Supplementary Materials for

Thioamide-directed enantioselective α-C–H arylation of amines using palladium catalysts

Pankaj Jain, PrithaVerma, Guoqin Xia, Jin-Quan Yu†

Corresponding author. Email: <u>yu200@scripps.edu</u>

This PDF file includes:

Supplementary Text Tables 1 to 5 NMR Spectra HPLC Spectra References

Table of Contents

General Information	3
Optimization of reaction conditions for pyrrolidine (Table S1-S3)	4
Optimization of reaction conditions for piperidine (Table S4)	7
Diarylation of pyrrolidine	8
Proposed stereo-models for enantioselective induction	8
Experimental section:	
Synthesis of directing group	9
Preparation of substrates	10
General procedure for enantioselective arylation	15
Removal of the directing group	42
Application towards synthesis of CERC-501	44
HPLC Spectra	46
¹ H and ¹³ C NMR Spectra	80
References	127

General Information: Solvents were obtained from Sigma-Aldrich, Alfa-Aesar and Acros and used directly without further purification. Anhydrous *t*-Amyl alcohol was obtained from sigma. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate. ¹H NMR spectra were recorded on Bruker DRX-600instrument (600 MHz). When the ¹H NMR solvent was CDCl₃, chemical shifts were quoted in parts per million (ppm) referenced to 0.00 ppm for tetramethylsilane. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = doublettriplet, q = quartet, m = multiplet, br = broad. Coupling constants, J, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on Bruker DRX-600 instrument (150 MHz), and were fully decoupled by broad band proton decoupling. When the ¹³C NMR solvent was CDCl₃ chemical shifts were reported in ppm referenced to 77.00 ppm for chloroform-d. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). Enantiomeric ratios (er) were determined on a Hitachi LaChrom Elite HPLC system using commercially available chiral columns.

Table 1: Screening of different directing groups with pyrrolidine substrate

The yields were determined by 1 H NMR analysis of the crude product using CH₂Br₂ as an internal standard. Enantiomeric ratios (er) were determined by chiral high-performance liquid chromatography. N.R., no reaction. N.D., not determined.

 Table 2: Initial screening of different BINOL-derived phosphoric acids with

 pyrrolidine substrate

The yields were determined by 1 H NMR analysis of the crude product using CH₂Br₂ as an internal standard. Enantiomeric ratios (er) were determined by chiral high-performance liquid chromatography.

The use of thiophosphoric acid and dithiophoshoric acid as ligands under the reaction conditions show no product formation.

Table 3: Screening of different palladium sources with pyrrolidine substrate:

The yields were determined by ¹H NMR analysis of the crude product using CH_2Br_2 as an internal standard. Enantiomeric ratios (er) were determined by chiral high-performance liquid chromatography.

Note: When the palladium loading was reduced to 10 mol % (with $Pd_2(dba)_3$) the er dropped from 98:2 to 96:4. However, carrying out the reaction under nitrogen and increasing the reaction concentration from 0.05 M to 0.2 M enabled the formation of product with 98:2 er.

 Table 4: Initial screening of different Binol-derived phosphoric acids with piperidine substrate

The yields were determined by ¹H NMR analysis of the crude product using CH_2Br_2 as an internal standard. Enantiomeric ratios (er) were determined by chiral high-performance liquid chromatography.

Increasing the reaction concentration from 0.05 M to 0.2 M enabled the formation of product with 95.5:4.5 er with similar yields.

Table 5: Diarylation of Pyrrolidine

To test if the diarylation reaction is substrate-controlled or catalyst-controlled, we used (R)-phenylpyrrolidine as the substrate and tested three different ligand systems: (R)-PA2, (S)-PA2 and the racemic BINOL phosphoric acid. The less hindered BINOL-PA shows high conversion, where as the (R)-PA2 gave 35% conversion. Interesting the (S)-PA2 gave less than 5% conversion. In all the cases only trans-product was obtained. Based on these results the stereochemistry of the second arylation is controlled by the substrate, however the catalyst geometry needs to match the substrate for it to be able to carry out the transformation. These results also show that kinetic resolution of racemic amines could be possible with chiral phosphoric acids.

Proposed stereo-models for enantioselective induction

Experimental Section

Ligand Synthesis:

Chiral phosphoric acids were synthesized from known literature procedures¹⁻³ or obtained from commercial sources. The final step involving phosphorylation in all cases was carried out following Akiyama's procedure². (S)-**PA2** was obtained from Sigma Aldrich (CAS-361342-52-1).

Directing group: Synthesis of 2,4,6-triisopropylbenzothioyl chloride. $\stackrel{i Pr}{ + \downarrow \downarrow} \stackrel{i Pr}{ + \downarrow \downarrow} \frac{1.Mg, BrCH_2CH_2Br}{2.CS_2, THF 0.5^{\circ}C} \stackrel{i Pr}{ + \downarrow \downarrow} \stackrel{i Pr}{ + \downarrow \downarrow} \stackrel{i Pr}{ + \downarrow \downarrow} \stackrel{SOCl_2}{ - CH_2Cl_2} \stackrel{i Pr}{ + \downarrow \downarrow} \stackrel$

Synthesis of 2,4,6-triisopropylbenzodithioic acid.

The Grignard was synthesized using literature procedure⁴: 4.5 g (185 mmol) of Magnesium was added to a three neck round-bottom flask (flask 1) equipped with a addition funnel and reflux condenser. Then in a different flask (flask 2) 30 g of 2,4,6-triisopropylphenyl bromide (106 mmol) and 70 ml of ether were added. 10-15 ml of this solution from flask 2 was added to the flask 1. Then 0.2 ml of 1,2-dibromoethane was added to flask 1 and was heated to 40-45 °C. In about 10 min the magnesium was observed to be reacting, at this point remaining solution from flask 2 was added dropwise via the addition funnel. Once the addition was complete the reaction mixture was refluxed for 16 hrs.

Next day, 20 ml carbon disulfide and 20 ml of THF were taken in a round bottom flask under a nitrogen balloon and cooled to -5 to -10 °C. Then, the Grignard solution was added drop wise to the flask. After the addition was complete the solution was warmed to

room temperature and refluxed at 60 °C for 16 hrs. The resulting solution was quenched with 1M HCl and the organic layer separated. The aqueous layer was washed with ethyl acetate and the organic layers were combined. Then the solvent was removed on high vacuum and the residue was washed with cold hexanes giving the pure product in 76% yield (22.6 g) as pink solid. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (s, 2H), 6.74 (s, 1H), 3.27 (hept, J = 6.8 Hz, 2H), 2.88 (hept, J = 6.8 Hz, 1H), 1.38-1.10 (m, 18H). ¹³C NMR (150 MHz, CDCl₃) δ 149.43, 143.76, 142.19, 121.38, 34.24, 30.42, 24.75, 24.32, 23.92. HRMS (ESI-TOF) Calcd for C₁₆H₂₄ClS [M+H]⁺: 281.1392; found: 281.1394.

Synthesis of 2,4,6-triisopropylbenzothioyl chloride

In a round bottom flask containing 10 ml of thionyl chloride and 30 ml of dichloromethane, 2,4,6-triisopropylbenzodithioic acid (10 g, 35 mmol) was added at once and the resulting solution was heated at 45 °C for 12 hrs. Then the solvent was removed on high vacuum and the residue was washed with cold hexanes giving the pure product in 91 % yield (9.1 g) as red solid. ¹H NMR (400 MHz, CDCl₃) δ 7.00 (s, 2H), 3.20 (hept, *J* = 6.8 Hz, 2H), 2.89 (hept, *J* = 6.9 Hz, 1H), 1.31 (d, *J* = 6.8 Hz, 6H), 1.24 (s, 6H), 1.19 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 212.69, 149.94, 143.94, 142.48, 121.26, 34.30, 30.77, 24.31, 23.87.

Substrate Preparation: Installation of the directing group

General procedure for the preparation of thioamides: The amine (4 mmol) and triethylamine (12 mmol, 1.67 ml) were added to 50-ml dichloromethane in a round bottom flask and stirred for 5 min. Then the temperature was reduced to 0 $^{\circ}$ C and the 2,4,6-triisopropylbenzothioyl chloride (4 mmol, 1.13 g) was added in portions over 1 min. After the addition was complete the mixture was stirred at room temperature for 1-4 hours. Then the organic layer was washed with saturated NaHCO₃ solution. The organic

solvent was evaporated and the residue was purified on silica gel choromatography with ethyl acetate and hexanes (1:100 to 1:20) as the solvent.

Note: For non-symmetric amines the product sometimes appear as two spots on TLC due the restricted C-N thioamide bond rotation.

Pyrrolidin-1-yl(2,4,6-triisopropylphenyl)methanethione (1a)

Following the general procedure for the preparation of thioamides, the title compound was obtained in 92% yield (1.16 g) as a colorless solid.¹H NMR (600 MHz, CDCl₃): δ 6.97 (s, 2H), 4.00 (t, *J* = 7.3 Hz, 2H), 3.23 (t, *J* = 6.8 Hz, 2H), 2.90-2.79 (m, 3H), 2.09 (m, 2H), 1.94 (m, 2H), 1.25 (d, *J* = 6.8 Hz, 6H), 1.23 (d, *J* = 6.9 Hz, 6H), 1.20 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 197.52, 148.53, 141.84, 138.63, 121.46, 52.90, 51.86, 34.20, 30.66, 26.10, 25.04, 24.63, 23.99, 23.57. HRMS (ESI-TOF) Calcd for C₂₀H₃₂NS [M+H]⁺: 318.2250; found:318.2246.

Piperdin-1-yl(2,4,6-triisopropylphenyl)methanethione (1b)

Following the general procedure for the preparation of thioamides, the title compound was obtained in 83% yield (1.1 g) as a colorless solid. ¹H NMR (600 MHz, CDCl₃): δ 6.95 (s, 2H), 4.45-4.39 (m, 2H), 3.43-3.39 (m, 2H), 2.84 (hept, *J* = 6.9 Hz, 3H), 1.83-1.77 (m, 2H), 1.74-1.68 (m, 2H), 1.57-1.51 (m, 2H), 1.26 (d, *J* = 6.7 Hz, 6H), 1.23 (d, *J* = 6.9 Hz, 6H), 1.19 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 199.32, 148.27, 141.99, 137.28, 121.44, 51.99, 48.93, 34.15, 30.66, 26.25, 25.52, 25.11, 24.09, 23.99, 23.66. HRMS (ESI-TOF) Calcd for C₂₁H₃₄NS [M+H]⁺: 332.2406; found: 332.2400.

Azepan-1-yl(2,4,6-triisopropylphenyl)methanethione (1c)

Following the general procedure for the preparation of thioamides, the title compound was obtained in 86% (1.18 g) yield as a colorless solid. ¹H NMR (600 MHz, CDCl₃) δ 6.95 (s, 2H), 4.30-4.25 (m, 2H), 3.49-3.45 (m, 2H), 2.89-2.76 (m, 3H), 2.02-1.95 (m, 2H), 1.74-1.64 (m, 4H), 1.62-1.57 (m, 2H), 1.26 (d, *J* = 6.7 Hz, 6H), 1.23 (d, *J* = 6.9 Hz, 6H), 1.21 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 200.39, 148.26, 141.90, 137.77, 121.48, 53.62, 51.90, 34.14, 30.73, 28.64, 28.34, 26.28, 26.11, 25.26, 23.98, 23.51. HRMS (ESI-TOF) Calcd for C₂₂H₃₆NS [M+H]⁺: 346.2563; found: 346.2564.

Azetidin-1-yl(2,4,6-triisopropylphenyl)methanethione (1d)

Following the general procedure for the preparation of thioamides, the title compound was obtained in 90% yield (1.09 g) as a colorless solid. ¹H NMR (600 MHz, CDCl₃) δ 6.97 (s, 2H), 4.41 (t, *J* = 8.0 Hz, 2H), 3.84 (t, *J* = 7.7 Hz, 2H), 2.94 (hept, *J* = 6.8 Hz, 2H), 2.86 (hept, *J* = 6.9 Hz, 1H), 2.36-2.26 (m, 2H), 1.26-1.20 (m, 18H). ¹³C NMR (150 MHz, CDCl₃) δ 198.70, 148.99, 143.00, 134.53, 121.34, 54.10, 52.85, 34.22, 30.68, 25.13, 23.95, 23.86, 14.08. HRMS (ESI-TOF) Calcd for C₁₉H₃₀NS [M+H]⁺: 304.2093; found: 304.2097.

(3,3-dimethylpyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (1e)

Following the general procedure for the preparation of thioamides, the title compound was obtained in 88% yield (1.20 g) as a colorless solid. ¹H NMR (600 MHz, CDCl₃) (57:43 mixture of rotamers, peaks corresponding to minor rotamer starred): δ 6.98-6.96 (m, 2H), 4.05 (t, *J* = 7.4 Hz, 1.14H), 3.80 (s, 0.86H)*, 3.29 (t, *J* = 7.2 Hz, 0.86H)*, 2.99 (s, 1.14H), 2.90-2.76 (m, 3H), 1.87 (t, *J* = 7.4 Hz, 1.14H), 1.77 (t, *J* = 7.2 Hz, 0.86H)*, 1.32-1.19 (m, 18H), 1.17 (s, 2.58H)*, 1.07 (s, 3.42H). ¹³C NMR (150 MHz, CDCl₃) δ 197.95*, 197.75, 148.48*, 148.46, 141.79, 141.72*, 138.35, 138.18*, 121.36, 64.82, 64.37*, 51.69*, 51.11, 39.42, 38.99, 38.13, 37.40, 34.11*, 34.07, 30.67, 30.63*, 26.19, 25.53, 25.21, 25.08, 23.92, 23.90, 23.41. HRMS (ESI-TOF) Calcd for C₂₂H₃₆NS [M+H]⁺: 346.2563; found: 346.2563.

Indolin-1-yl(2,4,6-triisopropylphenyl)methanethione (1f)

Following the general procedure for the preparation of thioamides, the title compound was obtained in 82% yield (1.19 g). ¹H NMR (600 MHz, CDCl₃) δ 7.21 (d, *J* = 7.5 Hz, 1H), 7.00 (s, 2H), 6.93 (t, *J* = 7.8 Hz, 1H), 6.75 (t, *J* = 7.9 Hz, 1H), 5.58 (d, *J* = 6 Hz, 1H), 4.75-4.68 (m, 2H), 3.21 (t, 2H), 2.98-2.85 (m, 3H), 1.32-1.18 (m, 12H), 0.93 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 196.55, 149.33, 142.39, 142.13, 138.06, 135.03, 127.03, 125.73, 124.68, 121.80, 116.73, 54.39, 34.21, 30.65, 26.04, 24.67, 24.02, 23.27. HRMS (ESI-TOF) Calcd for C₂₄H₃₂NS [M+H]⁺: 366.2250; found: 366.2250.

(3,4-dihydroisoquinolin-2(1H)-yl)(2,4,6-triisopropylphenyl)methanethione (1g)

Following the general procedure for the preparation of thioamides, the title compound was obtained in 85% yield (1.28 g). ¹H NMR (600 MHz, CDCl₃) (93:7 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.35-7.29 (m, 0.14H)*, 7.28-7.22 (m, 1.86H), 7.20-7.14 (m, 1H), 7.04 (s, 0.14H)*, 7.01 (s, 1.86), 6.94-6.89 (m, 0.93H), 4.64-4.59 (m, 1.86H), 4.56 (s, 1.86H), 3.77-3.67 (m, 0.14H)*, 3.15 (t, *J* = 6.1 Hz, 1.86H), 2.95-2.77 (m, 3.14H), 1.31-1.21 (m, 12.42H), 1.04 (d, *J* = 6.9 Hz, 5.58H). ¹³C NMR (150 MHz, CDCl₃) δ 200.27, 199.83, 148.63, 142.41, 142.20, 137.22, 137.20, 134.67, 133.42, 132.27, 132.07, 128.50, 128.11, 127.35, 126.52, 125.87, 121.54, 52.84, 51.01, 48.74, 47.13, 34.16, 30.77, 30.55, 29.38, 28.02, 25.00, 24.84, 23.96, 23.60, 23.47. HRMS (ESI-TOF) Calcd for C₂₅H₃₄NS [M+H]⁺: 380.2406; found: 380.2399.

N,N-diethyl-2,4,6-triisopropylbenzothioamide (1h) Following the general procedure for the preparation of thioamides, the title compound was obtained in 82% yield (1.04 g). ¹H NMR (600 MHz, CDCl₃) δ 6.95 (s, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.40 (q, *J* = 7.2 Hz, 2H), 2.89-2.78 (m, 3H), 1.40 (t, *J* = 7.1 Hz, 3H), 1.26 (d, *J* = 6.7 Hz, 6H), 1.23 (d, *J* = 6.9 Hz, 6H), 1.20 (d, *J* = 6.9 Hz, 6H), 1.14 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 199.87, 148.28, 142.01, 137.41, 121.41, 46.97, 44.26, 34.15, 30.50, 25.25, 23.99, 23.35, 12.99, 10.76. HRMS (ESI-TOF) Calcd for C₂₀H₃₄NS [M+H]⁺: 320.2406; found: 320.2406.

N-Butyl-N-ethyl-2,4,6-triisopropylbenzothioamide (1i)

Following the general procedure for the preparation of thioamides, the title compound was obtained in 79% yield (1.09 g). ¹H NMR (600 MHz, CDCl₃) (84:16 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 6.95-6.93 (m, 2H), 4.21 (q, J = 7.1 Hz, 1.84H), 4.13-4.09 (m, 0.16H)*, 3.43-3.37 (m, 0.16H)*, 3.27-3.21 (m, 1.84H), 2.89-2.76 (m, 3H),1.88-1.82 (m 0.16H)*, 1.54-1.47 (m, 2.08H), 1.47-1.42 (m, 0.16H)*, 1.39 (t, J = 7.1 Hz, 2.76H), 1.28-1.18 (m, 18H), 1.16-1.08 (m, 2H), 1.02 (t, J = 7.4 Hz, 0.24H)*, 0.77 (t, J = 7.4 Hz, 2.76H). ¹³C NMR (150 MHz, CDCl₃) δ 199.90, 148.34, 141.99, 137.32, (121.42), 121.33, 77.21, 77.00, 76.79, 52.39, 49.46*, 47.45*, 45.19, 34.18, 30.53, 29.76, 27.35*, 25.38, 25.25*, 24.00, 23.37*, 23.22, 20.44, 20.10, 13.79*, 13.44, 12.97*, 10.75. HRMS (ESI-TOF) Calcd for C₂₂H₃₈NS [M+H]⁺: 348.2719; found: 348.2719.

General Procedure for enantioselective arylation: To a reaction vial with a magnetic stir bar was added the thioamide (0.2 mmol, 1.0 eq), potassium bicarbonate (40 mg, 0.4 mmol, 2.0 eq), arylboronic acid (0.4 mmol, 2.0 equiv. unless otherwise noted), 1,4-benzoquinone (23.8 mg, 0.2 mmol, 1.1 equiv., unless otherwise noted), chiral phosphoric acid (0.024 mmol, 0.12 eq) Tris(dibenzylideneacetone)dipalladium(0) (9.15 mg, 0.01 mmol, 0.05 eq). Then the reaction tube was connected to vacuum and backfilled with nitrogen three times. Then 1 ml of anhydrous 2-methyl-2-butanol was added and stirred rapidly at 65 °C for 16 hours. The reaction was then cooled to room temperature and the mixture was passed through a pad of celite. After the celite was washed with ethyl acetate, the combined organic layers were concentrated under vacuum. The crude residue was purified by preparative TLC with ethyl acetate and hexanes (1:20) as eluent.

Note: The products usually appear as two spots due to the restricted C-N thioamide bond rotation.

Following the general procedure for the enantioselective arylation, the title compound was obtained in 84% yield (66 mg). The er value was determined by HPLC analysis on a Chiralcel OD-H column (5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 7.87$ min (minor), 8.63 min (major): 98:2 er.

¹H NMR (600 MHz, CDCl₃) (60:40 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.38-7.34 (m, 0.8H)*, 7.29-7.25 (m, 1.2H), 7.23-7.16 (m, 1.8H), 6.99-6.97 (m, 0.8H)*, 6.96 (d, *J* = 1.7 Hz, 0.6H), 6.87-6.83 (m, 1.2H), 6.68 (d, *J* = 1.7 Hz, 0.6H), 5.90 (dd, *J* = 8.4, 3.5 Hz, 0.4H)*, 4.86 (d, *J* = 6.7 Hz, 0.6H), 4.33-4.22 (m, 1.2H), 3.57-3.46 (m, 0.8H)*, 2.96 (hept, *J* = 6.8 Hz, 0.4H)*, 2.92-2.83 (m, 0.8H)*, 2.79 (h, *J* = 6.9 Hz, 0.6H), 2.65 (hept, *J* = 6.8 Hz, 0.6H), 2.53-2.44 (m, 1H), 2.28-2.01 (m, 2.6H), 1.97-1.89 (m, 0.4H)*, 1.85-1.78 (m, 0.6H), 1.33 (d, *J* = 6.9 Hz, 1.8H), 1.30 (d, *J* = 7.0 Hz, 1.2H)*, 1.28-1.25 (m, 2.6H), 1.25-1.22 (m, 4H), 1.20-1.17 (m, 3.6H), 1.14 (d, *J* = 6.7 Hz, 1.2H)*, 1.10 (d, *J* = 6.7 Hz, 1.8H), 0.10 (d, *J* = 6.8 Hz, 1.8H). ¹³C NMR (150 MHz, CDCl₃) δ 199.74, 199.17*, 148.55*, 148.51, 143.61, 142.57, 142.01, 141.33, 141.27*, 141.08, 138.53*, 137.96, 128.54, 128.45*, 127.27, 127.02*, 126.08*, 125.58, 121.66*, 121.41, 120.77, 66.79, 66.03*, 53.98*, 53.20, 34.82, 34.56*, 34.19*, 34.12, 31.32, 30.82*, 30.57, 30.13*, 25.71, 25.62, 25.26, 24.62, 24.01*, 23.98, 23.92, 23.78*, 23.29*, 23.19, 21.45, 21.36. HRMS (ESI-TOF) Calcd for C₂₆H₃₆NS [M+H]⁺: 394.2563; found: 394.2556.

The absolute stereochemistry was assigned by comparison of the HPLC data with the commercially available (*R*)-2-phenyl pyrrolidine (CAS: 56523-47-8 from Astatech) after installation of the directing group. The HPLC data was also compared after removal of the directing group from 2a followed by Boc protection with the commercial material.

(*R*)-(2-phenylpiperidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (2b)

Following the general procedure for the enantioselective arylation with 3 equiv. of phenyl boronic acid, 5 equiv. of 1,4-BQ at 85°C, the title compound was obtained in 62% yield (50.4 mg). The er value was determined by HPLC analysis on a Chiralcel AD-H column (5% isopropanol in hexanes, 0.5 mL/min) with t_r = 11.52 min (major), 18.613 min (minor): 95.5:4.5 er. ¹H MR (600 MHz, CDCl₃) δ 7.48-7.44 (m, 2H), 7.44-7.37 (m, 3H), 7.32-7.28 (m, 1H), 6.99 (dd, *J* = 15.5, 1.6 Hz, 2H), 3.74 (d, *J* = 12.9 Hz, 1H), 3.14-2.98 (m, 3H), 2.87 (p, *J* = 6.9 Hz, 1H), 2.57 (dd, *J* = 14.6, 2.8 Hz, 1H), 1.85-1.71 (m, 2H), 1.57-1.50 (m, 2H), 1.37-1.17 (m, 16H), 1.14 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 201.04, 148.39, 142.26, 141.96, 137.98, 137.10, 128.72, 127.10, 126.94, 121.62, 57.23, 47.71, 34.14, 30.83, 30.62, 27.36, 26.08, 25.80, 24.55, 23.98, 23.64, 23.49, 19.24. HRMS (ESI-TOF) Calcd for C₂₇H₃₈NS [M+H]⁺: 408.2719; found: 408.2719.

(*R*)-(2-phenylazepan-1-yl)(2,4,6-triisopropylphenyl)methanethione (2c)

Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-BQ, the title compound was obtained in 54% yield (45.4 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 17.58$ min (minor), 18.63 min and 19.62 min(major): 98.5:1.5 er. ¹H NMR (600 MHz, CDCl₃) (88:12 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.46-7.43 (m, 1.76H), 7.37-7.33 (m, 1.76H), 7.29-7.25 (m, 0.88H), 7.22-7.14 (m, 0.36H)*, 6.97 (dd, J = 1.8, 0.5 Hz, 0.88H), 6.96 (d, J = 1.4 Hz, 0.12H)*, 6.89 (dd, J = 1.8, 0.5 Hz, 0.88H), 6.82-6.79 (m, 0.24H)*,

6.68 (d, J = 1.7 Hz, 0.12H)*, 6.65 (dd, J = 11.5, 5.6 Hz, 0.88H), 5.57 (dd, J = 13.0, 5.2 Hz, 0.12H)*, 4.83 (dd, J = 11.6, 6.0 Hz, 0.12H)*, 3.92 (ddd, J = 14.1, 5.1, 3.1 Hz, 0.88H), 3.72-3.65 (m, 0.12H)*, 3.58 (ddd, J = 14.1, 11.1, 2.2 Hz, 0.88H), 3.04 (hept, J = 6.7 Hz, 0.88H), 2.93 (hept, J = 7.0 Hz, 0.12H)*, 2.89-2.79 (m, 1.00H), 2.45 (hept, J = 6.8 Hz, 0.88H), 2.41-2.31 (m, 1.00H), 2.18-2.10 (m, 0.12H)*, 2.06-1.90 (m, 2.12H), 1.87-1.80 (m, 0.88H), 1.62-1.48 (m, 3.12H), 1.46-1.37 (m, 1.00H), 1.36 (d, J = 6.9 Hz, 0.36H)*, 1.31 (dd, J = 6.8, 1.5 Hz, 5.28H), 1.29 (d, J = 6.7 Hz, 0.36H)*, 1.23 (d, J = 6.9 Hz, 0.36H)*, 1.21 (dd, J = 6.9, 1.6 Hz, 0.72H)*, 1.13 (d, J = 6.9 Hz, 2.64H), 1.05 (d, J = 6.7 Hz, 0.36H)*, 0.95 (d, J = 6.7 Hz, 2.64H), 0.02 (d, J = 6.7 Hz, 0.36H)*. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 202.5*, 202.4, 148.4*, 148.2, 143.1*, 142.3, 142.1*, 141.8, 141.5, 141.2*, 137.6, 136.9*, 128.7*, 128.1, 127.1*, 127.1, 125.5*, 121.7, 121.5*, 121.3, 120.7*,66.6*, 64.4, 50.2, 50.2*, 39.3*, 35.8, 34.1*, 34.1, 31.6, 31.3*, 30.5*, 29.7, 29.6*, 28.6, 27.0*, 26.0, 25.9*, 25.9, 25.7*, 25.4*, 24.8, 24.1*, 24.0, 23.9, 23.3*, 22.9, 22.8, 20.8*. HRMS (ESI-TOF) Calcd for C₂₈H₄₀NS [M+H]⁺: 422.2876; found: 422.2882.

(R)-(2-phenylazetidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (2d_{mono})

Following the general procedure for the enantioselective arylation, the title compound was obtained in 40% yield (30.3 mg). The er value was determined by HPLC analysis on a Chiralcel OD-H column (5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 8.813$ min (minor), 9.253 min (major): 98:2 er. ¹H NMR (600 MHz, CDCl₃) (69:31 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.47-7.39 (m, 1.31H), 7.35-7.31 (m, 0.31H)*, 7.19-7.10 (m, 2.07H), 7.00-6.97 (m, 1.31H), 6.80-6.77 (m, 1.31H), 6.59 (d, *J* = 1.6 Hz, 0.69H), 5.78-5.71 (m, 0.31H)*, 4.96-4.90 (m, 0.69H), 4.58-4.48 (m, 1.31H), 4.10-4.03 (m, 0.31H)*, 3.95-3.87 (m, 0.31H)*, 3.11-2.95 (m, 0.62H), 2.90-2.70 (m, 2.71H), 2.50-2.36 (m, 1.38H), 2.27-2.19 (m, 0.31H)*, 1.46 (d, *J* = 6.9 Hz, 2.07H),

1.34-1.16 (m, 11.79H), 1.07 (d, J = 6.7 Hz, 2.07H), 0.18 (d, J = 6.8 Hz, 2.07H). ¹³C NMR (150 MHz, CDCl₃) δ 200.38, 199.93*, 149.20, 148.99, 144.41, 143.16*, 142.85*, 141.86, 139.74*, 138.18, 134.91*, 134.49, 128.67*, 128.56, 128.40, 127.88*, 127.41, 126.51, 121.45*, 121.32*, 120.98, 120.41, 69.31, 68.49*, 53.34*, 51.65, 34.32, 34.23*, 31.06, 30.94*, 30.70, 30.30*, 30.17*, 29.68*, 26.04, 25.43*, 24.79*, 24.54*, 24.51*, 24.23, 23.98, 23.96, 23.51, 23.45*, 23.10, 21.13. HRMS (ESI-TOF) Calcd for C₂₅H₃₄NS [M+H]⁺: 380.2406; found: 380.2398.

((2*R*,4*R*)-2,4-diphenylazetidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (2d_{di}) Following the general procedure for the enantioselective arylation, the title compound was obtained in 13% yield (11.8 mg). The er value was determined by HPLC analysis on a Chiralcel OD-H column (5% isopropanol in hexanes, 0.5 mL/min) with t_r = 10.63 min (minor), 12.31 min (major): 98:2 er. ¹H NMR (600 MHz, CDCl₃) δ 7.63-7.60 (m, 2H), 7.47-7.42 (m, 2H), 7.38-7.33 (m, 1H), 7.20-7.12 (m, 3H), 6.95 (d, *J* = 1.6 Hz, 1H), 6.90-6.86 (m, 2H), 6.53 (d, *J* = 1.6 Hz, 1H), 3.07 (hept, *J* = 6.8 Hz, 1H), 3.00-2.93 (m, 1H), 2.84-2.74 (m, 2H), 2.46 (hept, *J* = 6.8 Hz, 1H).1.56 (d, *J* = 7.0 Hz, 6H), 1.22-1.15 (m, 6H), 1.07 (d, *J* = 6.7 Hz, 3H), 1.03 (d, *J* = 6.7 Hz, 3H), 0.22 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 199.05, 149.13, 144.94, 142.05, 138.87, 138.44, 134.63, 128.62, 128.48, 128.40, 128.23, 128.12, 127.82, 121.05, 120.35, 68.85, 67.32, 34.32, 33.91, 30.83, 29.85, 26.56, 25.63, 24.25, 23.99, 23.22, 21.40. HRMS (ESI-TOF) Calcd for C₃₁H₃₈NS [M+H]⁺: 456.2719; found: 456.2710.

(*R*)-(4,4-dimethyl-2-phenylpyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (2e)

Following the general procedure for the enantioselective arylation, the title compound was obtained in 78% yield (65.6 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (1% isopropanol in hexanes, 0.5 mL/min) with $t_r = 25.10 \text{ min}$ (minor), 49.86 min (major): 95.5:4.5 er.¹H NMR (600 MHz, CDCl₃) (77:23 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.37-7.30 (m, 3.08H), 7.27-7.23 (m, 0.77H), 7.11-7.06 (m, 0.69H), 6.98-6.96 (m, 1H), 6.95-6.91 (m, 0.77H), 6.66-6.63 (m, 0.46H)*, 6.55 (d, J = 1.7 Hz, 0.23H)*, 5.61 (t, J = 1.7 Hz, 0.23H) 9.0 Hz, 0.77H), 5.07 (dd, J = 13.3, 1.6 Hz, 0.23H)*, 4.70 (t, J = 8.3 Hz, 0.23H)*, 3.73 (d, $J = 13.3 \text{ Hz}, 0.23 \text{H}^{*}, 3.47 \text{ (dd}, J = 11.8, 1.8 \text{ Hz}, 0.77 \text{H}), 3.34 \text{ (d}, J = 11.9 \text{ Hz}, 0.77 \text{H}),$ 3.04-2.73 (m, 2.77H), 2.44-2.30 (m, 1H), 2.29-2.21 (m, 0.23H)*, 2.01-1.92 (m, 1H), 1.43 $(d, J = 6.9 \text{ Hz}, 0.69 \text{H})^*$, 1.31-1.18 (m, 15H), 1.17 (s, 2.31H), 1.12-1.08 (m, 3H) 1.01 (d, J) = 6.7 Hz, 2.31H), 0.17 (d, J = 6.7 Hz, 0.69H)*. ¹³C NMR (150 MHz, CDCl₃) δ 200.36*, 199.08, 148.74*, 148.45, 144.46*, 142.76, 142.64, 142.37*, 141.75, 140.50*, 138.63, 137.23*, 128.51*, 128.18, 127.20*, 127.15, 126.91, 126.60*, 121.52, 121.12*, 120.43*, 67.04, 66.60*, 66.52*, 66.08, 52.17*, 50.81, 37.83, 36.68*, 34.25*, 34.13, 31.06, 30.79*, 29.63, 27.58*, 27.27*, 26.32*, 25.88, 25.78, 25.68, 24.56, 24.20*, 23.97, 23.45, 22.99*, 21.39*. HRMS (ESI-TOF) Calcd for C₂₈H₄₀NS [M+H]⁺: 422.2876; found: 422.2872.

(R)-(2-phenylindolin-1-yl)(2,4,6-triisopropylphenyl)methanethione (2f)

Following the general procedure for the enantioselective arylation, the title compound was obtained in 86% yield (75.8 mg). The er value was determined by HPLC analysis with two columns, onChiralcelOD-H column and chiralcel IC column attached one after the other (1% isopropanol in hexanes, 0.5 mL/min) with $t_r = 19.33$ min (minor), 19.98 min (major): er. ¹H NMR (400 MHz, CDCl₃) (92:8 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.33-7.15 (m, 6H), 7.08-6.92 (m, 3H), 6.81 (t, J = 7.9 Hz, 0.92H), 6.74 (dd, J = 9.8, 1.8 Hz, 1H), 6.62-6.57 (m, 0.08H)*, 5.64 (d, J = 8.4 Hz, 0.92H), 5.58 (d, J = 8.4 Hz, 0.08H)*, 4.76-4.69 (m, 0.16H)*, 3.78 (dd, J = 16.2, 9.7 Hz, 0.92H), 3.25-3.18 (m, 0.16H)*, 3.04-2.70 (m, 4H), 1.31-1.06 (m, 15.24H), 0.68 (d, J = 6.9 Hz, 2.76H). ¹³C NMR (100 MHz, CDCl₃) δ 197.95, 149.47, 143.90, 143.03, 141.58, 141.35, 137.83, 133.40, 128.70*, 128.47, 127.52, 127.24, 125.95, 125.93, 125.14, 121.87, 117.18, 67.74, 36.44, 34.31, 30.77, 30.02, 25.02, 24.76*, 24.33, 24.14, 24.10*, 24.07, 23.68, 23.37*, 22.62. HRMS (ESI-TOF) Calcd for C₃₀H₃₆NS [M+H]⁺: 442.2563; found: 442.2559.

(*R*)-(3-phenyl-3,4-dihydroisoquinolin-2(1H)-yl)(2,4,6-triisopropylphenyl) methanethione (2g)

Following the general procedure for the enantioselective arylation, the title compound was obtained in 77% yield (70 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (1% isopropanol in hexanes, 0.5 mL/min) with $t_r = 20.70$ min (minor), 24.30 min(major): 94:6 er. ¹H NMR (400 MHz, CDCl₃) (87:13 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.66 (d, J = 6.1 Hz, 0.87H), 7.37-6.88 (m, 9.74H), 6.80 (m, 0.39H)*, 6.71 (d, J = 7.7 Hz,

0.87H), 5.74 (d, J = 19.0 Hz, 0.13H)*, 5.51 (dd, J = 5.1, 2.5 Hz, 0.13H)*, 5.35 (d, J = 19.0 Hz, 0.13H)*, 4.55 (d, J = 16.7 Hz, 0.87H), 3.98 (d, J = 16.6 Hz, 0.87H), 3.64 (dd, J = 17.1, 6.3 Hz, 0.87H), 3.49-3.29 (m, 1H), 3.15-2.95 (m, 1H), 2.94-2.49 (m, 2.13H), 1.37-1.06 (m, 15H), 0.68 (d, J = 6.9 Hz, 2.61H), 0.21 (d, J = 6.8 Hz, 0.39H)*. ¹³C NMR (100 MHz, CDCl₃) δ 201.97*, 200.68, 148.63, 148.53*, 143.86*, 142.24, 142.07, 141.54*, 139.61*, 138.16, 137.15*, 136.87, 132.59, 132.54*, 131.42, 131.00*, 128.74, 128.51, 128.36*, 128.20*, 127.76, 127.38, 127.19, 127.11*, 127.04*, 126.37, 126.30*, 125.90, 125.58, 121.79*, 121.51, 121.00, 60.83*, 55.58, 52.07*, 49.06, 36.72*, 34.13, 34.09*, 31.37*, 30.64*, 30.45, 30.16, 25.58*, 25.52*, 24.88, 24.43, 23.96, 23.92, 23.26*, 22.86, 21.61*. HRMS (ESI-TOF) Calcd for C₃₁H₃₈NS [M+H]⁺: 456.2719; found: 456.2710.

(R)-N-ethyl-2,4,6-triisopropyl-N-(1-phenylethyl)benzothioamide (2h)

Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-BQ, the title compound was obtained in 49% yield (38.7 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 16.22$ min (minor), 17.05 (major): 98:2 er. ¹H NMR (400 MHz, CDCl₃) (85:15 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.56-7.21 (m, 5.7H), 7.14 (d, J = 7.6 Hz, 0.3H)*, 6.95 (d, J = 6.1 Hz, 1.7H), 5.26 (q, J = 7.2 Hz, 0.15H)*, 4.81-4.67 (m, 0.15H)*, 3.73-3.61 (m, 0.15H)*, 3.35-3.22 (m, 0.85H), 3.17-3.04 (m, 0.85H), 2.98-2.75 (m, 3H), 1.76 (d, J = 7.1 Hz, 2.53H), 1.62 (d, J = 7.0 Hz, 0.47H)*, 1.44 (t, J = 7.0 Hz, 0.47H)*, 1.37-1.08 (m, 17.53H), 0.70-0.57 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 201.54, 201.48*, 148.37, 148.24*, 143.19*, 142.26*, 142.00, 141.69, 140.10*, 139.34, 137.33, 137.11*, 128.57, 128.00, 127.94, 127.3*2, 126.42*, 121.87*, 121.36, 121.21*, 61.69*, 57.46, 43.82*, 43.56, 34.13, 34.07*, 31.07, 30.77, 30.73, 30.21*, 25.69*, 25.62, 25.48, 23.98, 23.93, 23.17*, 22.99,

22.87, 22.75*, 19.65*, 15.44, 14.73, 12.34*. HRMS (ESI-TOF) Calcd for $C_{26}H_{38}NS$ $[M+H]^+$: 396.2719; found: 396.2713.

(*R*)-*N*-butyl-2,4,6-triisopropyl-*N*-(1-phenylethyl)benzothioamide (2i)

Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-BQ, the title compound was obtained in 53% yield (44.8 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (2% isopropanol in hexanes, 0.5 mL/min) with $t_r = 16.48$ min (minor), 18.28 (major): 92:8 er. ¹H NMR (600 MHz, CDCl₃) (65:35 mixture of rotamers, peaks corresponding to minor rotamer starred) & 7.52-7.49 (m, 1.35H), 7.46-7.37 (m, 2H), 7.35-7.29 (m, 1.35H), 7.27-7.23 (m, 0.35H)*, 7.16-7.12 (m, 0.65H), 6.97-6.92 (m, 1.65H), 6.85 (d, J = 1.7 Hz, $(0.35H)^*$, 5.25 (q, J = 7.0 Hz, $(0.35H)^*$, 4.62-4.53 (m, $(0.35H)^*$, 3.56-3.49 (m, $(0.35H)^*$, 3.08-3.00 (m, 0.65H), 2.98-2.76 (m, 3.65H), 1.73 (d, J = 7.1 Hz, 1.95H), 1.61 (d, J = 7.0Hz, 1.05H), 1.34-1.11 (m, 17H), 1.14 (d, J = 6.9 Hz, 1.95H), 0.95 (t, J = 7.4 Hz, 1.05H), 0.80-0.62 (m, 2H), 0.60 (d, J = 6.8 Hz, 1.05H). 0.40 (t, J = 7.3 Hz, 1.95H). ¹³C NMR (150 MHz, CDCl₃) δ 201.60*, 201.38, 148.52, 148.22*, 143.18*, 142.23*, 141.99, 141.75, 140.15*, 139.36, 137.22, 137.19, 128.54, 128.02*, 127.99, 127.32*, 126.46, 121.89*, 121.25, 121.21, 61.62*, 57.46, 49.32*, 48.53, 34.22, 34.08*, 31.09*, 30.84, 30.75*, 30.56*, 30.27, 29.70, 28.26, 25.75*, 25.64, 24.01, 23.94, 23.20*, 22.81, 22.75, 22.71, 20.58*, 20.06, 19.78*, 15.27, 13.66*, 12.70. HRMS (ESI-TOF) Calcd for C₂₈H₄₂NS [M+H]⁺: 424.3032; found: 424.3027.

(*R*)-(2-(*o*-tolyl)pyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (3a)

Following the general procedure for the enantioselective arylation, the title compound was obtained in 71% yield (57.8 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (1% isopropanol in hexanes, 0.5 mL/min) with $t_r = 26.55$ min and 33.33 min (minor), 34.98 (major): 97:3 er. ¹H NMR (600 MHz, CDCl₃) (64:36 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.22-7.13 (m, 2.28H), 7.10-7.06 (m, 0.36H)*, 7.03-6.96 (m, 2.64H), 6.96-6.93 $(m, 0.36H)^*, 6.68 (d, J = 1.7 Hz, 0.36H)^*, 6.00 (dd, J = 8.3, 3.7 Hz, 0.64H), 5.13-5.09$ $(m, 0.36H)^*, 4.34-4.18 (m, 0.72H)^*, 3.58-3.52 (m, 1.28H), 3.00 (hept, J = 6.8 Hz, J = 6.8 Hz)$ 0.64H), 2.87 (heptd, J = 6.7, 2.0 Hz, 1.28H), 2.79 (hept, J = 7.0 Hz, 0.36H)*, 2.68 (hept, J = 6.8 Hz, 0.36H)*, 2.53-2.44 (m, 2.56H), 2.43-2.36 (m, 0.36H)*, 2.36-2.26 (m, $(0.36H)^*$, 2.26-2.08 (m, 1.36H), 1.99-1.88 (m, 1.28H), 1.69 (dd, J = 11.4, 6.3 Hz, $(0.36H)^*$, $(1.62 \text{ (s, } 1.08H)^*$, (1.33 (dd, J = 6.9, 5.6 Hz, 3.00H), (1.30-1.22 (m, 8.76H), (1.18 Hz) $(dd, J = 6.9, 1.0 Hz, 2.16H)^*, 1.13 (d, J = 6.8 Hz, 1.92H), 1.08 (d, J = 6.7 Hz, 1.08H)^*,$ 0.03 (d, J = 6.8 Hz, 1.08H)*. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) & 199.4*, 198.8, 148.6*, 148.6, 143.6*, 142.8, 141.4, 141.3*, 140.2, 139.6*, 138.4, 138.3*, 135.2, 133.9*, 130.8, 130.3*, 127.2*, 127.0, 126.4*, 125.7, 125.4*, 123.8, 121.8, 121.4, 120.8*, 63.4*, 63.3, 54.3, 53.4*, 34.3*, 34.2, 33.1, 33.0*, 31.5*, 30.9, 30.6*, 30.1, 25.8*, 25.6*, 25.4, 24.7, 24.1, 24.1*, 24.1, 24.0, 24.0*, 23.9, 23.3, 23.1*, 21.5*, 21.2*, 19.6, 18.5*. HRMS (ESI-TOF) Calcd for $C_{27}H_{38}NS [M+H]^+: 408.2719; found: 408.2715.$

(*R*)-(2-(3,5-dimethylphenyl)pyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (3b)

Following the general procedure for the enantioselective arylation, the title compound was obtained in 88 % yield (74 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (1% isopropanol in hexanes, 0.5 mL/min) with $t_r = 39.77$ min (minor), 55.86 (major): 97:3 er. ¹H NMR (600 MHz. $CDCl_3$) (65:35 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.00-6.97 (m, 1.30H), 6.96 (d, J = 1.7 Hz, 0.35H)*, 6.92-6.90 (m, 0.65H), 6.86 (dd, J =1.6, 0.8 Hz, 1.30H), 6.82-6.79 (m, 0.35H)*, 6.68 (d, J = 1.7 Hz, 0.35H)*, 6.41-6.39 (m, $(0.70H)^*$, 5.83 (dd, J = 8.2, 3.6 Hz, 0.65H), 4.77 (d, J = 6.5 Hz, 0.35H)*, 4.32-4.26 (m, $(0.35H)^*$, $(4.25-4.20 \text{ (m, } 0.35H)^*$, (3.54-3.46 (m, 1.30H), (3.07 (hept, J = 6.9 Hz, 0.65H))2.91-2.83 (m, 1.30H), 2.81 (hept, J = 7.0 Hz, 0.35H)*, 2.64 (hept, J = 6.8 Hz, 0.35H)*, 2.52 (hept, J = 6.7 Hz, 0.35H)*, 2.48-2.41 (m, 0.65H), 2.33 (s, 3.90H), 2.26-2.17 (m, 0.65H), 2.20 (s, 2.10H)*, 2.15-2.05 (m, 1.00H), 2.04-1.98 (m, 0.70H)*, 1.94-1.87 (m, 0.65H), 1.86-1.79 (m, 0.35H)*, 1.33 (dd, J = 6.9, 4.1 Hz, 3.00H), 1.27 (d, J = 4.0 Hz, 1.95H), 1.25 (d, J = 3.7 Hz, 1.95H), 1.23 (dd, J = 6.9, 1.9 Hz, 4.95H), 1.20 (d, J = 2.1 Hz, 1.05H)*, 1.19 (d, J = 2.1 Hz, 1.05H)*, 1.17 (d, J = 6.7 Hz, 1.95H), 1.12 (d, J = 6.7 Hz, 1.05H)*, 0.16 (d, J = 6.8 Hz, 1.05H)*. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 199.6*, 198.9, 148.5, 148.5*, 143.8*, 142.5, 141.9, 141.3, 141.2*, 141.0*, 138.6, 138.0*, 138.0, 128.8*, 128.7, 123.6, 123.4*, 121.7, 121.5, 121.3*, 120.8*, 66.9*, 66.1, 54.0, 53.2*, 34.9*, 34.7, 34.2, 34.2*, 31.4*, 30.8, 30.6*, 30.2, 25.8*, 25.7*, 25.3, 24.8, 24.3, 24.1*, 24.0, 24.0, 23.9*, 23.8, 23.3, 23.1*, 21.7*, 21.5, 21.3, 21.1*. HRMS (ESI-TOF) Calcd for C₂₈H₄₀NS [M+H]⁺: 422.2876; found: 422.2870.

(*R*)-(2-(*p*-tolyl)pyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (3c)

Following the general procedure for the enantioselective arylation, the title compound was obtained in 61% yield (49.6 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (1% isopropanol in hexanes, 0.5 mL/min) with $t_r = 40.49$ min (major), 43.21 (minor): 93:7 er. ¹H NMR (600 MHz. CDCl₃) (75:25 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.20-7.15 (m, 3.00H), 7.03-7.01 (m, 0.50H)*, 6.99 (d, J = 0.8 Hz, 1.50H), 6.96 (d, J = 1.7Hz, $(0.25H)^*$, $(0.674)^*$, $(0.50H)^*$, $(0.69)^*$, $(0.25H)^*$, 3.6 Hz, 0.75H), 4.83 (d, J = 6.5 Hz, 0.25H)*, 4.32-4.22 (m, 0.50H)*, 3.55-3.46 (m, 1.50H), 2.98 (hept, J = 6.8 Hz, 0.75H), 2.88 (dhept, J = 10.8, 6.8 Hz, 1.50H), 2.80 (hept, J = 7.0 Hz, 0.25H)*, 2.66 (hept, J = 6.8 Hz, 0.25H)*, 2.53-2.43 (m, 1.00H), 2.36 (s, 2.25H), 2.28 (s, 0.75H)*, 2.26-2.19 (m, 0.50H)*, 2.19-2.06 (m, 1.00H), 2.06-2.00 (m, (0.75H), (1.96-1.89 (m, 0.75H), $(1.84-1.77 \text{ (m}, 0.25H)^*$, $(1.33 \text{ (d}, J = 6.9 \text{ Hz}, 0.75\text{H})^*$, $(1.30 \text{ Hz})^*$ (d, J = 7.0 Hz, 2.25 H), 1.27 (dd, J = 6.9, 2.0 Hz, 4.50 H), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 H), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 H), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 H), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 H), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 H), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 H), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 H), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 H), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 Hz), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 Hz), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 Hz), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz, 4.50 Hz), 1.25 - 1.23 (m, 5.25 H), 1.20 (dd, J = 6.9, 2.0 Hz), 1.25 - 1.23 (m, 5.25 Hz), 1.20 (dd, J = 6.9, 2.0 Hz), 1.25 - 1.23 (m, 5.25 Hz), 1.20 (m, 5.25 Hz), 1.2 $J = 6.9, 3.4 \text{ Hz}, 1.50 \text{H}^{\circ}, 1.16 \text{ (d, } J = 6.7 \text{ Hz}, 2.25 \text{H}^{\circ}, 1.11 \text{ (d, } J = 6.7 \text{ Hz}, 0.75 \text{H}^{\circ}, 0.13 \text{Hz}^{\circ}, 0.13 \text{Hz}^{\circ}$ $(d, J = 6.7 \text{ Hz}, 0.75 \text{H})^*$. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 199.5*, 199.0, 148.5, 148.4*, 143.6*, 142.5, 141.3, 141.0*, 139.0, 138.6, 138.3*, 138.0*, 136.9*, 136.5, 129.2, 129.1*, 125.9, 125.5*, 121.6, 121.4, 121.4*, 120.7*, 66.6*, 65.8, 53.9, 53.1*, 34.9*, 34.6, 34.2, 34.1*, 31.3*, 30.8, 30.5*, 30.1, 25.7*, 25.6*, 25.3, 24.6, 24.0, 24.0, 23.9*, 23.7, 23.3, 23.2*, 21.5*, 21.3*, 21.1, 20.9*. HRMS (ESI-TOF) Calcd for C₂₇H₃₈NS [M+H]⁺: 408.2719; found: 408.2724.

(*R*)-(2-(4-methoxyphenyl)pyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (3d)

Following the general procedure for the enantioselective arylation, the title compound was obtained in 84% yield (71.2 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (1% isopropanol in hexanes, 0.5 mL/min) with $t_r = 39.90$ min and 64.08 min (minor), 43.05 min and 46.93 min (major):

98.5:1.5 er. ¹H NMR (600 MHz, CDCl₃) (67:33 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.23-7.17 (m, 1.37H), 6.99-6.94 (m, 1.67H), 6.78-6.68 (m, 1.34H), 6.92-6.87 (m, 1.67H), 5.86 (dd, J = 8.2, 3.6 Hz, 0.67H), 4.82 (d, J = 6.3 Hz, 0.33H), 4.32-4.19 (m, 0.67H), 3.81 (s, 2H), 3.75 (s, 1H), 3.54-3.43 (m, 1H), 2.95-2.77 (m, 2.34H), 2.64 (hept, J = 6.8 Hz, 0.33H), 2.53-2.40 (m, 1H), 2.25-2.00 (m, 2.34H), 1.96-1.88 (m, 0.66H), 1.81-1.77 (m, 0.33H), 1.32 (d, J = 6.9 Hz, 1H), 1.30-1.17 (m, 13H), 1.14 (d, J = 6.7 Hz, 2H), 1.11 (d, J = 6.7 Hz, 1H), 0.18 (d, J = 6.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 199.56*, 198.95, 158.84*, 158.49, 148.52, 148.46*, 143.63*, 142.51, 141.27, 141.07*, 138.57, 137.98*, 134.07, 133.58*, 127.30, 126.72*, 121.63, 121.41, 121.38*, 120.76*, 113.93*, 113.82, 66.30*, 65.43, 55.33*, 55.20, 53.86, 53.09*, 34.93*, 34.55, 34.19, 34.13*, 31.32*, 30.81, 30.56, 30.10, 25.71*, 25.62*, 25.24, 24.64, 24.01, 23.98*, 23.94*, 23.76, 23.29, 23.19, 21.49*. HRMS (ESI-TOF) Calcd for C₂₇H₃₈NOS [M+H]⁺: 424.2669; found: 424.2662.

(*R*)-(2-(2-fluorophenyl)pyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (3e) Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-BQ, the title compound was obtained in 78% yield (64 mg). The er value was determined by HPLC analysis on two columns attached one after the other with Chiralcel ADH followed by Chiralcel IC column (0.5% isopropanol in hexanes, 0.5 mL/min) with t_r = 32.45 min (minor), 41.02 (major): 98.5:1.5 er. ¹H NMR (600 MHz, CDCl₃) (66:34 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.29-7.24 (m, 0.66H), 7.24-7.20 (m, 0.66H), 7.20-7.16 (m, 0.34H)*, 7.14-7.04 (m, 1.66H), 7.02-6.97 (m, 1.66H), 6.96 (d, *J* = 1.7 Hz, 0.34H)*, 6.91-6.86 (m, 0.34H)*, 6.69 (d, *J* = 1.6 Hz, 0.34H)*, 5.99 (dd, *J* = 8.3, 4.5 Hz, 0.66H), 5.17 (d, *J* = 7.3 Hz, 0.34H)*, 4.34-4.27 (m, 0.34H)*, 4.26-4.20 (m, 0.34H)*, 3.59-3.49 (m, 1.32H), 2.95 (hept, *J* = 6.8 Hz, 0.66H), 2.90-2.83 (m, 1.32H), 2.80 (hept, *J* = 6.9 Hz, 0.34H)*, 2.63 (hept, *J* = 6.8 Hz, 0.34H)*, 2.57-2.49 (m, 1.00H), 2.28-2.19 (m, 0.34H)*, 2.19-2.13 (m, 0.66H), 2.13-2.03 (m, 1.34H), 1.97-1.89 (m, 0.66H), 1.89-1.85 (m, 0.34H)*, 1.33 (d, J = 7.0 Hz, 1.02H)*, 1.29 (d, J = 7.0 Hz, 1.98H), 1.26 (dd, J = 6.8, 3.7 Hz, 3.96H), 1.24-1.22 (m, 4.98H), 1.19 (dd, J = 6.9, 3.7 Hz, 2.04H)*, 1.15-1.11 (m, 3.00H), 0.19 (d, J = 6.8 Hz, 1.02H)*. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 200.3*, 199.3, 160.04 (d, J = 246.1 Hz), 159.01 (d, J = 246.8 Hz)*, 148.7*, 148.6, 143.4*, 142.6, 141.4, 141.2*, 138.6, 137.7*, 130.9*, 128.7, 128.4*, 128.3*, 128.95 (d, J = 9.0 Hz)*, 128.76 (d, J = 8.6 Hz), 127.97 (d, J = 4.4 Hz), 127.37 (d, J = 3.4 Hz)*, 124.17 (d, J = 3.4 Hz)*, 123.74 (d, J = 3.3 Hz), 121.7, 121.4, 121.4*, 121.0*, 115.80 (d, J = 21.9 Hz), 115.46 (d, J = 21.1 Hz)*, 61.3, 61.3, 60.8*, 60.8*, 54.0, 53.2*, 34.2, 34.2*, 33.6*, 33.6, 31.3*, 30.8, 30.6*, 30.2, 25.7*, 25.6*, 25.3, 24.7, 24.3, 24.0, 24.0, 23.9, 23.3, 23.1*, 21.8*, 21.7*. HRMS (ESI-TOF) Calcd for C₂₆H₃₅FNS [M+H]⁺: 412.2469; found: 412.2461.

(*R*)-(2-(3-fluorophenyl)pyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (3f) Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-BQ, the title compound was obtained in 80% yield (65.6 mg). The er value was determined by HPLC analysis on two columns attached one after the other with Chiralcel ADH followed by Chiralcel IC column (1% isopropanol in hexanes, 0.5 mL/min) with t_r = 28.64 min (minor), 32.05 (major): 99:1 er. ¹H NMR (600 MHz, CDCl₃) (64:36 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.35-7.30 (m, 0.56H), 7.21-7.16 (m, 0.44H)*, 7.08-7.05 (m, 0.56H), 7.00-6.93 (m, 2.7H), 6.89 (tdd, *J* = 8.4, 2.6, 0.8 Hz, 0.44H)*, 6.70 (d, *J* = 1.6 Hz, 0.44H)*, 6.65 (ddt, *J* = 7.6, 1.5, 0.7 Hz, 0.44H)*, 6.56 (dt, *J* = 9.7, 2.1 Hz, 0.44H)*, 5.88 (dd, *J* = 8.5, 3.7 Hz, 0.56H), 4.85 (d, *J* = 7.1 Hz, 0.44H)*, 4.33-4.19 (m, 0.88H)*, 3.58-3.45 (m, 1.12H), 3.01-2.76 (m, 2.2H), 2.63 (hept, *J* = 6.8 Hz, 0.44H), 2.56-2.44 (m, 1.12H), 2.31-2.12 (m, 1.12H), 2.12-1.99 (m, 1.12H), 1.99-1.90 (m, 0.56H), 1.88-1.78 (m, 0.44H), 1.37-1.11 (m, 16.68H), 0.21 (d, *J* = 6.8 Hz,

1.32H)*. ¹³C NMR (150 MHz, CDCl₃) δ 200.17*, 199.66, 163.03 (d, J = 245.9 Hz)*, 162.88 (d, J = 247.2 Hz), 148.73*, 148.71, 144.69 (d, J = 6.7 Hz), 143.90 (d, J = 6.5 Hz)*, 143.61*, 142.60, 141.28, 141.09*, 138.36, 137.81*, 130.15 (d, J = 8.3 Hz)*, 130.04 (d, J = 8.4 Hz), 121.88 (d, J = 2.4 Hz), 121.72, 121.50*, 121.45, 121.26 (d, J = 2.5 Hz), 120.87*, 114.27 (d, J = 21.1 Hz)*, 113.95 (d, J = 21.0 Hz), 112.95 (d, J = 22.2 Hz). 112.84 (d, J = 22.1 Hz)*, 66.23*, 65.61, 53.96, 53.12*, 34.77*, 34.50, 34.21, 34.14*, 31.35*, 30.87, 30.62*, 30.26, 25.72, 25.63*, 25.26, 24.58*, 24.06, 24.01, 23.99, 23.91*, 23.84*, 23.27, 23.15*, 21.53*, 21.38. HRMS (ESI-TOF) Calcd for C₂₆H₃₅FNS [M+H]⁺: 412.2469; found: 412.2464.

(*R*)-(2-(4-fluorophenyl)pyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (3g) Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-BQ, the title compound was obtained in 87% yield (71.4 mg). The er value was determined by HPLC analysis on two columns attached one after the other with Chiralcel ADH followed by Chiralcel IC column (1% isopropanol in hexanes, 0.5 mL/min) with tr = 25.76 min (major), 35.29 min (minor): 95.5:4.5 er. ¹H NMR (600 MHz, CDCl₃) (63:37 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.27-7.23 (m, 1.26H), 7.07-7.03 (m, 1.26H), 6.99-6.97 (m, 1.26H), 6.96 (d, J = 1.7 Hz, 0.37H)*, 6.94- $6.89 \text{ (m, } 0.74\text{H})^*, 6.84-6.80 \text{ (m, } 0.74\text{H})^*, 6.70 \text{ (d, } J = 1.8 \text{ Hz}, 0.37\text{H})^*, 5.87 \text{ (dd, } J = 8.3, 1.28 \text{ Hz})^*$ 3.8 Hz, 0.63H), 4.85 (d, J = 6.9 Hz, 0.37H)*, 4.32-4.18 (m, 0.74H)*, 3.57-3.51 (m, 0.63H), 3.51-3.45 (m, 0.63H), 2.92-2.76 (m, 2.38H), 2.63 (hept, J = 6.8 Hz, 0.37H)*, 2.54-2.43 (m, 1.00H), 2.28-2.12 (m, 1.05H)*, 2.12-1.99 (m, 1.26H), 1.98-1.90 (m, 0.63H), 1.82-1.76 (m, 0.37H)*, 1.32 (d, J = 6.9 Hz, 1.11H)*, 1.28-1.25 (m, 5.67H), 1.23 $(dd, J = 6.8, 2.1 Hz, 4.89H), 1.19 (dd, J = 6.9, 3.5 Hz, 2.22H)^*, 1.14 (d, J = 6.7 Hz)$ 1.89H), 1.11 (d, J = 6.7 Hz, 1.11H)*, 0.19 (d, J = 6.8 Hz, 1.11H)*. ¹³C NMR (150 MHz, $CDCl_3$ (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 200.0*, 199.4, 161.76 (d, J = 245.2 Hz), 162.02 (d, J = 245.6 Hz)*, 148.7, 143.6*, 142.5, 141.3, 141.1*, 138.4, 137.9*, 137.80 (d, J = 4.1 Hz), 137.26 (d, J = 3.3 Hz)*, 127.79 (d, J = 7.7 Hz), 127.23 (d, J = 7.9 Hz), 121.7, 121.5, 121.4*, 120.9*, 115.35 (d, J = 21.4 Hz). 115.45 (d, J = 21.6 Hz)*, 66.1*, 65.3, 53.9, 53.1*, 34.9*, 34.6, 34.2, 34.2*, 31.3*, 30.9, 30.6*, 30.2, 25.7*, 25.6*, 25.3, 24.6, 24.0, 24.0*, 23.9*, 23.8, 23.3, 23.2*, 21.5. HRMS (ESI-TOF) Calcd for C₂₆H₃₅FNS [M+H]⁺: 412.2469; found: 412.2468.

(*R*)-(2-(4-chlorophenyl)pyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (3h) Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-BQ, the title compound was obtained in 77% yield (65.2 mg). The er value was determined by HPLC analysis on two columns attached one after the other with Chiralcel ADH followed by Chiralcel IC column (0.5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 22.57 \text{ min (major)}, 39.39 \text{ min (minor)}: 96:4 \text{ er.}^{1}\text{H NMR (600 MHz, CDCl_3)} (57:43)$ mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.36-7.31 (m, 1.14H), 7.23-7.17 (m, 2.00H), 6.99-6.97 (m, 1.14H), 6.96 (d, J = 1.7 Hz, 0.43H)*, 6.82- $6.78 \text{ (m, } 0.86\text{H})^*, 6.70 \text{ (d, } J = 1.7 \text{ Hz}, 0.43\text{H})^*, 5.85 \text{ (dd, } J = 8.3, 3.9 \text{ Hz}, 0.57\text{H}), 4.83 \text{ (d, } J = 0.000 \text{ Hz})^*$ J = 7.4 Hz, 0.43H)*, 4.32-4.20 (m, 0.86H)*, 3.57-3.51 (m, 0.57H), 3.50-3.45 (m, 0.57H), 2.94-2.76 (m, 2.14H), 2.63 (hept, J = 6.8 Hz, 0.43H)*, 2.53-2.41 (m, 1.00H), 2.29-2.12 (m, 1.29H)*, 2.12-1.98 (m, 1.14H), 1.98-1.89 (m, 0.57H), 1.82-1.76 (m, 0.43H)*, 1.32 (d, J = 6.9 Hz, 1.29H)*, 1.30-1.21 (m, 9.84H), 1.19 (dd, J = 6.9, 3.1 Hz, 2.58H)*, 1.15 (d, J= 6.7 Hz, 1.71H), 1.11 (d, J = 6.7 Hz, 1.29H)*, 0.20 (d, J = 6.7 Hz, 1.29H)*. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 200.1*, 199.5, 148.7, 143.6*, 142.5, 141.3, 141.1*, 140.6, 139.9*, 138.4, 137.8*, 133.2*, 132.7, 128.7*, 128.7, 127.5, 127.0*, 121.7*, 121.5, 120.9*, 66.1*, 65.5, 54.0, 53.1*, 34.8*, 34.6, 34.2, 34.2*, 31.3*, 30.9, 30.6*, 30.2, 25.7*, 25.6*, 25.3, 24.6, 24.0*, 24.0, 24.0*, 23.9*, 23.9, 23.3, 23.2*, 21.5*, 21.4*. HRMS (ESI-TOF) Calcd for C₂₆H₃₅CINS [M+H]⁺: 428.2173; found: 428.2175.

(R)-(2-(4-(trifluoromethyl)phenyl)pyrrolidin-1-yl)(2,4,6-

triisopropylphenyl)methanethione (3i)

Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-BQ, the title compound was obtained in 71% yield (65.4 mg). The er value was determined by HPLC analysis on two columns attached one after the other with Chiralcel ADH followed by Chiralcel IC column (0.5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 29.97 \text{ min (minor)}, 31.46 \text{ min (major)}: 96:4 \text{ er.}^{1}\text{H NMR (600 MHz, CDCl_3)} (94:6)$ mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.65-7.60 (m, 1.88H), 7.51-7.48 (m, 0.12H)*, 7.41-7.36 (m, 1.88H), 7.02-6.98 (m, 2.00H), 6.98 (d, J =1.7 Hz, 0.06H)*, 6.68 (d, J = 1.7 Hz, 0.06H)*, 5.93 (dd, J = 8.5, 3.8 Hz, 0.94H), 4.92 (d, J = 7.6 Hz, 0.06H)*, 4.33-4.27 (m, 0.12H)*, 3.61-3.54 (m, 0.94H), 3.54-3.48 (m, 0.94H), 2.94 (hept, J = 6.9 Hz, 0.94H), 2.90-2.78 (m, 1.94H), 2.65 (hept, J = 6.8 Hz, 0.06H)*, 2.58-2.49 (m, 0.94H), 2.43 (hept, J = 6.7 Hz, 0.06H)*, 2.34-2.25 (m, 0.06H), 2.22-2.15 $(m, 0.12H)^*, 2.12-1.93$ (m, 2.82H), 1.86-1.80 $(m, 0.06H)^*, 1.34$ (d, J = 6.9 Hz, 0.18H)^*, (m, 0.12H)^*, 1.34 (d, J = 6.9 Hz, 0.18H)^*, (m, 0.12H)^*, (m, 0.12 1.32 (d, J = 7.0 Hz, 2.82H), 1.29-1.22 (m, 11.46H), 1.19 (dd, J = 6.9, 3.9 Hz, 0.36H)*, 1.16 (d, J = 6.7 Hz, 2.82H), 1.10 (d, J = 6.7 Hz, 0.18H)*, 0.10 (d, J = 6.8 Hz, 0.18H)*. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) § 200.2*, 199.8, 148.8, 146.2, 145.4*, 143.4*, 142.5, 141.3, 141.2*, 138.2, 137.8*,129.25 (q, J = 32.8 Hz), 126.4, 126.0*, 125.53 (q, J = 3.6 Hz), 124.11 (d, J = 271.8 Hz), 121.7, 121.5, 120.9*, 66.2*, 65.7, 54.1, 53.2*, 34.7*, 34.6, 34.2, 34.1*, 31.3*, 30.9, 30.6*, 30.3, 25.7*, 25.6*, 25.2, 24.6, 24.0, 24.0, 24.0, 23.9, 23.3, 23.2*, 21.5*, 21.2*. HRMS (ESI-TOF) Calcd for C₂₇H₃₅F₃NS [M+H]⁺: 462.2437; found: 462.2443.

(R)-(2-(3-bromophenyl)pyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (3j) Following the general procedure for the enantioselective arylation, the title compound was obtained in 50% yield (47 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 21.59$ min (minor), 27.316 min (major): 93:7 er.¹H NMR (600 MHz, CDCl₃) (84:16 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.42-7.39 (m, 0.84H), 7.39-7.37 (m, 0.84H), 7.33 (ddd, J = 8.0, 2.0, 1.0 Hz, 0.16H)*, 7.25-7.22 (m, 1.68H), 7.09 (t, J = 7.8 Hz, 0.16H)*, 7.01-6.98 (m, 1.68H), 6.98 – 6.96 (m, $(0.32H)^*$, 6.80-6.77 (m, 0.16H)*, 6.71 (d, J = 1.7 Hz, 0.16H)*, 5.83 (dd, J = 8.4, 3.8 Hz, 0.84H), 4.82 (d, J = 7.2 Hz, 0.16H)*, 4.33-4.27 (m, 0.16H)*, 4.26-4.21 (m, 0.16H)*, 3.57-3.46 (m, 1.68H), 2.96 (hept, J = 6.8 Hz, 0.84H), 2.91-2.79 (m, 1.84H), 2.63 (hept, J $= 6.8 \text{ Hz}, 0.16\text{H}^{*}, 2.55-2.46 \text{ (m, 1.00H)}, 2.30-2.13 \text{ (m, 0.48H)}^{*}, 2.12-2.00 \text{ (m, 1.68H)},$ 1.98-1.89 (m, 0.84H), 1.83 (dd, J = 11.7, 5.6 Hz, 0.16H)*, 1.35 (d, J = 6.9 Hz, 2.52H), 1.33 (d, J = 6.9 Hz, 0.48H)*, 1.29-1.22 (m, 10.56H), 1.20 (dd, J = 6.9, 3.0 Hz, 0.96H)*, 1.18 (d, J = 6.8 Hz, 2.52H), 1.13 (d, J = 6.7 Hz, 0.48H)*, 0.23 (d, J = 6.8 Hz, 0.48H)*.¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) § 200.2*, 199.6, 148.8*, 148.7, 144.4, 143.6*, 143.6*, 142.6, 141.3, 141.0*, 138.3, 137.8*, 130.5*, 130.2*, 130.1, 130.1, 128.7*, 128.6, 125.3, 124.3*, 122.8*, 122.7, 121.7, 121.5*, 121.4, 120.9*, 66.1*, 65.5, 54.0, 53.1*, 34.8*, 34.6, 34.2, 34.1*, 31.4*, 30.9, 30.6*, 30.3, 25.8*, 25.6*, 25.2, 24.6, 24.2, 24.0, 24.0, 23.9, * 23.9, 23.3, 23.1*, 21.6*, 21.3*. HRMS (ESI-TOF) Calcd for C₂₆H₃₅BrNS [M+H]⁺: 472.1668; found: 472.1674.

(*R*)-4-(1-(2,4,6-triisopropylphenylcarbonothioyl)pyrrolidin-2-yl)benzaldehyde (3k) Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-

BQ, the title compound was obtained in 71% yield (59.8 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 86.21 \text{ min (minor)}$, 93.86 min (major): 97:3 er. ¹H NMR (600 MHz, CDCl₃) (70:30 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 10.02 (s, 0.70H), 9.96 (s, 0.30H)*, 7.91-7.88 (m, 1.40H), 7.77-7.74 (m, 0.60H)*, 7.45-7.42 (m, 1.40H), 7.06-7.03 (m, 0.60H)*, 7.00-6.98 (m, 1.40H), 6.97 (d, J = 1.7 Hz, 0.30H)*, 6.66 (d, J = 1.6 Hz, 0.30H)*, 5.90 (dd, J = 8.5, 4.3 Hz, (0.70H), 4.93 (d, J = 7.7 Hz, $(0.30H)^*$, 4.36-4.26 (m, $(0.60H)^*$, 3.62-3.56 (m, (0.70H), 3.56-1.26 (m, $(0.70H)^*$), $(0.70H)^*$, $3.50 \text{ (m, } 0.70\text{H}), 2.94 \text{ (hept, } J = 6.9 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.64 \text{ (hept, } J = 6.8 \text{ Hz}, 0.70\text{H}), 2.90-2.76 \text{ (m, } 1.70\text{H}), 2.90-2.76 \text{$ Hz, 0.30H)*, 2.60-2.53 (m, 0.70H), 2.46 (hept, J = 6.8 Hz, 0.30H)*, 2.35-2.27 (m, 0.30H)*, 2.22-2.15 (m, 0.60H)*, 2.14-1.94 (m, 2.10H), 1.86-1.81 (m, 0.30H)*, 1.34 (d, J = 6.9 Hz, 0.90H)*, 1.32 (d, J = 7.0 Hz, 2.10H), 1.27 (d, J = 6.9 Hz, 2.10H), 1.26-1.22 (m, 7.20H), 1.18 (dd, J = 6.9, 4.1 Hz, 1.80H)*, 1.14 (d, J = 6.8 Hz, 2.10H), 1.09 (d, J = 6.7Hz, 0.90H)*, 0.08-0.06 (m, 0.90H)*. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 200.4*, 199.8, 191.7, 191.5*, 149.3, 148.9, 148.8*, 148.2*, 143.4*, 142.5, 141.4, 141.2*, 138.2, 137.8*, 135.6*, 135.3, 130.1, 130.1*, 126.7, 126.4*, 121.7, 121.5, 121.5*, 121.0*, 66.5*, 66.0, 54.2, 53.2*, 34.7*, 34.7, 34.2, 34.1*, 31.3*, 30.9, 30.7*, 30.3, 25.7*, 25.6*, 25.3, 24.6, 24.1, 24.0, 24.0, 23.9*, 23.3, 23.2*, 21.6*, 21.4*. HRMS (ESI-TOF) Calcd for C₂₇H₃₆NOS [M+H]⁺: 422.2512; found: 422.2516.

(*R*)-1-(4-(1-(2,4,6-triisopropylphenylcarbonothioyl)pyrrolidin-2-yl)phenyl)ethan-1one (3l)

Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-BQ, the title compound was obtained in 79% yield (69 mg). The er value was determined by HPLC analysis on two columns attached one after the other with Chiralcel ADH followed by Chiralcel IC column (5% isopropanol in hexanes, 0.5 mL/min) with $t_r =$ 52.00 min and 92.01 min (minor), 54.39 min (major): 97:3 er. ¹H NMR (600 MHz, $CDCl_3$) (66:34 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 8.02-7.93 (m, 1.32H), 7.86-7.80 (m, 0.68H), 7.40-7.34 (m, 1.32H), 7.02-6.95 (m, 2.34H), 6.69-6.62 (m, 0.34H), 5.90 (dd, J = 8.4, 4.1 Hz, 0.66H), 4.92 (d, J = 7.6 Hz, 0.34H), 4.37-4.24 (m, 0.66H), 3.62-3.48 (m, 1.34H), 2.95 (p, J = 6.8 Hz, 0.66H), 2.92-2.75 (m, 1.65H), 2.69-2.42 (m, 4.4H), 2.34-2.24 (m, 0.34H), 2.45-2.13 (m, 0.66H), 2.15-1.91 (m, 1.95H), 1.84-1.80 (m, 0.34H), 1.35-1.31 (m, 3H), 1.31-1.22 (m, 9H), 1.22-1.17 (m, 2H), 1.15 (d, J = 6.7 Hz, 2H), 1.10 (d, J = 6.7 Hz, 1H), 0.08 (d, J = 6.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) § 200.21*, 199.75, 197.58, 197.38*, 148.79, 147.68, 146.62*, 143.45*, 142.56, 141.34, 141.17*, 138.28, 137.81*, 136.25*, 135.96, 128.79, 128.67*, 126.25, 125.91*, 121.74, 121.50, 120.95*, 66.44*, 65.98, 54.18, 53.19*, 34.72*, 34.66, 34.22, 34.14*, 31.29, 30.89, 30.63, 30.29, 26.61, 25.71*, 25.63*, 25.26, 24.59, 24.08*, 24.02, 23.99, 23.94*, 23.29, 23.19*, 21.54*, 21.44. HRMS (ESI-TOF) Calcd for C₂₈H₃₈NOS [M+H]⁺: 436.2669; found:436.2664.

Methyl (*R*)-4-(1-(2,4,6-triisopropylphenylcarbonothioyl)pyrrolidin-2-yl)benzoate (3m)

Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-BQ, the title compound was obtained in 72% yield (65 mg). The er value was determined by HPLC analysis on two Chiralcel ADH columns attached one after the other (5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 16.15$ min (minor),18.43 min (major): 94.5:5.5 er. ¹H NMR (600 MHz, CDCl₃) (32:68 mixture of rotamers, peaks

corresponding to minor rotamer starred) δ 8.07-8.02 (m, 0.64H)*, 7.92-7.87 (m, 1.36H), 7.37-7.31 (m, 0.64H)*, 6.99 (s, 0.64H)*, 6.96 (d, J = 1.6 Hz, 0.68H), 6.96-6.93 (m, 1.36H), 6.66 (d, J = 1.8 Hz, 0.68H), 5.90 (dd, J = 8.4, 4.0 Hz, 0.32H)*, 4.91 (d, J = 7.5 Hz, 0.68H), 4.35-4.23 (m, 1.36H), 3.92 (s, 0.96H)*, 3.90 (s, 2.04H), 3.60-3.54 (m, 0.32H)*, 3.54-3.48 (m, 0.32H)*, 2.94 (hept, J = 6.9 Hz, 0.32H)*, 2.90-2.75 (m, 1.32H), 2.64 (hept, J = 6.9 Hz, 0.68H), 2.58-2.42 (m, 1.00H), 2.32-2.23 (m, 0.68H), 2.23-2.13 (m, 1.36H), 2.13-1.99 (m, 0.64H)*, 2.00-1.91 (m, 0.32H)*, 1.84-1.78 (m, 0.68H), 1.35-1.30 (m, 3.00H), 1.28-1.22 (m, 5.88H), 1.18 (dd, J = 6.9, 4.0 Hz, 4.08H), 1.14 (d, J = 6.7 Hz, 0.96H)*, 1.09 (d, J = 6.7 Hz, 2.04H), 0.09 (d, J = 6.8 Hz, 2.04H). ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 200.2, 199.7*, 166.8*, 166.6, 148.8, 148.7*, 147.4*, 146.4, 143.5, 142.6*, 141.3*, 141.1, 138.3*, 137.8, 130.0*, 129.9, 129.3, 128.9*, 126.1*, 125.7, 121.7*, 121.5, 121.5*, 120.9,66.5, 66.0*, 54.1*, 53.2, 52.2, 52.1*, 34.7, 34.6*, 34.2*, 34.1, 31.3, 30.9*, 30.6, 30.3*, 25.7, 25.6, 25.3*, 24.6*, 24.1*, 24.0, 23.9, 23.3*, 23.2, 21.5, 21.5. HRMS (ESI-TOF) Calcd for C₂₈H₃₈NO₂S [M+H]⁺: 452.2618; found: 452.2616.

(*R*)-3-(1-(2,4,6-triisopropylphenylcarbonothioyl)pyrrolidin-2-yl)benzonitrile (3n) Following the general procedure for the enantioselective arylation with 2 equiv. of 1,4-BQ, the title compound was obtained in 68% yield (57 mg). The er value was determined by HPLC analysis on two columns attached one after the other with Chiralcel ADH followed by Chiralcel IC column (5% isopropanol in hexanes, 0.5 mL/min) with t_r = 39.68 min (major), 43.77 min and 55.29 min (minor): 87.5:12.5 er. ¹H NMR (600 MHz, CDCl₃) (72:28 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.58 (dt, *J* = 7.5, 1.4 Hz, 0.72H), 7.56-7.54 (m, 0.72H), 7.53-7.50 (m, 1.00H), 7.48 (td, *J* = 7.7, 0.6 Hz, 0.72H), 7.36 (td, *J* = 7.7, 0.7 Hz, 0.28H)*, 7.14-7.10 (m, 0.56H)*, 6.99 (d, *J* = 0.5 Hz, 1.44H), 6.98 (d, *J* = 1.7 Hz, 0.28H)*, 6.68 (d, *J* = 1.7 Hz, 0.28H)*, 5.86 (dd, *J* = 8.4, 4.1 Hz, 0.72H), 4.88 (d, *J* = 7.7 Hz, 0.28H)*, 4.36-4.22 (m, 0.56H)*, 3.61-3.54 (m, 0.72H), 3.54-3.48 (m, 0.72H), 2.92-2.77 (m, 2.44H), 2.66-2.51 (m, 1.00H), 2.43 (hept, *J* = 6.8 Hz, 0.28H)*, 2.35-2.25 (m, 0.28H)*, 2.24-2.12 (m, 0.56H)*, 2.12-1.94 (m, 2.16H), 1.82 (dd, J = 12.5, 6.1 Hz, 0.28H)*, 1.34 (dd, J = 7.0, 3.9 Hz, 3.00H), 1.27 (d, J = 6.9 Hz, 2.16H), 1.25-1.21 (m, 7.32H), 1.20 (dd, J = 6.9, 3.9 Hz, 1.68H)*, 1.16 (d, J = 6.7 Hz, 2.16H), 1.11 (d, J = 6.7 Hz, 0.84H)*, 0.15 (d, J = 6.8 Hz, 0.84H)*. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 200.6*, 200.0, 149.0*, 148.9, 143.7, 143.4*, 143.1*, 142.6, 141.3, 141.2*, 138.1, 137.6*, 131.2, 131.1*, 130.8, 130.0*, 129.5*, 129.4, 129.4, 129.3*, 121.8, 121.5, 121.5*, 121.1*, 118.7, 118.3*, 112.9*, 112.6, 65.9*, 65.4, 54.1, 53.1*, 34.8*, 34.6, 34.2, 34.1*, 31.3*, 30.9, 30.7*, 30.4, 25.7*, 25.6*, 25.2, 24.5, 24.1, 24.0, 24.0, 23.9*, 23.3, 23.1*, 21.6*, 21.4*. HRMS (ESI-TOF) Calcd for C₂₇H₃₅N₂S [M+H]⁺: 419.2515; found: 419.2524.

(*R*)-(2-(1,3-dihydroisobenzofuran-5-yl)pyrrolidin-1-yl)(2,4,6triisopropylphenyl)methanethione (30)

Following the general procedure for the enantioselective arylation, the title compound was obtained in 78% yield (68 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 25.66$ min 41.48 min (minor), 27.13 min and 39.19 min (major): 93.5:6.5 er. ¹H NMR (600 MHz, CDCl₃) (60:40 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 6.98 (s, 1.20H), 6.95 (d, J = 1.6 Hz, 0.40H)*, 6.79 (dd, J = 7.9, 0.5 Hz, 0.60H), 6.76-6.73 (m, 1.00H), 6.73-6.71 (m, 0.60H), 6.63 (d, J = 8.0 Hz, 0.40H)*, 6.36 (d, J = 1.8 Hz, 0.40H)*, 6.26 (ddd, J = 8.1, 1.9, 0.6 Hz, 0.40H)*, 5.98-5.95 (m, 1.20H), 5.90 (dd, J = 10.0, 1.4 Hz, 0.80H)*, 5.81 (dd, J = 8.2, 3.7 Hz, 0.60H), 4.77 (d, J = 6.5 Hz, 0.40H)*, 4.29-4.18 (m, 0.80H)*, 3.54-3.43 (m, 1.20H), 2.95 (hept, J = 6.9 Hz, 0.60H), 2.90-2.76 (m, 1.60H), 2.62 (hept, J = 6.8 Hz, 0.40H)*, 2.54 (hept, J = 6.7 Hz, 0.40H)*, 2.49-2.40 (m, 0.60H), 1.84-1.76 (m, 0.40H)*, 1.31 (d, J = 6.9 Hz, 1.20H)*, 1.29 (d, J = 6.9 Hz, 1.80H), 1.25 (dd, J = 6.8 0.9 Hz, 3.60H), 1.24-1.21
(m, 4.80H), 1.20 (dd, J = 6.9, 3.4 Hz, 2.40H)*, 1.16 (d, J = 6.7 Hz, 1.80H), 1.13 (d, J = 6.7 Hz, 1.20H)*, 0.31 (d, J = 6.7 Hz, 1.20H)*. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 200.1*, 199.5, 148.8, 148.8*, 148.1, 148.1*, 147.0*, 146.7, 143.9*, 142.8, 141.5, 141.3*, 138.7, 138.1*, 136.2, 135.6*, 121.9, 121.7, 121.0*, 119.3, 119.1*, 108.5, 108.4*, 107.0, 106.5*, 101.3, 101.3*, 66.7*, 66.0, 54.1, 53.4*, 35.2*, 34.9, 34.4, 34.4*, 31.6*, 31.1, 30.8*, 30.4, 25.9*, 25.9*, 25.5, 24.9, 24.3*, 24.2, 24.2, 24.2*, 24.0, 23.5, 23.4*, 21.8*, 21.8*. HRMS (ESI-TOF) Calcd for C₂₇H₃₆NO₂S [M+H]⁺: 438.2461; found: 438.2466.

(*R*)-(2-(naphthalen-2-yl)pyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (3p)

Following the general procedure for the enantioselective arylation, the title compound was obtained in 78% yield (69 mg). The er value was determined by HPLC analysis on two Chiralcel IC columns attached one after the other (1% isopropanol in hexanes, 0.5 mL/min) with $t_r = 32.43$ min and 57.35 min (minor), 33.75 min and 40.76 min (major): 98:2 er. ¹H NMR (600 MHz, CDCl₃) (83:17 mixture of rotamers, peaks corresponding to minor rotamer starred) & 7.88-7.86 (m, 0.83H), 7.86-7.83 (m, 0.83H), 7.80-7.75 (m, 1.00H), 7.73-7.69 (m, 0.34H)*, 7.68 (dd, J = 1.8, 0.8 Hz, 0.83H), 7.51-7.44 (m, 2.00H), 7.42 (dd, J = 8.4, 1.9 Hz, 0.83H), 7.27 (s, 0.17H)*, 7.01 (q, J = 1.7 Hz, 1.66H), 6.98 (dd, $J = 8.0, 1.8 \text{ Hz}, 0.34 \text{H}^{*}$, 6.58 (d, $J = 1.7 \text{ Hz}, 0.17 \text{H}^{*}$, 6.07 (dd, J = 8.3, 3.3 Hz, 0.83 H), 5.03 (d, J = 7.0 Hz, 0.17H)*, 4.36 (dd, J = 9.3, 5.1 Hz, 0.34H)*, 3.64-3.55 (m, 1.66H), 3.11 (hept, J = 6.8 Hz, 0.83H), 2.90 (dhept, J = 24.0, 6.9 Hz, 1.66H), 2.78 (hept, J = 6.9Hz, 0.17H)*, 2.71 (hept, J = 6.8 Hz, 0.17H)*, 2.59-2.49 (m, 1.00H), 2.36-2.22 (m, $(0.34H)^*$, 2.21-2.07 (m, 1.83H), 2.01-1.89 (m, 1.00H), 1.42 (d, J = 7.0 Hz, 2.49H), 1.38 $(d, J = 6.9 \text{ Hz}, 0.51 \text{H})^*$, 1.28 (dd, J = 11.3, 6.8 Hz, 4.98 H), 1.26-1.23 (m, 5.49 H), 1.18 $(dd, J = 6.9, 5.1 Hz, 1.02H)^*, 1.14 (d, J = 6.7 Hz, 2.49H), 1.06 (d, J = 6.7 Hz, 0.51H)^*, 0.25 \text{ (d, } J = 6.8 \text{ Hz}, 0.51 \text{H})^{*}$. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 200.0*, 199.3, 148.6, 148.6*, 143.7*, 142.6, 141.4, 141.1*, 139.4, 138.6*, 138.5, 137.9*, 133.4, 133.2*, 132.6, 132.5*, 128.5, 128.4*, 127.8, 127.7, 127.5*, 126.4*, 126.2, 126.0*, 125.7, 124.7, 124.4*, 124.2, 123.7*, 121.7, 121.5, 121.4*, 120.8*, 66.9*, 66.2, 54.1, 53.3*, 34.7*, 34.5, 34.2, 34.1*, 31.2*, 30.9, 30.6*, 30.3, 25.7*, 25.7*, 25.3, 24.7, 24.3, 24.0, 24.0, 23.9*, 23.9, 23.3, 23.2*, 21.6*, 21.2*. HRMS (ESI-TOF) Calcd for $C_{30}H_{38}NS$ [M+H]⁺: 444.2719; found: 444.2710.

(S)-(2-methylpyrrolidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (3q)

Following the general procedure for the enantioselective arylation with Na₂CO₃ as the base (instead of KHCO₃), 12 equiv. of MeB(OH)₂ at 0.05M concentration at 80 °C under air, the title compound was obtained in 47% yield (31.2 mg). The er value was determined by HPLC analysis on Chiralcel IC column (1% isopropanol in hexanes, 0.5 mL/min) with $t_r = 12.30$ min (major), 13.26 min (minor): 87.5:12.5 er. ¹H NMR (600) MHz, CDCl₃) (75:25 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 6.98-6.95 (m, 2.00H), 5.05-4.97 (m, 0.75H), 4.15-4.07 (m, 0.25H)*, 4.00-3.94 (m, $(0.25H)^*$, 3.91 (p, J = 6.8 Hz, $(0.25H)^*$, 3.28-3.19 (m, 1.50H), 2.93-2.81 (m, 2.75H), 2.58(hept, J = 6.8 Hz, 0.25H)*, 2.24-2.08 (m, 1.25H), 2.06-1.95 (m, 1.00H), 1.90-1.83 (m, (0.75H), 1.83-1.77 (m, 0.75H), 1.73-1.67 (m, 0.25H)*, 1.49 (d, J = 6.4 Hz, 2.25H), 1.31 $(d, J = 6.6 \text{ Hz}, 0.75 \text{H})^*$, 1.28-1.21 (m, 9.75 H), 1.19 (dd, J = 7.0, 5.3 Hz, 4.50 H), 0.97 (d, J = 6.6 Hz, 0.75H)*. ¹³C NMR (150 MHz, CDCl₃) (mixture of rotamers, peaks corresponding to minor rotamer starred) δ 197.2, 197.2*, 148.5*, 148.4, 143.3*, 142.0, 141.3*, 141.2, 138.7, 137.8*, 121.5, 121.4, 121.4*, 121.2*, 58.7*, 57.7, 52.4, 51.6*, 34.2, 34.2*, 32.7*, 32.0, 31.2*, 30.7, 30.6*, 30.1, 26.2*, 25.6*, 25.2, 24.8, 24.0, 24.0, 24.0*, 23.7, 23.6, 23.4, 22.9*, 22.6*, 22.0*, 19.1*, 17.2. HRMS (ESI-TOF) Calcd for C₂₁H₃₄NS [M+H]⁺: 332.2406; found: 332.2409.

(R)-(2-(4-fluorophenyl)piperidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (4a)

Following the general procedure for the enantioselective arylation with 3 equiv. of arylboronic acid, 5 equiv. of 1,4-BQ at 85 °C, the title compound was obtained in 48% vield (40.7 mg). The er value was determined by HPLC analysis on a Chiralcel ADH column (5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 9.37$ min (major), 14.85 min (minor): 94.5:5.5 er. ¹H NMR (600 MHz, CDCl₃) (82:18 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.49-7.41 (m, 1.64H), 7.38 (d, J = 4.7 Hz, 0.18H)*, 7.16-7.12 (m, 2H), 7.04-6.95 (m, 2.18H), 6.82-6.81 (m, 0.18H)*, 5.25-5.22 (m, $(0.18H)^*$, 3.74 (d, J = 14.4 Hz, 0.82H), 3.42-3.36 (m, 0.18H)*, 3.05-2.95 (m, 2.46H). 2.91-2.76 (m, 1.18H), 2.51 (d, J = 18.0 Hz, 0.82H), 2.19 (d, J = 18.0 Hz, 0.18H)*, 2.15-2.06 (m, 1H), 1.85-1.71 (m, 2H), 1.69-1.65 (m 0.36H)*, 1.61-1.46 (m, 2H), 1.36-1.15 (m, 16H), 1.12 (d, J = 7.0 Hz, 2.31H),0.55 (d, J = 6.8 Hz, 0.54H)*.¹³C NMR (150 MHz, CDCl₃) δ 202.62*, 201.18, 161.88 (d, J = 246.2 Hz), 161.59* (d, J = 246.7 Hz), 148.49, 148.28*, 142.99*, 142.25, 142.09*, 141.88, 136.97, 136.61*, 134.00*, 133.82, 128.72* (d, J = 7.8 Hz), 128.32 (d, J = 7.9 Hz), 125.50*, 121.90*, 121.66, 121.50, 121.31*, 115.54 (d, J = 21.3 Hz)., 115.52* (d, J = 20.9 Hz).*, 60.99*, 56.53, 47.56, 45.47*, 34.14, 31.92*, 31.15*, 30.85, 30.61, 30.31, 29.70, 29.66*, 27.40, 26.02, 25.94*, 25.77, 25.60*, 25.51*, 24.52, 23.98, 23.89*, 23.59, 23.49, 23.39*, 23.01*, 22.69*, 19.20, 19.12*. HRMS (ESI-TOF) Calcd for C₂₇H₃₇FNS [M+H]⁺: 426.2625; found: 426.2628.

(R)-(2-(4-chlorophenyl)piperidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (4b)

Following the general procedure for the enantioselective arylation with 3 equiv. of aryl boronic acid, 5 equiv. of 1,4-BQ at 85 °C, the title compound was obtained in 53% yield (46.8 mg). The er value was determined by HPLC analysis on a Chiralcel ADH column (2% isopropanol in hexanes, 0.5 mL/min) with $t_r = 12.25$ min (major), 24.05 min (minor): 94.5:5.5 er. ¹H NMR (600 MHz, CDCl₃) (70:30 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.42-7.35 (m, 3.3H), 7.32-7.29 (m, 0.7H), 7.13-7.10 (m, 0.7H), 7.01-6.95 (m, 1.7H), 6.82 (d, J = 1.7 Hz, 0.3H)*, 6.03 (d, J = 13.8Hz, $(0.3H)^*$, (5.23) (brs, $(0.3H)^*$, (4.32-4.24) (m, $(0.3H)^*$, (4.17-4.09) (m, $(0.3H)^*$), (3.75) (d, $J = 10^{-10}$ (m, $(0.3H)^*$) 13.3 Hz, 0.7H), 3.41-3.33 (m, 0.3H)*, 3.04-2.95 (m, 2.1H), 2.91-2.78 (m, 1.3H), 2.50 (d, J = 14.6 Hz, 0.7H), 2.32-2.29 (m, 0.3H)*, 2.19 (d, J = 14.0 Hz, 0.3H)*, 2.14-1.44 (m, 5H), 1.37-1.11 (16H) 0.88-0.89 (m, 0.9H)*, 0.56 (d, J = 6.8 Hz, 0.9H)*. ¹³C NMR (150) MHz, CDCl₃) δ 202.72*, 201.39, 148.53, 148.33*, 142.99*, 142.25, 142.11*, 141.90, 136.91, 136.87*, 136.63, 136.55*, 133.95*, 133.02, 132.83*, 128.86, 128.77*, 128.44, 128.12*, 121.92*, 121.67, 121.52, 121.33*, 61.02*, 56.67, 47.66, 45.51*, 34.23*, 34.15, 34.06*, 34.03*, 31.93, 31.15*, 30.85, 30.68, 30.46*, 29.71, 29.66, 27.35, 25.97, 25.94*, 25.77, 25.60*, 25.47*, 24.52, 23.98, 23.92*, 23.88*, 23.64, 23.48, 23.39*, 23.0*9, 22.69*, 19.18, 14.12*. HRMS (ESI-TOF) Calcd for $C_{27}H_{37}CINS$ [M+H]⁺: 442.2330; found: 442.2333.

(*R*)-(2-(4-methoxyphenyl)piperidin-1-yl)(2,4,6-triisopropylphenyl)methanethione (4c)

Following the general procedure for the enantioselective arylation with 3 equiv. of aryl boronic acid, 5 equiv. of 1,4-BQ at 85 °C, the title compound was obtained in 66% yield (58 mg). The er value was determined by HPLC analysis on a Chiralcel ADH column (5% isopropanol in hexanes, 0.5 mL/min) with t_r = 17.40 min (major), 26.05 min (minor): 96:4 er. ¹H NMR (600 MHz, CDCl₃) (89:11 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.40 (d, *J* = 8.6 Hz, 1.78H), 7.36 (d, *J* = 4.5 Hz, 0.89H), 7.08 (d,

J = 8.6 Hz, 0.22H)*, 6.99 (s, 0.89H), 6.97-6.95 (m, 1H), 6.92 (d, J = 8.7 Hz, 0.89H), 6.87-6.81 (m, 0.33H)*, 6.03-5.98 (m, 0.11H)*, 5.23-5.20 (m, 0.11)*,3.83 (s, 2.67H), 3.79 (s, 0.33H)*, 3.71 (d, J = 12.5 Hz, 0.89H), 3.10-2.97 (m, 2.67H), 2.93-2.78 (m, 1H), 2.51 (d, J = 14.2 Hz, 0.89H), 2.34-2.38 (m, 0.11H)*, 2.13-2.00 (m, 1.11H), 1.88-1.47 (m, 3.33H), 1.37-1.17 (m, 17H), 1.12 (d, J = 6.9 Hz, 2.67H), 0.59 (d, J = 6.8 Hz, 0.33H)*. ¹³C NMR (150 MHz, CDCl₃) δ 200.72, 158.63, 158.35*, 148.35, 148.33*, 143.03*, 142.26, 142.10*, 141.90, 137.16, 136.74, 130.01, 128.21, 127.79*, 121.88*, 121.62, 121.46, 121.23*, 114.03, 56.64, 55.29, 47.51, 34.14, 31.92, 31.15, 30.83, 30.56, 29.70, 27.38, 26.13, 25.96*, 25.78*, 25.64, 24.55, 23.99, 23.64, 23.52, 19.26, 19.16*. HRMS (ESI-TOF) Calcd for C₂₈H₄₀NOS [M+H]⁺: 438.2825; found: 438.2832.

(R)-(2-(3,5-dimethylphenyl)piperidin-1-yl)(2,4,6-triisopropylphenyl)methanethione

(4d)

Following the general procedure for the enantioselective arylation with 3 equiv. of aryl boronic acid, 5 equiv. of 1,4-BQ at 85°C, the title compound was obtained in 76% yield (66 mg). The er value was determined by HPLC analysis on a Chiralcel ADH column (0.5% isopropanol in hexanes, 0.5 mL/min) with t_r = 9.41 min (minor), 12.07 min (major): 92.5:7.5 er. ¹H NMR (600 MHz, CDCl₃) (73:27 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.35 (d, *J* = 4.1 Hz, 0.73H), 7.05 (s, 1.46H), 7.00 (d, *J* = 1.6 Hz, 0.73 H), 6.98 (d, *J* = 1.6 Hz, 0.73H), 6.95 (d, *J* = 1.6 Hz, 0.27H)*, 6.93 (s, 0.73H), 6.84 (s, 0.27H)*, 6.81 (d, *J* = 1.6 Hz, 0.27H)*, 6.74 (s, 0.54H)*, 6.02 (d, *J* = 12.8 Hz, 0.27H)*, 5.18 (s, 0.27H)*, 3.74 (d, *J* = 12.9 Hz, 0.73H), 3.49-3.42 (m, 0.27H)*, 3.16 (hept, *J* = 6.9 Hz, 0.73H), 3.11-2.91 (m, 2H), 2.90-2.76 (m 1H), 2.59-2.50 (m, 0.73H), 2.34 (s, 4.38H), 2.28 (s, 1.62H), 2.10-2.01 (m, 0.73H), 1.97-1.89 (m, 0.27H)*, 1.84-1.48 (m, 4.16H), 1.36-1.16 (m, 17.19), 0.58 (d, *J* = 6.8 Hz, 0.81H). ¹³C NMR (150 MHz, CDCl₃) δ 202.02*, 200.72, 148.35, 148.09*, 142.93*, 142.28, 142.07*,

141.85, 138.22, 138.09*, 137.94*, 137.72, 137.18, 136.70*, 128.64, 128.43*, 124.61, 124.37*, 121.88*, 121.66, 121.46, 121.17*, 61.64*, 57.27, 47.73, 45.62*, 34.14, 34.03*, 31.15*, 30.81, 30.68*, 30.64, 30.36*, 27.39, 26.11, 25.94*, 25.80, 25.76*, 25.51*, 24.67, 23.99, 23.92*, 23.71, 23.52, 23.38*, 22.74*, 21.55, 21.50*, 19.35*, 19.28. HRMS (ESI-TOF) Calcd for $C_{29}H_{42}NS$ [M+H]⁺: 436.3032; found: 436.3032.

Removal of the directing group:

(*R*)-2-phenyl-1-(2,4,6-triisopropylbenzyl)pyrrolidine (5)

The thioamide (0.1mmol, 39.3 mg) and NiCl₂.6H₂0 (0.8mmol, 190 mg) were taken in a reaction vial with a stir bar and 2 ml of ethanol was added. Then the vial was cooled to - 78 °C . NaBH₄ (2.5 mmol, 94.6 mg) was dissolved in 0.4ml of water and immediately added drop wise (over 10 sec) to the solution, at this stage the solution turns black and was kept at -78°C for 40 min. Then ethyl acetate was added (at low temp) and the reaction mixture was quickly filtered through pad of Celite. The solvent was then removed under reduced pressure and the residue was purified on a preparative TLC with ethyl acetate and hexanes (1:20) as the eluent. The dethiolated product was obtained as an oil in 87% yield (31.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.44-7.41 (m, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.28-7.23 (m, 1H), 6.91 (s, 2H), 3.50 (d, *J* = 12.7 Hz, 1H), 3.37-3.25 (m, 4H), 2.91-2.78 (m, 2H), 2.30 (q, *J* = 8.4, 7.5 Hz, 1H), 2.25-2.16 (m, 1H), 1.85-1.66 (m, 3H), 1.22 (d, *J* = 6.9 Hz, 6H), 1.16 (d, *J* = 6.8 Hz, 6H), 1.05 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 148.15, 146.94, 144.03, 130.29, 128.24, 127.96, 127.06, 120.63, 70.64, 52.94, 49.12, 34.76, 34.04, 28.49, 25.03, 24.04, 23.95, 23.50, 23.04. HRMS (ESI-TOF) Calcd for C₂₆H₃₈N [M+H]⁺: 364.2999; found: 364.2990.

Note: When the dethiolation was done at room temperature partial racemizaton of the final product was observed.

t-butyl (*R*)-2-phenylpyrrolidine-1-carboxylate (6)

The benzyl amine (0.1 mmol, 36 mg) and 2 ml dichloromethane were taken in a reaction vial equipped with a stir bar. Then boron trichloride, 0.2 mmol, 0.19 ml of 1 M soultion (from a fresh bottle of 1M solution of boron trichloride in dichloromethane) was added at room temperature and the solution was stirred at this temperature for 24 hrs. (The reaction was monitored on GC after base workup). Then 1 ml of 1M HCl was added carefully and stirred for 2 min, followed by addition of saturated NaHCO₃ solution to make the pH >10. Then the organic layer was separated and the aqueous layer was extracted with more dichloromethane. The organic layers were combined, dried over Na₂SO₄, and the solvent was removed under reduced pressure. Then 1ml of THF was added along with 2 equiv of Boc anhydride and the reaction was stirred for 8 hours. Then the solvent was removed and the residue was purified over preparative TLC with ethyl acetate and hexanes (1:10) as eluent to obtain the title compound in 58% yield (14.2 mg) as colorless oil. The er value was determined by HPLC analysis on a Chiralcel IC column (5% isopropanol in hexanes, 0.5 mL/min) with $t_r = 17.92 \text{ min}$ (major), 21.72 min (minor): 98:2 er. ¹H NMR (600 MHz, CDCl₃) (70:30 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 7.29 (t, J = 7.6 Hz, 2H), 7.23-7.14 (m, 3H), 4.96 (s, 0.3H), 4.76 (s, 0.7H), 3.71-3.44 (m, 2H), 2.38-2.20 (m, 1H), 1.96-1.77 (m, 3H), 1.46 (s, 3H), 1.18 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 154.55, 145.11, 144.02*, 128.06, 126.43, 125.47, 79.12, 61.31, 60.60*, 47.06, 35.99, 34.78*, 28.49*, 28.10, 23.41*, 23.16. HRMS (ESI-TOF) Calcd for C₁₅H₂₂NO₂ [M+H]⁺: 248.1645; found: 248.1648.

Application towards synthesis of CERC-501

ⁱPr

ⁱPr

сн₃

ⁱPr

(S)-2-(3,5-dimethylphenyl)-1-(2,4,6-triisopropylbenzyl)pyrrolidine (7)

The title compound was obtained by following the method used to synthesize compound **5.** The dethiolated product was obtained as an oil in 85% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.07 (s, 2H), 6.95-6.89 (m, 3H), 3.54 (d, *J* = 12.7 Hz, 1H), 3.40 (m, 2H), 3.32 (d, *J* = 12.7 Hz, 1H), 3.21 (t, *J* = 8.0 Hz, 1H), 2.92 – 2.80 (m, 2H), 2.36 (s, 6H), 2.32 – 2.14 (m, 2H), 1.85 – 1.65 (m, 3H), 1.22 (m, 12H), 1.10 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 148.16, 146.87, 143.96, 137.41, 130.42, 128.60, 125.91, 120.60, 70.78, 52.80, 49.21, 34.85, 34.03, 28.57, 25.20, 23.95, 23.56, 22.84, 21.33.

t-butyl (S)-2-(3,5-dimethylphenyl)pyrrolidine-1-carboxylate (8)

The title compound was obtained by following the method used to synthesize compound **6.** The BOC protected product **8** was obtained as an yellow oil in 59 % yield (2 steps). The er value was determined by HPLC analysis on a Chiralcel IC column (5% isopropanol in hexanes, 0.5 mL/min) with t_r = 27.36 min (minor), 38.87 min (major): 98:2 er. ¹H NMR (600 MHz, CDCl₃) (2:1 mixture of rotamers, peaks corresponding to minor rotamer starred) δ 6.83 (s, 1H), 6.76 (s, 2H), 4.87 (brs, 0.33H)^{*}, 4.69 (s, 0.66H), 3.67-3.43 (m, 2H), 2.36-2.18 (m, 7H), 1.98 – 1.73 (m, 3H), 1.46 (s, 3H)^{*}, 1.19 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 154.66, 154.48^{*}, 144.99, 144.06^{*}, 137.66^{*}, 137.44, 128.27^{*}, 127.95, 123.37, 123.12^{*}, 79.05, 61.19, 60.63^{*}, 47.35^{*}, 47.01, 35.90, 34.87^{*}, 28.51^{*}, 28.13, 23.49^{*}, 23.22, 21.29.

HPLC data:

Please note: Due to restricted C-N thioamide bond rotation the HPLC spectum can show four peaks.

S

2a Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\89B-0.5% IPA Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\untitled.met Acquired: 3/25/2015 11:06:46 AM

Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 30 min without fc 0.5 ml per min.met

Retention Time	Area	Area %	Retention Time	Area	Area %
7.873	377549	2.24	7.800	65129513	98.33
8.627	16467183	97.76	8.600	1109477	1.67
Totals	16844732	100.00	Totals	66238990	100.00

R S

 2b

 Data File:
 C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\95Fre-pure-ADH

 Method:
 C:\EZChrom Elite\Enterprise\Projects\Default\Method\untitled.met

 Acquired:
 6/8/2015 1:40:59 PM

Retention Time	Area	Area %
11.540	3205788	49.21
18.373	3308053	50.78
Totals	6514185	100.00

DAD-CH1 247 nm Results

Retention Time	Area	Area %
11.520	35939602	95.49
18.613	1697228	4.51
Totals	37637176	100.00

2c Area % Report

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-05-740-4-5% IPA-0.5ml.min-30min-IC-IC

 $\label{eq:likelihood} Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-05-709-4-5\% IPA-0.5ml.min-30min-IC-IC$

Retention Time	Area	Area %		
17.587	327839	1.50		
18.633	20617508	94.22		
19.620	936927	4.28		
Totals	21882274	100.00		

Area % Report

 Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\145C-lower-ODH

 Method:
 C:\EZChrom Elite\Enterprise\Projects\Default\Method\untitled.met

 $Data\ File: \ \hat{C}: \ EZChrom\ Elite \ Enterprise \ Projects \ Default \ Data \ Pankaj \ 145Bre-lower\ ODH$

Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 30 min without fc 0.5 ml per min.met Acquired: 7/1/2015 1:18:03 PM

Retention Time	Area	Area %
8.813	239650	0.84
9.253	28236062	99.16
Totals	28475712	100.00

Area % Report

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\145C-higher-ODH Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 45 min without fc 0.5 ml per min.met Acquired: 7/1/2015 5:09:12 PM

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\145B-higher-ODH Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 45 min without fc 0.5 ml per min.met Acquired: 7/1/2015 5:38:01 PM

C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\X-1-48-1re2-IC-IC-1-0.5 C:\EZChrom Elite\Enterprise\Projects\Default\Method\untitled.met

DAD-UHZ 205 IIII Kesults		
Retention Time	Area	Area %
25.200	12616586	50.13
51.800	12550729	49.87
Totals	25167315	100.00

 Data File:
 C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\X-1-48-2-IC

 IC-1-0.5
 Kethod:

 Method:
 C:\EZChrom Elite\Enterprise\Projects\Default\Method\untitled.met

 Acquired:
 12/15/2015 7:49:03 PM

 Printed:
 2/3/2016 3:00:24 PM

Retention Time	Area	Area %
25.100	2134294	4.49
49.860	45366926	95.51
Totals	47501220	100.00
•		

 $Data \ File: \ C:\ EZChrom \ Elite\ Enterprise\ Projects\ Default\ Data\ A 40 min \ without \ fc \ 0.5 \ ml \ per \ min.met$

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\XG-1-38-ODH-IC-1-0.5 Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 40 min without fc 0.5 ml per min.met

Retention Time	Area	Area %
19.333	8968	1.53
19.980	489047	83.47
Totals	585862	100.00

Area % Report

Data File:C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\x-1-51-2-IC-IC-1-0.5 Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 60 min without fc 0.5 ml per min.met

DAD-CH1 250 nm Results		
Retention Time	Area	Area %
20.700	2344156	5.73
24.307	38591343	94.27
Totals	40935499	100.00

$$H_{3}C \land N \land CH_{3}$$

$$R \land S$$
2h

Data File: Method: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pj3-70Bre-rac-5-0.5-IC-IC C:\EZChrom Elite\Enterprise\Projects\Default\Method\untitled.met

Data File:C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pj3-76C-chiral-5-0.5-IC-ICMethod:C:\EZChrom Elite\Enterprise\Projects\Default\Method\untitled.met

Area % Report

Data File:	C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pj3-81A-IC-IC-2-0.5
Method:	C:\EZChrom Elite\Enterprise\Projects\Default\Method\untitled.met

 $\label{eq:likelike} Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-673-rac-670-3-1\% IPA-0.5ml.min-75min-IC-IC \\$

DAD-CH1 250 IIII Results		
Retention Time	Area	Area %
26.273	43479896	30.03
32.667	28240403	19.50
34.733	73091564	50.47
Totals	144811863	100.00

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-673-3-1%IPA-0.5ml.min-75min-IC-IC

DAD-CH1 250 nm Results		
Retention Time	Area	Area %
26.553	5783370	2.51
33.327	1683241	0.73
34.980	222536525	96.75
Totals	230003136	100.00

Area % Report

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-671-1-1%IPA-0.5ml.min-90min-IC-IC

56.793

Totals

13514423

43972979

30.73

100.00

Retention Time	Area	Area %
30.413	2768633	18.26
39.767	408841	2.70
55.867	11986692	79.05
Totals	15164166	100.00

Area % Report

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-672-rac-569-1-1%IPA-0.5ml.min-60min-IC-IC

10782455

73974497

14.58

100.00

 $\label{eq:action} Data \ File: C:\ EZChrom \ Elite\ Enterprise\ Projects\ Default\ Data\ parkaj\ pritha\ pv-04-672-1-1\ PA-0.5\ min-IC-IC \ Parkaj\ pritha\ parkaj\ parkaj\$

42.987

Totals

Retention Time	Area	Area %
40.487	37552590	93.07
43.207	2796590	6.93
Totals	40349180	100.00

ΟМе

3d

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-581-rac-570-3-1%IPA-0.5ml.min-90min-IC-IC

71104 /0	Theu	Recention Time
27.26	13040534	39.700
26.79	12813209	43.440
23.32	11155982	48.073
22.63	10827253	63.260
100.00	47836978	Totals

 $\label{eq:likelihood} Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-581-3-1\% IPA-0.5ml.min-90min-IC-IC$

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-660-rac-656-0.5%IPA-0.5ml.min-75min-ADH-IC

 $\label{eq:linear} Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-660-1-0.5\%\IPA-0.5ml.min-75min-ADH-IC$

Retention Time	Area	Area %
32.453	2138274	1.50
41.020	140064803	98.50
Totals	142203077	100.00

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-661-1-rac-572n-0.5%IPA-0.5ml.min-120min-ADH-IC

 $\label{eq:linear} Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-661-1-0.5\%\IPA-0.5ml.min-120min-ADH-IC$

 Retention Time
 Area
 Area %

 28.640
 564453
 1.23

 32.053
 45321782
 98.77

 Totals
 45886235
 100.00

i0 3g

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-662-1-rac-655-0.5%IPA-0.5ml.min-120min-ADH-IC

DAD-CH1 250 nm Results		
Retention Time	Area	Area %
25.473	29826477	28.85
27.220	21645613	20.93
29.247	21876573	21.16
34.240	30050324	29.06
Totals	103398987	100.00

 $\label{eq:linear} Data \ File: C:\ EZChrom \ Elite\ Enterprise\ Projects\ Default\ Data\ Pankaj\ pritha\ pv-04-662-1-0.5\%\ IPA-0.5ml.min-120min-ADH-IC$

Retention Time	Area	Area %
25.760	61874506	95.50
35.293	2917242	4.50
Totals	64791748	100.00

Area % Report

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-609-571-rac-1-0.5%IPA-0.5ml.min-120min-ADH-IC

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-609-1-0.5%IPA-0.5ml.min-120min-ADH-IC

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-645-2-rac-448-0.5%IPA-0.5ml.min-120min-ADH-IC

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-645-2-0.5%IPA-0.5ml.min-120min-ADH-IC

Retention Time	Area	Area %
29.967	770805	3.96
31.460	18709828	96.04
Totals	19480633	100.00

 $\label{eq:likelihood} Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-610-1-5\%\IPA-0.5ml.min-40min-IC-IC \\$

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-591-1-5% IPA-0.5ml.min-150min-IC-IC

Retention Time	Area	Area %
21.153	868721	33.61
25.500	830376	32.13
Totals	2584511	100.00

Area % Report Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-612-1-5% IPA-0.5ml.min-120min-IC-IC

 $\label{eq:likelihood} Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-621-1-5\% IPA-0.5ml.min-120min-IC-IC$

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-646-4-rac-590-5%IPA-0.5ml.min-150min-ADH-IC

DAD-CH1 250 IIII Kesults		
Retention Time	Area	Area %
51.633	29083244	11.57
53.907	126503815	50.34
89.640	95735506	38.09
Totals	251322565	100.00

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-646-3-5% IPA-0.5ml.min-150min-ADH-IC

DAD-CH1 250 nm Results		
Retention Time	Area	Area %
52.000	1154839	0.62
54.393	180164566	96.79
92.013	4824093	2.59
Totals	186143498	100.00

Retention Time	Area	Area %
15.780	31572650	30.43
16.740	39792203	38.36
17.967	32380145	31.21
Totals	103744998	100.00

 $\label{eq:likelihood} Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-667-2-5\% IPA-0.5ml.min-90min-ADH-ADH \\$

DAD-CITI 250 IIII Results		
Retention Time	Area	Area %
16.147	1229846	5.41
18.433	21501226	94.59
Totals	22731072	100.00

Area % Report

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-664-1-rac-615-5%IPA-0.5ml.min-75min-ADH-IC

DAD-CH1 250 IIII Kesults		
Retention Time	Area	Area %
39.367	221294207	87.43
43.767	26704346	10.55
55.287	5120296	2.02
Totals	253118849	100.00

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-614-2-5%IPA-0.5ml.min-120min-IC-IC

 $\label{eq:likelihood} Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-622-1-5\% IPA-0.5ml.min-120min-IC-IC$

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-675-rac-669-1-1%IPA-0.5ml.min-60min-IC-IC

Retention Time	Area	Area %
32.473	2136277	7.36
34.033	1957312	6.74
41.600	12773658	43.99
57.320	12168351	41.91
Totals	29035598	100.00

 $\label{eq:linear} Data \ File: C:\ EZChrom \ Elite\ Enterprise\ Projects\ Default\ Data\ Pankaj\ pritha\ pv-04-675-1-1\%\ IPA-0.5ml.min-60min-IC-IC$

Retention Time	Area	Area %
32.433	2349216	0.96
33.753	53961097	21.94
40.760	186514787	75.84
57.353	3090692	1.26
Totals	245915792	100.00

ⁱPi

3q Area % Report

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-05-681-recent-1%IPA-0.5ml.min-40min-IC

 $\label{eq:likelihood} Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-05-754-1-1\%\IPA-0.5ml.min-40min-IC$

Retention Time	Area	Area %
12.320	73337621	87.66
13.260	10321513	12.34
Totals	83659134	100.00

Area % Report Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-03-543-1-5%IPA-0.5ml.min-60min-ADH Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 60 min without fc 0.5 ml per min.met

DAD-CH1 250 nm Results

Retention Time	Area	Area %
8.807	18720025	50.34
14.633	18465987	49.66
Totals	37186012	100.00

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pritha\pv-04-559-1-5% IPA-0.5ml.min-60min-ADH

Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 60 min without fc 0.5 ml per min.met

DAD-CH1 250 nm Results Retention Time

Retention Time	Area	Area %
9.373	15781094	94.67
14.853	888740	5.33
Totals	16669834	100.00

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pj3-84AArac-CORR--ADH-2-0.5 Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 50 min without fc 0.5 ml per min.met

DAD-CH1 250 nm Results		
Retention Time	Area	Area %
12.253	25452983	94.53
24.053	1472813	5.47
Totals	26925796	100.00

 Data File:
 C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pj3-38A-racemic-ADH

 Method:
 C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 40 min without fc 0.5 ml per min.met

DAD-CIII 250 IIII Acsuits		
Retention Time	Area	Area %
17.360	6698812	50.40
26.327	6591598	49.60
Totals	13290410	100.00

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pj3-38A-ADH Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 40 min without fc 0.5 ml per min.met

DAD-CIII 250 IIII Kesuits		
Retention Time	Area	Area %
17.400	33593865	95.86
26.053	1450632	4.14
Totals	35044497	100.00

Area % Report

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pj3-84BArac-COR--ADH-0.5-0.5 Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 50 min without fc 0.5 ml per min.met

Data File: C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\pj3-84Echiral--ADH-0.5-0.5 Method: C:\EZChrom Elite\Enterprise\Projects\Default\Method\A 50 min without fc 0.5 ml per min.met

CN Boc 6

Area % Report

Data File:C:\EZChrom Elite\Enterprise\Projects\Default\Data\Pankaj\PPBoc-pure-IC-5-0.5Method:C:\EZChrom Elite\Enterprise\Projects\Default\Method\untitled.met

Retention Time	Area	Area %
17.993	20986575	49.83
21.780	21125754	50.17
Totals	42112329	100.00

Datafile: C:\YuLabData\GangChen\Pankaj112Chiral-3.dat Method: C:\YuLabData\wqf\method\2% 0.5 90 min.met

¹H and ¹³CNMR Spectra

pj3-dimethypyrroli-SM-paper.2.fid

pj3-indoline-SM-paper.1.fid

pj3-isoquinoline-SM-paper.1.fid

pj3-pyrrolidine-pdt-paper.1.fid

pj3-piperidine-pdtnew-paper.1.fid

pj3-azt3-bottom-pdt-paper.1.fid

pj3-azt3-top-pdt-paper.1.fid

572-proton.1.fid

pj-6mem-pFlouro-paper.1.fid

122

pj-dethio2-pdt-paper.1.fid

pj3-BOCpyrrolidine-pdt-paper.1.fid

pj3-dethio-dimethyl.1.fid

References and Notes:

- 1 M. Klussmann, L. Ratjen, S. Hoffmann, V. Wakchaure, R. Goddard, B. List, *Synlett* 14, 2189-2192 (2010).
- 2 S. Kashikura, K. Mori, T. Akiyama, , Org. Lett. 13, 1860–1863 (2011).
- 3 F. R-. Michailidis, L. Guenee, A. Alexakis, *Org. Lett.***15**, 5890–5893 (2013).
- S. S. Zhu, D. R. Cefalo, D. S. La, J. Y. Jamieson, W. M. Davis, A. H. Hoveyda,
 R. R. Schrock, J. Am. Chem. Soc. 121, 8251–8259 (1999).