A signal sequence suppressor mutant that stabilizes an assembled

state of the twin arginine translocase

Qi Huang, Felicity Alcock, Holger Kneuper, Justin C. Deme³, Sarah Rollauer, Susan M. Lea,

Ben C. Berks and Tracy Palmer

SUPPORTING INFORMATION

SI APPENDIX

Clone	TatB substitution/s
BRE1	L9Q K103R
BRE2*	L9Q
BRN2	L9Q Q134V
BRN3*	L9Q
BRN4	L10P V12M
BRN5	L9P
BRQ1*	K30I K65R N99D
BRQ2*	K30I K65R N99D
BRQ3*	136N S41T
BRQ4	L9Q T72A
BRQ5*	136N S41T
BRH1	L9Q N73K
BRH2	E8K L71H
BRH4	F13Y P138L K159R
BRH5*	F13Y
BRH6*	F13Y
BRH7*	L9Q
BRH8	F6Y V32A A69V
BRH9*	F13Y
BKQ1*	F13Y

Table S1. Clones isolated from a *tatB* mutant library following screening for suppression of transport defects of inactive signal peptides. The BRE, BRN, BRQ, BRH, BHH, BKH or BKQ clone nomenclature signify substitutions isolated following screening against RE, RN or KQ variants of the AmiA signal peptide RR motif, respectively.

*identical clones

Clone	TatAB substitution/s
AB-1	TatA K23N, TatB I36N, TatB N119I, TatB S164C
AB-5	TatB L10P
AB-16	TatB L10P, TatB N73Y
AB-157	TatB F13Y
AB-172	TatA A60E, TatA A76R, TatB F13Y

Table S2. Clones isolated from a *tatAB* mutant library following screening for suppression of the transport defect arising from the TatC F94Q substitution.

Strain	Relevant genotype	Source
JM109	endA1, recA1, gyrA96, thi, hsdR17 (r _k -, m _k +), relA1, supE44, Δ(lac-proAB), [F´ traD36, proAB, laqlºZΔM15]	Promega
XL10-gold	Tet ^r ∆(<i>mcrA</i>)183 ∆(<i>mcrCB-hsdSMR-mrr</i>)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F´ proAB lacl⁰ZDM15 Tn10 (Tetʿ) Amy Camʿ]	Agilent
MC4100	F-ΔlacU169 araD139 rpsL150 relA1 ptsF rbs flbB5301	(1)
DADE	As MC4100, Δ <i>tatABC</i> , Δ <i>tatE</i>	(2)
DADE-P	as DADE, <i>pcnB1 zad-</i> 981::Tn <i>10</i> d (Kan ^r)	(3)
ΜΔΒϹ	MC4100 Δ <i>tatBC</i>	(4)
MCDSSAC ∆ <i>tatABC</i>	MC4100, <i>amiA</i> Δ2-33 <i>amiC</i> Δ2-32, Δ <i>tatABC</i> ::Apra	(5)
MC4100 ΔamiA ΔamiC ΔtatABC	MC4100, Δ <i>amiA</i> , Δ <i>amiC</i> , Δ <i>tatABC</i> ::Apra	This work
AyBCE	MC4100 Δ <i>tatA</i> , <i>attB</i> ::P _{tatA} tatA-EAK-eyfp _{A206K}	(4)
AyBCE (<i>tatB</i> L9Q)	As AyBCE, <i>tatB</i> L9Q	This work
AyBCE (<i>tatB</i> L10P)	As AyBCE, <i>tatB</i> _{L10P}	This work
AyBCE (<i>tatB</i> _{F13Y})	As AyBCE, <i>tatB</i> _{F13Y}	This work
AyBCE (<i>tatB</i> _{I36N})	As AyBCE, <i>tatB</i> _{I36N}	This work
AyBCE (<i>tatC</i> _{F94Q})	As AyBCE, <i>tatC</i> _{F94Q}	This work
AyBCE (<i>tatB</i> _{L9Q} <i>tatC</i> _{F94Q})	As AyBCE (<i>tatB</i> _{L9Q} , <i>tatC</i> _{F94Q})	This work
AyBCE (<i>tatB</i> _{L10P} <i>tatC</i> _{F94Q})	As AyBCE (<i>tatB</i> _{L10P} , <i>tatC</i> _{F94Q})	This work
AyBCE (<i>tatB</i> _{F13Y} <i>tatC</i> _{F94Q})	As AyBCE (<i>tatB</i> _{F13Y} , <i>tatC</i> _{F94Q})	This work
AyBCE (<i>tatB</i> _{I36N} <i>tatC</i> _{F94Q})	As AyBCE (<i>tatB</i> _{I36N} , <i>tatC</i> _{F94Q})	This work
BL21(DE3) ∆ <i>tatABC</i>	BL21(DE3), Δ <i>tatABC</i> ::Apra	This work
BW25113	lacl ^q rrnB _{T14} ΔlacZ _{WJ16} hsdR514 ΔaraBAD _{AH33} ΔrhaBA D _{LD78}	(6)
BW25113 ∆glpF ∆tatABC	BW25113, Δ <i>glpF</i> , Δ <i>tatABC</i> ::Apra	This work

 Table S3. Strains used and constructed in this study.

Plasmid	Relevant genotype	Source
pTAT101	Low copy number vector expressing TatABC under the control of <i>tat</i> promoter. Kan ^r .	(7)
pTH19kr	Low copy-number cloning vector. Backbone of pTAT101.	(8)
pTAT101-BF6Y	As pTAT101, TatB F6Y exchange	This work
pTAT101-BE8K	As pTAT101, TatB E8K exchange	This work
pTAT101-BL9P	As pTAT101, TatB L9P exchange	This work
pTAT101-BL9Q	As pTAT101, TatB L9Q exchange	This work
pTAT101-BL10P	As pTAT101, TatB L10P exchange	This work
pTAT101-BF13Y	As pTAT101, TatB F13Y exchange	This work
pTAT101-BK30I	As pTAT101, TatB K30I exchange	This work
pTAT101-BI36N	As pTAT101, TatB I36N exchange	This work
pTAT101-CF94Q	As pTAT101, TatC F94Q exchange	This work
pTAT101-CF94A	As pTAT101, TatC F94A exchange	This work
pTAT101-CF94D	As pTAT101, TatC F94D exchange	This work
pTAT101-CF94G	As pTAT101, TatC F94G exchange	This work
pTAT101-CF94K	As pTAT101, TatC F94K exchange	This work
pTAT101-CF94P	As pTAT101, TatC F94P exchange	This work
pTAT101-CF94R	As pTAT101, TatC F94R exchange	This work
pTAT101-CF94S	As pTAT101, TatC F94S exchange	This work
pTAT101-CF94Q-BF6Y	As pTAT101-CF94Q, TatB F6Y exchange	This work
pTAT101-CF94Q-BE8K	As pTAT101-CF94Q, TatB E8K exchange	This work
pTAT101-CF94Q-BL9P	As pTAT101-CF94Q, TatB L9P exchange	This work
pTAT101-CF94Q-BL9Q	As pTAT101-CF94Q, TatB L9Q exchange	This work
pTAT101-CF94Q- BL10Q	As pTAT101-CF94Q, TatB L10P exchange	This work
pTAT101-CF94Q- BF13Y	As pTAT101-CF94Q, TatB F13Y exchange	This work
pTAT101-CF94Q-BK30I	As pTAT101-CF94Q, TatB K30I exchange	This work
pTAT101-CF94Q- BI36N	As pTAT101-CF94Q, TatB I36N exchange	This work
pTAT101-BL9Q F13Y	As pTAT101, TatB L9Q, F13Y exchange	This work
pTAT101-BL10P F13Y	As pTAT101, TatB L10P, F13Y exchange	This work
pTAT101-BL9Q I36N	As pTAT101, TatB L9Q, I36N exchange	This work
pTAT101-BL10P I36N	As pTAT101, TatB L10P, I36N exchange	This work
pTAT101-CE103A	As pTAT101, TatC E103A exchange	This work
pTAT101-CE103A- BL9Q	As pTAT101-CE103A, TatB L9Q exchange	This work
pTAT101-CE103A- BL10P	As pTAT101-CE103A, TatB L10P exchange	This work
pTAT101-CE103A- BF13Y	As pTAT101-CE103A, TatB F13Y exchange	This work
pTAT101-CE103A- BI36N	As pTAT101-CE103A, TatB I36N exchange	This work
pTAT101-CE103K	As pTAT101, TatC E103K exchange	(7)
pTAT101-CE103K- BL9Q	As pTAT101-CE103K, TatB L9Q exchange	This work
pTAT101-CE103K- BL10P	As pTAT101-CE103K, TatB L10P exchange	This work

pTAT101-CE103K- BF13Y	As pTAT101-CE103A, TatB F13Y exchange	This work
pTAT101-CE103K- BI36N	As pTAT101-CE103A, TatB I36N exchange	This work
pTAT101-CP48L	As pTAT101, TatC P48L exchange	(9)
pTAT101-CP48L- BL9Q	As pTAT101-CP48L, TatB L9Q exchange	This work
pTAT101-CP48L - BL10P	As pTAT101-CP48L, TatB L10P exchange	This work
pTAT101-CP48L - BF13Y	As pTAT101-CP48L, TatB F13Y exchange	This work
pTAT101-CM59K	As pTAT101, TatC M59K exchange	(9)
pTAT101-CM59K- BL9Q	As pTAT101-CM59K, TatB L9Q exchange	This work
pTAT101-CM59K - BL10P	As pTAT101-CM59K, TatB L10P exchange	This work
pTAT101-CM59K - BF13Y	As pTAT101-CM59K, TatB F13Y exchange	This work
pTAT101-CV145E	As pTAT101, TatC V145E exchange	(9)
pTAT101-CV145E- BL9Q	As pTAT101-CV145E, TatB L9Q exchange	This work
pTAT101-CV145E - BL10P	As pTAT101-CV145E, TatB L10P exchange	This work
pTAT101-CV145E - BF13Y	As pTAT101-CV145E, TatB F13Y exchange	This work
pTAT101-CD211K	As pTAT101, TatC D211K exchange	This work
pTAT101-CD211K- BL9Q	As pTAT101-CD211K, TatB L9Q exchange	This work
pTAT101-CD211K - BL10P	As pTAT101-CD211K, TatB L10P exchange	This work
pTAT101-CD211K - BF13Y	As pTAT101-CD211K, TatB F13Y exchange	This work
pTAT101-CQ215K	As pTAT101, TatC Q215K exchange	This work
pTAT101-CQ215K- BL9Q	As pTAT101-CQ215K, TatB L9Q exchange	This work
pTAT101-CQ215K - BL10P	As pTAT101-CQ215K, TatB L10P exchange	This work
pTAT101-CQ215K - BF13Y	As pTAT101-CQ215K, TatB F13Y exchange	This work
pTAT101 cys less	As pTAT101, All 4 cys codons in <i>tatC</i> substituted with ala	(9)
pTAT101 cys less CM205C	As pTAT101 cys less, TatC M205C exchange	(9)
pTAT101 cys less	As pTAT101 cys less CM205C, TatB L9Q	This work
BL9Q CM205C	exchange	-
pIAI101 cys less	As p1A1101 cys less CM205C, TatB L10P	I his work
BL10P CM205C	exchange	This work
BF13Y CM205C	exchange	
DIAT101 Cysless BI36N CM205C	AS PTATIUT CYSIESS CM205C, TatB I36N exchange	I his work
pTAT101 cys less	As pTAT101 cys less CM205C, TatC F94Q	This work
CF94Q M205C		
pTAT101 cys less BL10P CF94Q M205C	As pTAT101 cys less CF94Q M205C, TatB L10P	This work

pTAT101 cys less BF13Y CF94Q M205C	As pTAT101 cys less CF94Q M205C, TatB F13Y	This work
pQE80-CueO	As pQE80, carrying <i>cueO_{his}</i>	(4)
pQE80-CueO ^{ĸĸ} h	As pQE80-CueO, CueO R3K, R4K exchange	(4)
pTAT1d	Medium copy number vector expressing TatABC	(10)
pUNIPROM	pT7.5 vector carrying a <i>tat</i> promoter. Backbone of pTAT1d	(11)
pTAT1d-CF94Q	As pTAT1d, TatC F94Q exchange	This work
pTAT1d-CF94A	As pTAT1d, TatC F94A exchange	This work
pTAT1d-CF94D	As pTAT1d, TatC F94D exchange	This work
pTAT1d-CF94G	As pTAT1d, TatC F94G exchange	This work
pTAT1d-CF94K	As pTAT1d, TatC F94K exchange	This work
pTAT1d-CF94P	As pTAT1d, TatC F94P exchange	This work
pTAT1d-CF94R	As pTAT1d, TatC F94R exchange	This work
pTAT1d-CF94S	As pTAT1d, TatC F94S exchange	This work
pTAT1d-CF94Q-BL9Q	As pTAT1d-CF94Q, TatB L9Q exchange	This work
pTAT1d-CF94Q-BL10P	As pTAT1d-CF94Q, TatB L10P exchange	This work
pTAT1d-CF94Q-BF13Y	As pTAT1d-CF94Q, TatB F13Y exchange	This work
pTAT1d-CF94Q-BI36N	As pTAT1d-CF94Q, TatB I36N exchange	This work
pTATBC1d	pUNIPROM carrying tatBC	This work
pSUAmiA	pSU18 carrying <i>amiA</i>	(12)
pSUAmiA-RD	As pSUAmiA, R14D exchange	This work
pSUAmiA-RE	As pSUAmiA, R14E exchange	This work
pSUAmiA-RH	As pSUAmiA, R14H exchange	This work
pSUAmiA-RN	As pSUAmiA, R14N exchange	This work
pSUAmiA-RQ	As pSUAmiA, R14Q exchange	This work
pSUAmiA-KH	As pSUAmiA, R13K, R14H exchange	This work
pSUAmiA-KQ	As pSUAmiA, R13K, R14Q exchange	This work
pSUAmiA-HH	As pSUAmiA, R13H, R14H exchange	This work
pSUSuflss-mAmiA	pSU18 carrying Suflss-mAmiA	This work
pSUSuflss-mAmiA-RD	As pSUSuffss-mAmiA_Suff R6D exchange	This work
pSUSuflss-mAmiA-RE	As pSUSuflss-mAmiA, Sufl R6F exchange	This work
nSUSuflss-mAmiA-RH	As pSUSufiss-mAmiA, Sufi R6H exchange	This work
nSUSufiss-mAmiA-RN	As nSUSufiss-mAmiA, Sufi R6N exchange	This work
nSUSuflss-mAmiA-RO	As nSUSufiss-mAmiA, Sufi R6O exchange	This work
nSUSuflss-mAmiA-KH	As nSUSufiss-mAmiA, Sufi R5K, R6H exchange	This work
nSUSuflss-mAmiA-KO	As pSUSuffss-mAmiA, Suff R5K, R6O exchange	This work
nSUSufiss-mAmiA-KK	As nSUSufiss-mAmiA, Sufi R5K, R6K exchange	This work
nSUSufles-mΔmiΔ_HH	As pSUSuffes-mAmiA, Suff R5H, R6H exchange	This work
nSUSuflssnoH-mAmiA	As $pOOOuthas - mAmiA$, our ron, ron exchange As $nSUSuffee-mAmiA$ suff $A11-21$	This work
nSUmAmiA	As $pSUSUISS-III, TIII, Suit \Delta T = 2TAs nSUIAmiA = miA = A2-34$	This work
	As $pOOAnna, anna az-of$	(13)
	As pQLADC, but with tatA gene in frame deleted	(13) This work
BE8K	AS PEATESDA-DC, Taib Eok exchange	
pFAT75∆A-BC BF13Y	As pFAT75∆A-BC, TatB F13Y exchange	This work
pFAT75∆A-BC BI36N	As pFAT75∆A-BC, TatB BI36N exchange	This work
pFAT75∆A-BC	As pFAT75∆A-BC, TatC F94Q exchange	This work

CF94Q		
pFAT75∆A-BC	As pFAT75∆A-BC CF94Q, TatB L9Q exchange	This work
BL9Q CF94Q		
pFAT75∆A-BC	As pFAT75∆A-BC CF94Q, TatB L10P exchange	This work
BL10P CF94Q		
pFAT75∆A-BC	As pFAT75∆A-BC CF94Q, TatB F13Y exchange	This work
BF13Y CF94Q		
pFAT75∆A-BC	As pFAT75∆A-BC CF94Q, TatB I36N exchange	This work
BI36NC CF94Q		
pFA1/5ΔA-BC-AmiAnis	As pFA1750A-BC also producing C-terminally	I his work
	$\Lambda_{\rm S}$ nEAT75AA BC AmiAbic AmiA D14D	This work
AmiARDhis	exchange	
pFAT75AA-BC-	As $pEAT75AA-BC-AmiAhis$ AmiA R14N	This work
AmiARNhis	exchange	
pFAT75∆A-BC-	As pFAT75∆A-BC-AmiAhis, AmiA R13K, R14K	This work
AmiAKKhis	exchange	
pFAT75∆A-BC-	As pFAT75∆A-BC-AmiAhis, AmiA R13K, R14Q	This work
AmiAKQhis	exchange	
pFAT75∆A-BF13YC-	As pFAT75∆A-BC, TatBF13Y exchange	This work
AmiAhis		
PFAI/50A-BF13YC-	AS PEAT 750A-BE13YC-AMIANIS, AMIA R14D	I his work
	exchange	Thio work
AmiARNhis	evchange	
pFAT75AA-BF13YC-	As pEAT75AA-BE13YC-AmiAhis AmiA R13K	This work
AmiAKKhis	R14K exchange	
pFAT75∆A-BF13YC-	As pFAT75∆A-BF13YC-AmiAhis, AmiA R13K,	This work
AmiAKQhis	R14Q exchange	
pFAT75∆A-BC-	As pFAT75∆A-BC also producing C-terminally	This work
mAmiAhis	his-tagged mature AmiA	
pFAT75ΔA-BF13YC-	As pFAT75∆A-BC-mAmiAhis, TatBF13Y	This work
mAmiAhis	exchange	
pQE70-mAmiA	pQE70 producing C-terminally his-tagged mature	This work
n∩E70 m∆miC	AIIIIA nOE70 producing C terminally his tagged mature	This work
pgero-mamic		THIS WORK
pSuflss-GEPhis	As pCDEDuet-1 carrying synthetic Sufl signal	This work
	sequence-fused GFPhis	
pSuflssRD-GFPhis	As pSuflss-GFPhis, Sufl R6D exchange	This work
pSuflssRN-GFPhis	As pSuflss-GFPhis, Sufl R6N exchange	This work
pSuflssKK-GFPhis	As pSuflss-GFPhis, Sufl R5K, R6K exchange	This work
pQE80 suflhis	pQE80 carrying suff _{bis}	This work
pQE80 RDsuflhis	pQE80 suffhis Suff R6D exchange	This work
nOE80 RNsuflhis	nOE80 suffhis Suff R6N exchange	This work
nOE80 KOsuflhis	nOE80 suffhis Suff R5K R60 exchange	This work
nMAK705	Cloning vector with a temperature-sensitive	(14)
piniAICI 00	replicon	(14)
pMAK-AupBC	As pMAK705, carrving 500 bp upstream	This work
F	sequence of <i>tatA</i> and <i>tatBC</i> sequence	
pMAK-AupBC-BL9Q	As pMAK-AupBC, TatB L9Q exchange	This work
pMAK-AupBC-BL10P	As pMAK-AupBC, TatB L10P exchange	This work
pMAK-AupBC-BF13Y	As pMAK-AupBC, TatB F13Y exchange	This work

pMAK-AupBC-BI36N	As pMAK-AupBC, TatB I36N exchange	This work
pMAK-AupBC-CF94Q	As pMAK-AupBC, TatC F94Q exchange	This work
pMAK-AupBC- BL9Q	As pMAK-AupBC, TatB L9Q, TatC F94Q	This work
CF94Q	exchange	
pMAK-AupBC- BL10P	As pMAK-AupBC, TatB L10P, TatC F94Q	This work
CF94Q	exchange	
pMAK-AupBC- BF13Y	As pMAK-AupBC, TatB F13Y, TatC F94Q	This work
CF94Q		
pMAK-AupBC- BI36N	As pMAK-AupBC, TatB I36N, TatC F94Q	This work
	exchange	
pBAD24	Arabinose-inducible protein expression vector	(15)
pBADTatABChis	As pBAD24, carrying <i>tatABC</i> his	This work
pBADTatABChis-BL9Q	As pBADTatABChis, TatB L9Q exchange	This work
pBADTatABChis-BL10P	As pBADTatABChis, TatB L10P exchange	This work
pBADTatABChis-	As pBADTatABChis, TatB F13Y exchange	This work
BF13Y		
pBADTatABChis-BI36N	As pBADTatABChis, TatB I36N exchange	This work
pBAD22SecY(∆plug)EG	pBAD22, producing SecY(Δcodons62-72)EG	lan Collinson
p101C*TatBC	Low copy vector for expression of <i>tatBC</i> from the	(4)
	tatA promoter with a modified RBS	
p101C*BCflag	p101C*BC derivative producing TatB and C-	This work
	terminally flag-tagged TatC	
p101C*BCflag E8K	As p101C*BCflag, TatB E8K exchange	This work
p101C*BCflag F13Y	As p101C*BCflag, TatB F13Y exchange	This work

 Table S4. Plasmids used and constructed in this study

Primer name	Sequence (5'-3')
AmiARDf	CTCACTTCGCGCGACCAGGTGCTG
AmiARDr	CAGCACCTGGTCGCGCGAAGTGAG
AmiAREf	CTCACTTCGCGCGAACAGGTGCTG
AmiAREr	CAGCACCTGTTCGCGCGAAGTGAG
AmiARNf	CTCACTTCGCGCAACCAGGTGCTG
AmiARNr	CAGCACCTGGTTGCGCGAAGTGAG
AmiARQf	CTCACTTCGCGCCAACAGGTGCTG
AmiARQr	CAGCACCTGTTGGCGCGAAGTGAG
AmiARHf	CTCACTTCGCGCCACCAGGTGCTG
AmiARHr	CAGCACCTGGTGGCGCGAAGTGAG
AmiAHHf	CTCACTTCGCACCACGAGGTGCTG
AmiAHHr	CAGCACCTGGTGGTGCGAAGTGAG
AmiAKHf	CTCACTTCGAAACACCAGGTGCTG
AmiAKHr	CAGCACCTGGTGTTTCGAAGTGAG
AmiAKQf	CTCACTTCGAAACAACAGGTGCTG
suflssFE	CCGGAATTCGTTTTACATGGAGCAAATATG
suflssR	GTTCGTCTTTTGCGCTGGCCTTCAGGG
amiA-mF	GGCCAGCGCAAAAGACGAACTTTTAAAAACC
amiA-mRX	GACTCTAGATTATCGCTT TTTC
AmiAKQr	CAGCACCTGTTGTTTCGAAGTGAG
Suflss-RDf	GTCACTCAGTCGGGATCAGTTCATTCAGGC
Suflss-RDr	GCCTGAATGAACTGATCCCGACTGAGTGAC
Suflss-RHf	GTCACTCAGTCGGCATCAGTTCATTCAGGC
Suflss-RHr	GCCTGAATGAACTGATGCCGACTGAGTGAC
Suflss-RNf	GTCACTCAGTCGGAACCAGTTCATTCAGGC
Suflss-RNr	GCCTGAATGAACTGGTTCCGACTGAGTGAC
Suflss-RQf	GTCACTCAGTCGGCAGCAGTTCATTCAGGC
Suflss-RQr	GCCTGAATGAACTGCTGCCGACTGAGTGAC
Suflss-RKf	GTCACTCAGTCGGAAACAGTTCATTCAGGC
Suflss-RKr	GCCTGAATGAACTGTTTCCGACTGAGTGAC
Suflss-KHf	GTCACTCAGTAAACATCAGTTCATTCAGGC
Suflss-KHr	GCCTGAATGAACTGATGTTTACTGAGTGAC
Suflss-KQf	GTCACTCAGTAAACAGCAGTTCATTCAGGC
Suflss-KQr	GCCTGAATGAACTGCTGTTTACTGAGTGAC
Suflss-KKf	GTCACTCAGTAAAAAACAGTTCATTCAGGC
Suflss-KKr	GCCTGAATGAACTGTTTTTACTGAGTGAC
Suflss-HHf	GTCACTCAGTCATCAGTTCATTCAGGC
Suflss-HHr	GCCTGAATGAACTGATGATGACTGAGTGAC
Sufl-noHF	CGGCGTCAGTTCATTCAGCCCCTGAAGGCCAGCGCA
Sufl-noHR	TGCGCTGGCCTTCAGGGGCTGAATGAACTGACGCCG
AmiA-nossFE	CCGGAATTCTATTACAACTCAGGCCGTATGAAAGACGAACTTTT AAAAACCAG
AmiAFATApal-F	GCGCGGGCCCATTAAAGAGGAGAAATTAACCATGAGCACTTTT AAACCACTAAAAAC
mAmiAFATApal-F	GCGCGGGCCCATTAAAGAGGAGAAATTAACCATGAAAGACGAA CTTTTAAAAACCAG

mAmiA-SphI-F	GCGCGCATGCGAAAAGACGAACTTTTAAAAACC
AmiAnostopBamHI -R	CGCGGATCCTCGCTTTTCGAATGTGCTTTC
mAmiC-SphI-F	GCGCGCATGCGAGCGGTCAGCCAGGTCGTG
AmiCnostopBamHI -R	CGC <u>GGATCC</u> TCCCCTTCTCGCCAGCGTC
C-F94S1	GGTGTGGGCATCTATCGCCCCAG
C-F94S2	CTGGGGCGATAGATGCCCACACC
C-F94A1	GGTGTGGGCAGCGATCGCCCCAG
C-F94A2	CTGGGGCGATCGCTGCCCACACC
C-F94K1	GGTGTGGGCAAAAATCGCCCCAG
C-F94K2	CTGGGGCGATTTTTGCCCACACC
C-F94Q1	GGTGTGGGCACAGATCGCCCCAG
C-F94Q2	CTGGGGCGATCTGTGCCCACACC
C-F94R1	GGTGTGGGCACGCATCGCCCCAG
C-F94R2	CTGGGGCGATGCGTGCCCACACC
C-F94P1	GGTGTGGGCACCGATCGCCCCAG
C-F94P2	CTGGGGCGATCGGTGCCCACACC
C-F94D1	GGTGTGGGCAGATATCGCCCCAG
C-F94D2	CTGGGGCGATATCTGCCCACACC
C-F94G1	GGTGTGGGCAGGCATCGCCCCAG
C-F94G2	CTGGGGCGATGCCTGCCCACACC
C-F94C1	GGTGTGGGCATGCATCGCCCCAG
C-F94C2	CTGGGGCGATGCATGCCCACACC
B-F6Yf	GTTTGATATCGGTTATAGCGAACTGC
B-F6Yr	GCAGTTCGCTATAACCGATATCAAAC
B-L9Qf	GGTTTTAGCGAACAGCTATTGGTG
B-L9Qr	CACCAATAGCTGTTCGCTAAAACC
B-L9Pf	GGTTTTAGCGAACCGCTATTGGTG
B-L9Pr	CACCAATAGCGGTTCGCTAAAACC
B-L10Pf	GCGAACTGCCATTGGTGTTCATC
B-L10Pr	GATGAACACCAATGGCAGTTCGC
B-F13Yf	GCTATTGGTGTACATCATCGGCC
B-F13Yr	GGCCGATGATGTACACCAATAGC
B-K30lf	GTGGCGGTAATTACGGTAGCGG
B-K30lr	CCGCTACCGTAATTACCGCCAC
B-I36Nf	GTAGCGGGCTGGAATCGCGCGTTGC
B-I36Nr	GCAACGCGCGATTCCAGCCCGCTAC
tatB E8K 1	
C-E103A1	
C M50K1	
C-M59K1	
0-10103112	

C-V145E1	CGGAAGGGGAACAGGTATCCAC
C-V145E2	GTGGATACCTGTTCCCCTTCCG
C-D211K1	CTGACGCCGCCGAAAGTCTTCTCGCAAAC
C-D211K2	GTTTGCGAGAAGACTTTCGGCGGCGTCAG
C-Q215K1	GTCTTCTCGAAAACGCTGTTG
C-Q215K2	CAACAGCGTTTTCGAGAAGAC
TatB-L9QL10P-F	GGTTTTAGCGAACAGCCATTGGTGTTCATC
TatB-L9QL10P-R	GATGAACACCAATGGCTGTTCGCTAAAACC
TatB-L10PF13Y-F	GCGAACTGCCATTGGTGTACATCATCGG
TatB-L10PF13Y-R	CCGATGATGTACACCAATGGCAGTTCGC
TatA-FB	CAGAGGAGGATCCATGGG
TatB-RS	GTATCGTCGACAGACATGC
TatCR1d	CTTGGGCTGCAGCCTTATTCTTC
TatC93R	TGCCCACACCTGATAGAG
TatCm6	CTTCCTCGAGTGATAAACCTTAAGCATG
TatC95F	ATCGCCCCAGCGCTGTAT
TatAup1-Xba I	CGCTCTAGAGAAAACCCTGCTCTACGTC
TatAup2-Clal	GCGCATCGATAAGCTTGATATCGAAT
TatA6B7-Clal	GCGCATCGATGATAAAGAGCAGGTGTAATCCGTGTTTGATATC
	GGTTTTAGC
TatCrev-KpnI	CGGGGTACCTTATTCTTCAGTTTTTTCGCTTTC
TatANcol	GCGCCCATGGGTGGTATCAGTATTTGG
HisXba	GCGCTCTAGATTAGTGATGGTGATGGTG
STIPE-ISH	GCGGATACGAATCAGGAACAG
pT7.5R	CGCTGAGATAGGTGCC.
p101C*BCflag_F	GAAAGCGAAAAAACTGAAGAAGACTACAAGGACGATGACAAGT
	AAGGCTGCAGGCATGCAAG
p101C*BCflag_R	CTTGCATGCCTGCAGCCTTACTTGTCATCGTCCTTGTAGTCTTC
	TTCAGTTTTTCGCTTTC

 Table S5. Oligonucleotides used in this study

Supplementary References

- 1. Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: *in vivo* probe for transcriptional control sequences. *Proc Natl Acad Sci USA* 76(9):4530-4533.
- 2. Wexler M, *et al.* (2000) TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export. *J Biol Chem* 275(22):16717-16722.
- 3. Lee PA, *et al.* (2006) Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component. *J Biol Chem* 281(45):34072-34085.
- 4. Alcock F, *et al.* (2013) Live cell imaging shows reversible assembly of the TatA component of the twin-arginine protein transport system. *Proc Natl Acad Sci USA* 110(38):E3650-3659.
- 5. Keller R, de Keyzer J, Driessen AJ, Palmer T (2012) Co-operation between different targeting pathways during integration of a membrane protein. *Journal Cell Biol* 199(2):303-315.
- 6. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci USA* 97(12):6640-6645.
- 7. Kneuper H, *et al.* (2012) Molecular dissection of TatC defines critical regions essential for protein transport and a TatB-TatC contact site. *Mol Microbiol* 85(5):945-961.
- 8. Hashimoto-Gotoh T, *et al.* (2000) A set of temperature sensitive-replication/segregation and temperature resistant plasmid vectors with different copy numbers and in an isogenic background (chloramphenicol, kanamycin, *lacZ*, *repA*, *par*, *polA*). *Gene* 241(1):185-191.
- 9. Cléon F, *et al.* (2015) The TatC component of the twin-arginine protein translocase functions as an obligate oligomer. *Mol Microbiol* 98(1):111-129.
- 10. Maldonado B, *et al.* (2011) Characterisation of the membrane-extrinsic domain of the TatB component of the twin arginine protein translocase. *FEBS Lett* 585(3):478-484.
- 11. Jack RL, *et al.* (2004) Coordinating assembly and export of complex bacterial proteins. *EMBO J* 23(20):3962-3972.
- 12. Ize B, Stanley NR, Buchanan G, Palmer T (2003) Role of the *Escherichia coli* Tat pathway in outer membrane integrity. *Mol Microbiol* 48(5):1183-1193.
- 13. Tarry MJ, *et al.* (2009) Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system. *Proc Natl Acad Sci USA* 106(32):13284-13289.
- 14. Hamilton CM, Aldea M, Washburn BK, Babitzke P, Kushner SR (1989) New method for generating deletions and gene replacements in *Escherichia coli*. *J Bacteriol* 171(9):4617-4622.

15. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose P_{BAD} promoter. *J Bacteriol* 177(14):4121-4130.

Supplementary Figure Legends

Figure S1. Substitutions of the twin arginines in the AmiA signal peptide prevent growth in the presence of SDS. Strain MCDSSAC $\Delta tatABC$ producing wild type tatABC from plasmid pTAT1d and either wild type ('RR') or signal peptide point-substituted AmiA, as indicated, from pSUAmiA. The strain and plasmid combinations were cultured overnight in LB medium supplemented with chloramphenicol and ampicillin (for plasmid selection), after which they were streaked onto LB agar containing the same antibiotics, with and without the addition of 2% SDS and incubated for 16 hr at 37°C.

Figure S2. TatB variants are able to restore Tat transport to a range of defective twin arginine substitutions in the AmiA signal sequence. Growth of MCDSSAC $\Delta tatABC$ coproducing the indicated TatB variants (with wild type *tatA* and *tatC*) from pTAT101, or the empty plasmid pTH19kr (indicated by ' Δtat ') alongside signal peptide variants of AmiA, on LB agar supplemented with chloramphenicol and kanamycin, with and without the addition of 2% SDS as indicated. An 8µl aliquot of each strain/plasmid combination following aerobic growth to an OD₆₀₀ of 1.0 was spotted and incubated for 16 hr at 37°C. A. Individual signal peptide substitutions of AmiA (indicated to the left of each panel) were tested against the TatB suppressors F6Y, L9P, L9Q, L10P, F13Y, K30I and I36N. B. The TatB E8K suppressor was tested for the ability to suppress the indicated AmiA signal peptide substitutions.

Figure S3. TatB variants are able to restore Tat transport to a range of defective twin arginine substitutions in the Sufl signal sequence. Growth of MCDSSAC $\Delta tatABC$ coproducing the indicated TatB variants (with wild type *tatA* and *tatC*) from pTAT101, or the empty plasmid pTH19kr (indicated by ' Δtat ') alongside signal peptide variants of Sufl fused to the AmiA mature domain, on LB agar supplemented with chloramphenicol and kanamycin, with and without the addition of 2% SDS as indicated. An 8µl aliquot of each strain/plasmid combination following aerobic growth to an OD₆₀₀ of 1.0 was spotted and incubated for 16 hr at 37°C. A. Individual signal peptide substitutions of AmiA (indicated to the left of each panel) were tested against the TatB suppressors F6Y, L9P, L9Q, L10P, F13Y, K30I and I36N. B. The

TatB E8K suppressor was tested for the ability to suppress the indicated AmiA signal peptide substitutions

Figure S4. A subset of amino acid substitutions at TatCF94 abolish Tat activity when produced at medium and low copy number. A and C. Growth of DADE coproducing either wild type TatABC (Tat⁺), wild type TatAB alongside F94-substituted TatC or the cognate empty plasmid (Tat⁻) on LB agar containing 2% SDS. A single colony of each strain/plasmid combination was resuspended in 30 μ l of PBS and an 8 μ l aliquot was spotted onto LB agar supplemented with appropriate antibiotics, along with 2% SDS as indicated. Plates were incubated for 16 hr at 37°C. B and D. Detection of TatC protein present in membrane fractions of the same strain and plasmid combinations as in A. and C., respectively, by Western immunoblot with anti-TatC antiserum. A total of 5 μ g membranes was loaded per lane for TatC produced from pTAT1d (B) and 20 μ g per lane for membranes produced from strains harboring pTAT101 derivatives (D).

Figure S5. TatB variants cannot supress TatC inactivating substitutions outside of the signal peptide binding site. Growth of DADE ($\Delta tatABCD$, $\Delta tatE$) coproducing wild type TatA alongside and the indicated substitution in TatB alongside either of TatC P48L, TatC M59K, TatC V145E, TatC D211K or TatC Q215K as indicated, from plasmid pTAT101 on LB agar or LB agar containing 2% SDS. A single colony of each strain/plasmid combination was resuspended in 30µl of PBS and an 8µl aliquot was spotted onto LB agar supplemented with appropriate antibiotics, along with 2% SDS as indicated, and incubated for 16 hr at 37°C.

Figure S6. The suppressive effect of the TatB variants is not additive and mature AmiC is not exported in the presence of the TatB F13Y suppressor. A. Growth of DADE coproducing either wild type TatABC (Tat⁺), wild type TatAB alongside F94-substituted TatC or the cognate empty plasmid (Tat⁻) on LB agar or LB agar containing 2% SDS. B. Growth of MCDSSAC $\Delta tatABC$ coproducing the indicated TatB variants (with wild type *tatA* and *tatC*) from pTAT101, or the empty plasmid pTH19kr (indicated by ' Δtat ') alongside the RN or KK

17

signal peptide variants of Sufl fused to the AmiA mature domain, as indicated, on LB agar with or without the addition of 2% SDS. C. Strain MC4100 Δ *amiA* Δ *amiC* Δ *tatABC* coproducing either wild-type TatB or TatB F13Y (with wild type *tatA* and *tatC*) from pTAT101 and the AmiA or AmiC mature domains (from pQE70-mAmiA or pQE70-mAmiC, respectively) on LB agar or LB agar containing 2% SDS. In each case a single colony of each strain/plasmid combination was resuspended in 30µl of PBS and an 8µl aliquot was spotted onto LB agar supplemented with appropriate antibiotics, along with 2% SDS where indicated. Plates were incubated for 16 hr at 37°C.

Figure S7. The TatB suppressors support export of his-tagged SufI with its native signal peptide. A. and B. *E. coli* strain DADE producing wild type TatA and TatC and the indicated TatB variants alongside wild-type SufI-his or the indicated signal-peptide variants were fractionated into whole cell (upper panels) and periplasm (lower panels) fractions, then analysed by Western blot with anti-6X His tag® or anti-RNA polymerase β subunit antibodies (cytoplasmic control protein). wc – whole cell.

Figure S8. TatBC and SufIss-GFP-His twin-arginine variants are detectable in whole cell samples. A. and B. Cells producing SufIss-GFP-His with the wild type (RR) or twin-arginine substituted SufI signal peptide, as indicated, alongside TatC and either wild type TatB or the E8K, F13Y or I36N substituted variants, or C. and D. Cells producing SufIss-GFP-His with the wild type SufI signal peptide along with either wild type TatBC, the TatC F94Q allele along with either wild type TatB or the L9Q, L10P, F13Y or I36N substituted variants, or the TatC E103K allele along with either wild type TatB or the L9Q, L10P, F13Y or I36N substituted variants, as indicated were harvested and resuspended in PBS. A. and C. The fluorescence intensity and OD_{600} of the samples were measured using a plate reader and the Fluorescence/OD₆₀₀ plotted for each sample. B. and D. 20 µl of each cell suspension was taken, all samples were normalized to the same OD_{600} and then analysed by SDS-PAGE followed by western blot using a TatB-TatC mixed antibody.

18

Figure S9. TatBC complexes containing the TatB F13Y suppressor do not co-purify with signal peptide variants of AmiA. C-terminally his-tagged wild type AmiA, twin-arginine substituted AmiA or signal sequence-less AmiA, as indicated was co-produced alongside wild type TatBC or TatBF13Y/TatC and purified using nickel beads from digitonin–treated cell extracts. Aliquots of the load and elution fractions were subject to SDS-PAGE followed by Western blot using either anti-His, anti-TatB and TatC antibodies.

Figure S10. TatB variants are extracted from the membrane with digitonin. Membrane suspensions (containing equivalent amounts of total protein) from strain DADE coproducing either wild type TatABC or wild type TatA and TatC alongside the indicated amino acid variant of TatB were solubilized by addition of 2% digitonin and incubation on ice for 30 min. Samples total membranes and digitonin solubilized material (each containing 10µg protein) were analysed by SDS-PAGE followed by western blotting with anti-TatA, anti-TatB or anti-TatC antibodies as indicated.

Figure S11. Constitutive oligomerisation of TatA is not promoted by the TatB L9Q, L10P or I36N substitutions. Fluorescence images of TatA-YFP in representative cells of A. strains AyBCE or AyBC_{F94Q}E (encoding chromosomal TatC F94Q) in the presence (pAmiA) or absence of plasmid-encoded wild type AmiA, as indicated (reproduced from Fig 5A). B. strains AyB_{L9Q}CE (encoding chromosomal TatB L9Q), AyB_{L10P}CE (encoding chromosomal TatB L10P) and AyB_{I36N}CE (encoding chromosomal TatC F94Q substitution. Scale bar: 1 μ m. Note that the pictures in panel A are identical to those in Fig 5A and were included here to provide a direct comparison with panel B.

Fig S1

А								101	ger	F6Y	101	iger	Fel.
	WT TatB	∆tat	TatB F6Y	WT TatB	∆tat	TatB F6Y		L9P	L9Q	Liop	L9P	L90-	O Liop
	TatB L9P	TatB L9Q	TatB L10P	TatB	TatB	TatB	RN	•	•		Cux	KANI	136N
	TatB F13Y	TatB K30I	TatB I36N	TatB F13Y	TatB K30I	TatB I36N		F'S1	¥ 301	1 361	0	0	0
RR	-9p FIST	(76+ 170 170 170	Fer Liop Isbu		19K L9a Kwi	FLY Lor Dbay	RQ	101 9P F13Y	1967 • 198 • K30I	F6Y	1 00 9 PL	1964 190 1901	F6Y Liop NdEE
RD	-9p	[Kr ● L9Q K≫[ЕСҮ 	કુર L૧૧ નિર્ધ	1984 190. Kbil	F6Y Liop Isén	КН	L 9p FISY	(]¥r ↓ ↓98 ≮30[F6Y Liop 136N	Lab Fol	.9×+ L9a 4301	FGY Luop Ison
RE	101 1917 Fax	1964 L90 K301))?? 1)?? Fiob	Eisz Lab	1967 1966 1968 1969	F6Y Liop I36N	KQ	ю 1 - 9р - FBY	1]Fr 1]Fr K30]	F6Y L.00P 2.30M		.9Kr L9Q K301	F6Y Liop L3bod
RH	F15Y	(9FF 0 L90 K301	FGY Liop Isba	105 101 L9P F15Y	1964 1996 1996 1996	Fey Liop Liop	НН	тот Сяр Біз Т	(9er 190 190 180 1	F6Y Loop I36N	101 19P Fist	(947 19Q 660I	Isen Erob
		LB		LB +	2% S	DS			LB		LB ·	+ 2% 5	SDS

В

TatB E8K Sufl RD Sufl RE RD RR RD Sufl RR RE RE -RN RQ RR RH Sufl RQ Sufl RH Sufl RN RQ. RH НН KH RN Sufl KH Sufl KQ KQ Sufl HH KI KQ ΗH LB LB + 2% SDS

SACY

Fig S4

А

В

Fig S8

С

load

Fig S9

Fig S10

AyB_{L10P}CE

 $AyB_{L10P}C_{F94Q}E$

AyB_{I36N}CE

