with the
first RA cohort group, by controlling the global FDR for phenotypes i and j at nominal level of
10%. Diagonal elements show the number of SNPs identified by controlling the global FDR for
phenotype i at nominal level of 10%.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD 0 0 0 0 0 0 0 0 0 0 0 0
ASD 0 7 0 0 0 0 0 0 0 0 0 0
BPD 0 0 30 0 0 0 0 0 0 0 0 0
MDD 0 0 0 12 0 0 0 0 0 0 0 0
SCZ 0 0 0 0 271 1 2 0 0 0 0 0
RA 0 0 0 0 1 396 48 53 0 0 0 0
CD 0 0 0 0 2 48 1554 224 29 0 0 0
UC 0 0 0 0 0 53 224 1043 24 0 0 0
HDL 0 0 0 0 0 0 29 24 723 8 2 0
T2D 0 0 0 0 0 0 0 0 8 161 1 0
CAD 0 0 0 0 0 0 0 0 2 1 139 2
SBP 0 0 0 0 0 0 0 0 0 0 2 102
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Table K: Numbers of SNPs identified from the graph-GPA model applied to the GWAS data with
the second RA cohort group, by controlling the global FDR for phenotypes i and j at nominal level
of 10%. Diagonal elements show the number of SNPs identified by controlling the global FDR for
phenotype i at nominal level of 10%.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD 0 0 0 0 0 0 0 0 0 0 0 0
ASD 0 11 0 0 0 0 0 0 0 0 0 0
BPD 0 0 73 0 23 2 8 2 2 0 0 0
MDD 0 0 0 16 0 0 0 0 0 0 0 0
SCZ 0 0 23 0 405 51 47 55 33 6 22 20
RA 0 0 2 0 51 320 159 157 11 16 15 14
CD 0 0 8 0 47 159 2246 800 124 30 41 23
UC 0 0 2 0 55 157 800 1717 101 19 36 15
HDL 0 0 2 0 33 11 124 101 866 69 99 16
T2D 0 0 0 0 6 16 30 19 69 283 63 14
CAD 0 0 0 0 22 15 41 36 99 63 323 51
SBP 0 0 0 0 20 14 23 15 16 14 51 172

Table L: Numbers of SNPs identified from the separate analyses with the GWAS data with the
second RA cohort group, by controlling the global FDR for phenotypes i and j at nominal level
of 10%. Diagonal elements show the number of SNPs identified by controlling the global FDR for
phenotype i at nominal level of 10%.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD 0 0 0 0 0 0 0 0 0 0 0 0
ASD 0 7 0 0 0 0 0 0 0 0 0 0
BPD 0 0 30 0 0 0 0 0 0 0 0 0
MDD 0 0 0 12 0 0 0 0 0 0 0 0
SCZ 0 0 0 0 271 0 2 0 0 0 0 0
RA 0 0 0 0 0 277 37 48 0 0 0 0
CD 0 0 0 0 2 37 1555 224 29 0 0 0
UC 0 0 0 0 0 48 224 1043 24 0 0 0
HDL 0 0 0 0 0 0 29 24 723 8 2 0
T2D 0 0 0 0 0 0 0 0 8 160 1 0
CAD 0 0 0 0 0 0 0 0 2 1 139 2
SBP 0 0 0 0 0 0 0 0 0 0 2 102
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13 GWAS of 12 phenotypes: graph-GPA analysis with less strin-

gent FDR controls

Table M: GWAS of 12 phenotypes (joint analysis using graph-GPA): Numbers of SNPs identified
to be associated with each pair of phenotypes by controlling the global FDR at nominal level of
50%. Diagonal elements show the number of SNPs inferred to be associated with each phenotype
when the global FDR is controlled at the same level.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD 47 0 34 7 29 14 39 23 38 0 0 0
ASD 0 182 0 0 20 79 49 37 15 20 25 22
BPD 34 0 1595 173 609 148 286 218 298 68 93 68
MDD 7 0 173 416 260 125 143 112 162 32 55 37
SCZ 29 20 609 260 5652 445 761 577 478 152 250 215
RA 14 79 148 125 445 1985 1190 1043 318 139 119 69
CD 39 49 286 143 761 1190 18263 7560 816 481 408 269
UC 23 37 218 112 577 1043 7560 15830 822 345 328 143
HDL 38 15 298 162 478 318 816 822 3186 698 765 189
T2D 0 20 68 32 152 139 481 345 698 2573 620 200
CAD 0 25 93 55 250 119 408 328 765 620 2489 510
SBP 0 22 68 37 215 69 269 143 189 200 510 1210

Table N: GWAS of 12 phenotypes (separate analysis): Numbers of SNPs identified to be associated
with each pair of phenotypes by controlling the global FDR at nominal level of 50%. Diagonal
elements show the number of SNPs inferred to be associated with each phenotype when the global
FDR is controlled at the same level.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD 0 0 0 0 0 0 0 0 0 0 0 0
ASD 0 71 0 0 0 0 0 0 0 0 0 0
BPD 0 0 594 0 9 0 2 5 0 1 0 0
MDD 0 0 0 85 0 0 0 0 0 0 0 0
SCZ 0 0 9 0 4298 73 75 82 39 1 20 11
RA 0 0 0 0 73 1512 262 271 15 16 0 9
CD 0 0 2 0 75 262 14046 998 153 37 22 17
UC 0 0 5 0 82 271 998 11066 124 18 26 2
HDL 0 0 0 0 39 15 153 124 2293 45 52 8
T2D 0 0 1 0 1 16 37 18 45 1525 20 3
CAD 0 0 0 0 20 0 22 26 52 20 1271 13
SBP 0 0 0 0 11 9 17 2 8 3 13 831
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14 GWAS of 12 phenotypes: GPA analysis

Table O: GWAS of 12 phenotypes (joint analysis using GPA): Numbers of SNPs identified to be
associated with each pair of phenotypes by controlling the global FDR at nominal level of 10%.
Diagonal elements show the number of SNPs inferred to be associated with each phenotype when
the global FDR is controlled at the same level. Note that for the diagonal elements, we show the
number of associated SNPs averaged over the pairs estimated to be correlated with each phenotype.

ADHD ASD BPD MDD SCZ RA CD UC HDL T2D CAD SBP
ADHD 0 0 0 0 0 0 0 0 0 0 0 0
ASD 0 563 0 0 0 539 0 0 0 0 0 0
BPD 0 0 707 0 401 93 0 0 691 0 0 32
MDD 0 0 0 68 63 157 0 0 0 0 0 0
SCZ 0 0 401 63 640 545 16 18 71 0 9 25
RA 0 539 93 157 545 570 576 576 10 22 1 15
CD 0 0 0 0 16 576 2194 3037 131 12 8 6
UC 0 0 0 0 18 576 3037 1763 135 3 9 0
HDL 0 0 691 0 71 10 131 135 798 165 166 19
T2D 0 0 0 0 0 22 12 3 165 302 43 4
CAD 0 0 0 0 9 1 8 9 166 43 295 56
SBP 0 0 32 0 25 15 6 0 19 4 56 281
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15 GWAS of 12 phenotypes: GenoCanyon and GenoSkyline an-

notation of the graph-GPA analysis results
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(a) Functional importance:
Separate analysis.

●●

●

●

●

●

●

●

● ●

●

●

●

0.00

0.25

0.50

0.75

1.00

[O
ve

ra
ll]

B
lo

od

B
ra

in

B
re

as
t

E
pi

th
el

iu
m

G
I

H
ea

rt

Lu
ng

M
us

cl
e

Tissue

S
co

re

(b) Functional importance:
Joint analysis using graph-GPA.

Figure M: GeneCanyon ([overall]) and GeneSkyline scores for various tissues for the SNPs associated
with autism spectrum disorder (ASD) in a separate analysis (a) and a joint analysis using graph-
GPA (b).
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(a) Functional importance:
Separate analysis.
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(b) Functional importance:
Joint analysis using graph-GPA.

Figure N: GeneCanyon ([overall]) and GeneSkyline scores for various tissues for the SNPs associated
with major depression disorder (MDD) in a separate analysis (a) and a joint analysis using graph-
GPA (b).
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(a) Functional importance:
Separate analysis.
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(b) Functional importance:
Joint analysis using graph-GPA.

Figure O: GeneCanyon ([overall]) and GeneSkyline scores for various tissues for the SNPs associated
with schizophrenia (SCZ) in a separate analysis (a) and a joint analysis using graph-GPA (b).
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(a) Functional importance:
Separate analysis.
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(b) Functional importance:
Joint analysis using graph-GPA.

Figure P: GeneCanyon ([overall]) and GeneSkyline scores for various tissues for the SNPs associated
with rheumatoid arthritis (RA) in a separate analysis (a) and a joint analysis using graph-GPA
(b).
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(a) Functional importance:
Separate analysis.
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(b) Functional importance:
Joint analysis using graph-GPA.

Figure Q: GeneCanyon ([overall]) and GeneSkyline scores for various tissues for the SNPs associated
with high-density lipoprotein (HDL) in a separate analysis (a) and a joint analysis using graph-GPA
(b).
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(a) Functional importance:
Separate analysis.
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(b) Functional importance:
Joint analysis using graph-GPA.

Figure R: GeneCanyon ([overall]) and GeneSkyline scores for various tissues for the SNPs associated
with type 2 diabetes (T2D) in a separate analysis (a) and a joint analysis using graph-GPA (b).
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(a) Functional importance:
Separate analysis.
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(b) Functional importance:
Joint analysis using graph-GPA.

Figure S: GeneCanyon ([overall]) and GeneSkyline scores for various tissues for the SNPs associated
with coronary artery disease (CAD) in a separate analysis (a) and a joint analysis using graph-GPA
(b).
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(a) Functional importance:
Separate analysis.
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(b) Functional importance:
Joint analysis using graph-GPA.

Figure T: GeneCanyon ([overall]) and GeneSkyline scores for various tissues for the SNPs associated
with systolic blood pressure (SBP) in a separate analysis (a) and a joint analysis using graph-GPA
(b).
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16 GWAS of Bipolar Disorder: GenoSkyline annotation of the

graph-GPA analysis results for brain tissue
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Figure U: GeneSkyline scores for brain tissue for the SNPs associated with bipolar disorder (BPD).
The points of light blue color (‘Unique’) indicates the SNPs identified only by the graph-GPA
analysis, and the points of pink color (’Common’) indicates the SNPs identified in both separate
and graph-GPA analyses.
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17 Impact of overlapping subjects on the estimation of pleiotropic

architecture

We investigated the impact of overlapping subjects on the estimation of pleiotropic architecture by

extending our simulation studies. Specifically, we consider the same pleiotropic structure (G) and

the same set of associated SNPs (E) that were assumed in our simulation studies, where the first

five phenotypes (P1 − P5) are genetically correlated and there are two independent phenotypes

(P6 and P7). Then, given the specified pleiotropic architecture (G) and the specified genotype-

phenotype association status (E), we generated p-values using the classical liability threshold model.

Specifically, the minor allele frequencies (MAF) of 20,000 SNPs were drawn from U [0.05, 0.5] and

the per-minor-allele effect of each risk SNP was drawn from N(0, h2/(1 − h2)fj(1 − fj)m), where

h2 is the desired level of variance explained by all SNPs on the liability scale, fj is the MAF of

the corresponding j-th SNP, and m is the number of associated SNPs. We also simulated the

environmental effect on the liability scale for each individual from N(0, 1). The total liability for

each individual was then obtained by adding up all the genetic effects and the environmental effect.

Given a desired disease prevalence B, individuals with liabilities greater than the 1 − B quantile

were classified as cases and others were classified as controls. Then equal numbers of cases and

controls were drawn from the cohort as a GWAS data set. We assumed that h2 = 0.6, B = 0.1,

5,000 cases, and 5,000 controls. Finally, we obtained the p-value for each SNP in each disease using

a χ2-test with one degree of freedom.

In order to mimic the overlapping subject situation, we considered various proportion of controls

shared between P6 and P7 (γ). Because P6 and P7 are designed to be independent, the estimated

correlation between P6 and P7 can be considered as a pure artifact. Moreover, because P1 − P5

are designed to be genetically correlated, we can evaluate the impact of shared subjects on the

estimated pleiotropic architecture by comparing confidence about the edges between P6 and P7

with confidence about the edges among P1 − P5. Tables P − T show the association mapping

results for γ = 0, 0.25, 0.5, 0.75, 1, where γ = 0 corresponds to no overlapping subjects and γ = 1

means that all controls are shared. We can see that sharing of subjects up to γ = 0.75 (75% of

controls are shared; Table S) essentially does not generate artificial correlation between P6 and P7

in the sense that no edge was identified between P6 and P7 in the estimated phenotype graph and

no SNP was identified to be shared between these two phenotypes. We observed some artificial

correlation between P6 and P7 when all controls are shared (γ = 1; Table T). Specifically, in this

case, an edge between P6 and P7 was identified and 19 SNPs were called to be shared between these

two phenotypes. However, we note that we still identified a much smaller number of SNPs shared

between P6 and P7, compared to those shared among P1 − P5 (28 − 164 SNPs were identified to

be shared between these pairs). Moreover, when we take into account numbers of SNPs associated

with each phenotype, the proportion of SNPs shared between P6 and P7 was still significantly
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smaller than numbers of SNPs shared among P1 − P5. For example, 28 SNPs were identified to

be shared between P3 and P4 while 194 and 411 SNPs were determined to be associated with each

of P3 and P4, respectively. In contrast, only 19 SNPs were identified to be shared between P6

and P7, although 463 and 351 SNPs were determined to be associated with each of P6 and P7,

respectively. In summary, although the proposed graph-GPA model does not explicitly take into

account the issue of overlapping subjects, its estimation of pleiotropic architecture is still robust to

overlapping subjects. Moreover, even when this artificial phenotypic correlation is generated, the

confidence assigned to this correlation is still significantly lower than that assigned to the pairs of

phenotype that are truly correlated.

Table P: Numbers of SNPs identified to be associated with each pair of phenotypes for the over-
lapping subject situation simulation with γ = 0. The global FDR at nominal level of 10% is used.
Diagonal elements show the number of SNPs inferred to be associated with each phenotype when
the global FDR is controlled at the same level. The bold number indicates that the phenotypes are
correlated, i.e., p(E(i, j)|Y ) > 0.5 and p(βij > 0|Y ) > 0.95.

P1 P2 P3 P4 P5 P6 P7
P1 370 122 61 19 7 5 0
P2 122 491 53 15 9 1 0
P3 61 53 194 28 13 1 0
P4 19 15 28 411 164 6 0
P5 7 9 13 164 472 9 4
P6 5 1 1 6 9 437 0
P7 0 0 0 0 4 0 293
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Table Q: Numbers of SNPs identified to be associated with each pair of phenotypes for the overlap-
ping subject situation simulation with γ = 0.25. The global FDR at nominal level of 10% is used.
Diagonal elements show the number of SNPs inferred to be associated with each phenotype when
the global FDR is controlled at the same level. The bold number indicates that the phenotypes are
correlated, i.e., p(E(i, j)|Y ) > 0.5 and p(βij > 0|Y ) > 0.95.

P1 P2 P3 P4 P5 P6 P7
P1 370 122 60 19 7 7 0
P2 122 491 53 15 9 0 1
P3 60 53 194 28 13 0 0
P4 19 15 28 411 164 5 1
P5 7 9 13 164 471 7 4
P6 7 0 0 5 7 423 0
P7 0 1 0 1 4 0 297

Table R: Numbers of SNPs identified to be associated with each pair of phenotypes for the overlap-
ping subject situation simulation with γ = 0.5. The global FDR at nominal level of 10% is used.
Diagonal elements show the number of SNPs inferred to be associated with each phenotype when
the global FDR is controlled at the same level. The bold number indicates that the phenotypes are
correlated, i.e., p(E(i, j)|Y ) > 0.5 and p(βij > 0|Y ) > 0.95.

P1 P2 P3 P4 P5 P6 P7
P1 370 122 61 19 7 4 0
P2 122 490 53 15 9 0 0
P3 61 53 194 28 13 0 0
P4 19 15 28 411 164 3 1
P5 7 9 13 164 471 6 6
P6 4 0 0 3 6 414 0
P7 0 0 0 1 6 0 290
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Table S: Numbers of SNPs identified to be associated with each pair of phenotypes for the overlap-
ping subject situation simulation with γ = 0.75. The global FDR at nominal level of 10% is used.
Diagonal elements show the number of SNPs inferred to be associated with each phenotype when
the global FDR is controlled at the same level. The bold number indicates that the phenotypes are
correlated, i.e., p(E(i, j)|Y ) > 0.5 and p(βij > 0|Y ) > 0.95.

P1 P2 P3 P4 P5 P6 P7
P1 370 122 61 19 7 5 0
P2 122 491 53 15 9 0 0
P3 61 53 194 28 13 0 0
P4 19 15 28 411 164 6 1
P5 7 9 13 164 471 8 5
P6 5 0 0 6 8 445 0
P7 0 0 0 1 5 0 291

Table T: Numbers of SNPs identified to be associated with each pair of phenotypes for the overlap-
ping subject situation simulation with γ = 1.0. The global FDR at nominal level of 10% is used.
Diagonal elements show the number of SNPs inferred to be associated with each phenotype when
the global FDR is controlled at the same level. The bold number indicates that the phenotypes are
correlated, i.e., p(E(i, j)|Y ) > 0.5 and p(βij > 0|Y ) > 0.95.

P1 P2 P3 P4 P5 P6 P7
P1 370 122 61 19 7 5 0
P2 122 491 53 15 9 1 0
P3 61 53 194 28 13 0 0
P4 19 15 28 411 164 7 2
P5 7 9 13 164 471 9 5
P6 5 1 0 7 9 463 19
P7 0 0 0 2 5 19 351
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