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Supporting Information 
 

Table S1. Statistics of the leading singular value decomposition (SVD) modes of sea surface 
temperatures (SST) and sea level pressures (SLP) in spring (MAM) and summer (JJA) over a 
region encompassing the northeast Pacific Ocean, North America, and the northern Atlantic Ocean 
(160°W-20°W, 0-60°N). Data are from the National Centers for Environmental Prediction (NCEP) 
for 1948-2013. 
 

 
MAM variance 

(%) 
JJA variance 

(%) 

Spatial covariance of 
MAM and JJA  

(%) 

Temporal correlation of 
determination (R2) between 

MAM and JJA  
SST mode1 27.9 18.4 52.6 80.0 
SST mode2 11.9 18.7 23.7 82.7 
SLP mode1 19.2 24.5 51.9 48.4 
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Table S2. Models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) used for 
this study.  

Model Name Institute 

ACCESS1.0 Commonwealth Scientific and Industrial Research,Organization 
(CSIRO) and Bureau of Meteorology (BOM), Australia 

ACCESS1.3 Commonwealth Scientific and Industrial Research,Organization 
(CSIRO) and Bureau of Meteorology (BOM), Australia 

BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration 

BNU-ESM College of Global Change and Earth System Science, Beijing Normal 
University  

CanAM4 Canadian Centre for Climate Modelling and Analysis  
CCSM4 National Center for Atmospheric Research  
CESM1 Community Earth System Model Contributors  
CMCC-CM Centro Euro-Mediterraneo per i Cambiamenti Climatici  

CNRM-CM5 Centre National de Recherches Météorologiques / Centre Européen de 
Recherche et Formation Avancée en Calcul Scientifique 

CSIRO-MK3-6-0 Commonwealth Scientific and Industrial Research Organization in 
collaboration with Queensland Climate Change Centre of Excellence 

EC-EARTH EC-EARTH consortium  
FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 
FGOALS-s2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 
GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory 
GFDL-HIRAM-C180 NOAA Geophysical Fluid Dynamics Laboratory 
GISS-E2-R NASA Goddard Institute for Space Studies  

HadGEM2-A Met Office Hadley Centre (additional HadGEM2-ES realizations 
contributed by Instituto Nacional de Pesquisas Espaciais)  

INMCM4 Institute for Numerical Mathematics  
IPSL-CM5A-LR Institut Pierre-Simon Laplace  
IPSL-CM5A-MR Institut Pierre-Simon Laplace  
IPSL-CM5B-LR Institut Pierre-Simon Laplace  

MIROC-ESM 
Japan Agency for Marine-Earth Science and Technology, Atmosphere 
and Ocean Research Institute (The University of Tokyo), and National 
Institute for Environmental Studies 

MIROC5 
Atmosphere and Ocean Research Institute (The University of Tokyo), 
National Institute for Environmental Studies, and Japan Agency for 
Marine-Earth Science and Technology 

MPI-ESM-LR Max-Planck-Institut für Meteorologie (Max Planck Institute for 
Meteorology) 

MPI-ESM-MR Max-Planck-Institut für Meteorologie (Max Planck Institute for 
Meteorology) 

MRI-AGCM3-2H Meteorological Research Institute  
MRI-CGCM3  Meteorological Research Institute  
NORESM1-M Norwegian Climate Centre  
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1. The first empirical orthogonal function (EOF) of June-July-August (JJA) maximum 

daily 8-hour (MDA8) ozone concentrations across the eastern United States. 

 

 
Fig. S1. The first EOF loading of JJA mean MDA8 ozone from 1980 to 2013 across the eastern 
United States. Shown inset is the variance explained by the EOF pattern. In calculating the 
relationships of JJA ozone with springtime meteorological variables, we define the eastern 
United States as the region within the blue quadrangle (100°W-65°W, 31°N-50°N), and we refer 
to JJA ozone in this region as East-JJA-O3. Gridboxes south of 31°N are not included in this 
definition because our model has little predictive value in this region.   
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2. Spatial loadings of the singular value decomposition (SVD) modes of SST and SLP in 
spring and summer 

A key question is whether the correlations of East-JJA-O3 with SST or SLP reflect the influence 
of major large-scale weather patterns that explain much of the climate variability in North 
America and the adjacent oceans. To examine this issue, we analyze the covariance of spring 
SSTs with summer SSTs within a large spatial domain (160°W-20°W, 0°N-60°N) that includes 
the northeast Pacific, North America, and the northern Atlantic. We perform the analysis by 
applying singular value decomposition (SVD) to 1948-2013 SSTs, and we do the same analysis 
for SLPs. We change the timeframe from 1980-2013 to 1948-2013 to provide greater statistical 
significance to our results. Before performing SVD, we scale the time series of SLP or SST in 
each grid box to achieve zero mean and unit standard deviation. Table S1 summarizes the 
statistics for the variance explained by each mode and the temporal correlation between the time 
series of principal components (PC).  
 
For SST, the first SVD mode explains 52.6% of the covariance between spring and summer, 
characterized by warm SSTs extending across the tropics and along the west coast of North 
America and by cold SSTs in the central northern Pacific and Atlantic (Fig. S2a-b). The time 
series for this mode in the two seasons correlates with a high coefficient of determination (R2 
=0.80), suggesting that the observed SVD pattern in spring likely persists through summer and 
provides a source of seasonal predictability. Fig. S2c-d show the spatial loadings of the second 
SVD pattern of SST in spring and summer, which explains 23.7% of the covariance, featuring 
negative values in the eastern Pacific Ocean and positive values in the Atlantic. The time series 
of the second mode between spring and summer also shows high correlation (R2 = 0.83). 
Together these first two modes explain 76.3% of the covariance between the spring and summer 
patterns in SST over the domain. A closer look reveals that the observed correlations of East-
JJA-O3 and SST (Fig. 1b) represent a combination of these two SST SVD patterns. The positive 
correlations over tropical Atlantic in Fig. 1b are found in the first mode of SST (Fig. S2a-b), 
while the negative correlations over the northeast Pacific are found in the second mode of SST 
(Fig. S2c-d). Then we use a linear regression model to regress the correlations of East-JJA-O3 
and MAM SST (y) in each grid box (Fig. 1b) onto the spatial loadings of the two SST SVD 
modes (x1, x2) in MAM (Fig. S2a,c). The model is of the form 

y = k1x1 + k2x2 + b  
where k1 and k2 are the regression coefficients, and b is the intercept. We find these two SST 
SVD modes can explain 60.3% of the spatial patterns of correlations between East-JJA-O3 and 
MAM SST. 
 
For SLP, the first SVD pattern explains 51.9% of the covariance between the spring and summer. 
The SLP pattern (Fig. S2e-f) features positive anomalies in the tropical and central Pacific but 
negative anomalies extending in a broad swath from the tropical and central Atlantic across 
North America to the northern Pacific Ocean. Similar to the SST SVD analysis, we regress the 
correlations between East-JJA-O3 and SLP in Fig. 1e onto the spatial loading of the first SLP 
SVD mode in MAM (Fig. S2e). The coefficient of determination (R2) is 79.6%, suggesting a 
high similarity between these two patterns. The time series for this SVD mode in spring and 
summer also shows relatively high correlation (R2=0.48). To explore the relationship of SLP and 
SST, we regress the time series of the first SLP mode onto the time series of the first two SST 
modes in spring. We find the two SST modes can together explain almost 60% of the total 
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variability in the first SLP mode for 1948-2012, suggesting that the SLP and SST anomalies are 
closely linked.  
 
Comparing Fig. 1 and S2 reveals that: (1) the observed SVD patterns of both SST and SLP in 
spring likely persist through summer (Fig. S2), providing a source of seasonal predictability; (2) 
the observed correlations of East-JJA-O3 and SST (Fig. 1b) represent a combination of the first 
two SST SVD patterns (Fig. S2a,c), with the positive correlations in North Atlantic found in the 
first SST SVD mode (Fig. S2a) and negative correlations over the northeast Pacific identified in 
the second SST SVD mode (Fig. S2b); (3) the correlation between East-JJA-O3 and SLP (Fig. 
1e), which displays a significant east-west contrast in the eastern Pacific and North America, is 
also found in first SLP SVD pattern (Fig. S2e). Therefore, we infer that the observed influence of 
SST and SLP on East-JJA-O3 actually reflects the variability of atmospheric circulations over a 
much larger domain, including the northeast Pacific, North America, and the North Atlantic. 

 
Fig. S2. Spatial loadings of the first SVD mode (SVD1) of SSTs in (a) spring and (b) summer 
over 1948-2013. Number inset in panel (b) is the coefficient of determination (R2) for the time 
series of the principal components (PC1) of SST SVD1 for these two seasons. Other panels are 
the same as panels (a-b), but for the second SVD mode of SSTs (c-d) and the loadings of the first 
SVD mode of SLP (e-f).  
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3. Correlation of JJA ozone and 500 hPa geopotential heights in the months leading up to 
and including summer 

We also explore potential teleconnections in the mid-troposphere with East-JJA-O3 that link the 
SST and/or SLP patterns to East-JJA-O3. Fig. S3 shows the correlation of JJA ozone and 500 hPa 
geopotential heights in the seasons leading up to and including summer. In MAM, the spatial 
pattern of the correlation coefficient r displays a tripole mode with positive correlations over low 
(~0-20°N) and high (~55°N-70°N) latitudes but negative correlations in the region between. To 
characterize this pattern, we define MAM-Δgph as the average geopotential height difference 
between northeastern Canada (region 2 in Fig. S3b) across the northeastern Pacific and the 
western United States (region 1 in Fig. S3b) in spring. This springtime pattern evolves into a 
teleconnection wave chain by summer with a high-pressure ridge centered over the eastern 
United States, concurrent with high ozone anomalies (Fig. S3c).  
 

 
Fig. S3. Correlation of June-July-August (JJA) MDA8 ozone in the eastern United States with 
500 hPa geopotential heights (gph) averaged over three-month intervals in the seasons leading up 
to and including summer for 1980-2013.  We define East-JJA-O3 as the mean summertime ozone 
averaged over the blue quadrangle in panel (a) and the MAM-Δgph index as the average 
difference in MAM 500 hPa geopotential heights between region 1 in the western United States 
and region 2 in the eastern Canada (panel b). The dashed contour lines enclose regions in which 
the correlations are statistically significant (p=0.05).   
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4. Singular value decomposition (SVD) analysis of 500 hPa geopotential heights in spring 
and summer. 

Here we use SVD analysis to examine the links between 500 hPa geopotential heights and 
surface ozone (Fig. S4). In spring, the first mode of 500 hPa geopotential heights resembles the 
correlation pattern of East-JJA-O3 and these heights at that time of year (Fig. S3b), while in 
summer, the first mode of 500 hPa geopotential heights  shows a wave chain similar to the one in 
the correlation between East-JJA-O3 and these heights in that season (Fig. S3c). In addition, the 
spring and summer time series for this mode show relatively high correlation (R2=0.46), 
indicating that 500 hPa geopotential heights can also provide a source of seasonal predictability. 
In spring, the correlation coefficient r is 0.51 between the time series of the first SVD mode of 
gph and SLP, and 0.90 between gph and SST, suggesting that this mid-tropospheric 
teleconnection pattern is likely related to both SST and SLP patterns. 

 
Fig. S4. Spatial loadings of the first SVD mode (SVD1) of 500 hPa geopotential heights in (a) 
MAM and (b) JJA over 1948-2013. Shown inset in panel (b) is the coefficient of determination 
(R2) for the two timeseries of the principal components (PC1) of SVD1 for these seasons.  
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5. Prediction of summertime ozone episodes using SSTs and 500 hPa geopotential heights. 

 
Fig. S5: Correlation of JJA ozone episode days in each gridbox with (a) MAM-ΔSST and (b) 
MAM-Δgph indices for 1980-2013. An episode is defined as a day with MDA8 ozone greater 
than 70 ppb. (c) Cross-validated correlation coefficient r between observed mean JJA ozone 
episode days and those modeled using either the MAM-ΔSST and MAM-Δgph indices or a 
combination of both. The episode timeseries has been detrended by subtracting the 7-year 
moving average. In all panels, gridboxes with significant correlations are stippled (p < 0.05).  
See text for more details. 
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Fig. S6. Similar as Fig. S5a-b, but for the MAM-ΔSLP. 
 
6. Prediction of summertime ozone episodes using SSTs and 500 hPa geopotential heights. 

We also investigate the potential of our approach to predict the number of JJA ozone episodes, 
which we define as days each summer when MDA8 ozone exceeds 70 ppbv. We use the same 
regression method as above but replace MAM-ΔSLP with MAM-Δgph since MAM-Δgph is 
better correlated with ozone episodes than MAM-ΔSLP (Fig. S5-6). We find that JJA ozone 
episodes show significant positive correlations with both MAM-ΔSLP and MAM-Δgph in the 
Northeast and Midwest, but weak correlations in the deep South (Fig. S5a-b).  Using the same 
approach as for East-JJA-O3 yields a correlation coefficient r between the observed and 
predicted ozone episodes of ~0.5 in part of the Northeast, Southeast and Midwest, but less 
elsewhere (Fig. S5c).  For the 1980-2013 time series of ozone episode number averaged over the 
eastern United States, we find correlations between observations and predictions of 0.52-0.55, 
depending on the detrending method (Fig. S7). Thus the model can predict as much as 30% of 
the variability in summertime ozone episodes in spring. Given the nonlinear response of daily 
MDA8 ozone to chemistry and meteorology, the capability to capture even one-third of the 
interannual variability of ozone episodes is encouraging. In response to air quality regulations, 
the number of ozone episodes per summer has largely decreased since 1980, leading to lower 
variance of interannual ozone episodes in the recent years, as seen in Fig. S7. We therefore have 
much better correlation coefficient r in the timeframe with high variance of ozone episodes, with 
r = 0.90 in 1980-1995 and r = 0.15 in 1996-2013 using HF, and r = 0.79 in 1980-1995 and r = 
0.22 in 1996-2013 using MA. Our result suggests that the relationship of ozone episodes and 
meteorology is very sensitive to different anthropogenic emission levels. The predicative 
capability of ozone episodes could likely be improved with a longer timeseries of observations 
under a relative constant emission level. 
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Fig. S7. Timeseries of observed and modeled mean JJA MDA8 ozone episodes (> 70 ppbv), 
averaged over the eastern United States (100°W-65°W, 31°N-50°N). Observations are shown in 
black, and are detrended using 7-year Henderson moving averages (HF).  The red curve denotes 
the modeled values detrended using HF, while the blue curve indicates modeled values detrended 
using the 7-year moving average (MA).  The correlations r of the two modeled timeseries with 
that observed are shown inset. 
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7. Correlation of MAM SSTs and MAM meteorological variables 

 
Fig. S8. Same as Fig. 4, but for the meteorological variables in spring.  
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8. Correlations of MAM SSTs in tropical Atlantic with other JJA meteorological factors 

 
Fig. S9. Correlation of mean MAM tropical Atlantic SSTs (denoted as the blue rectangle in Fig. 
4a) with JJA mean (a) 500-hPa omega (i.e., vertical velocity in Pa s-1), (b) precipitation, and (c) 
surface solar radiation over 1948-2013. Shaded regions are significant at the 90% level. Positive 
values in panel (a) denote subsidence. All data are detrended by subtracting the 7-year moving 
averages. Omega and solar radiation are obtained from NCEP Reanalysis 1. Precipitation is from 
Climate Prediction Center U.S. Unified Precipitation data (1, 2). 
 
9. Correlations of MAM SSTs and SLPs in different regions with East-JJA-O3 
Figure S10 displays the correlation of the East-JJA-O3 with four different predictors, including 
SSTs in the northeast Pacific and tropical Atlantic as well as SLPs in central Pacific and North 
America, in the preceding spring for 1980-2013. Based on previous studies (3-6) and our 
correlation analysis, the tropical Atlantic Ocean can trigger the large-scale meteorological 
patterns that enhance the ozone concentration in the eastern United States, while the northeast 
Pacific is more likely to respond to large-scale atmospheric variability rather than to serve as a 
“trigger” to such variability. (See main text for more details on correlation analysis.) However, 
as seen from the figure, the Northeast Pacific SSTs exhibit the strongest correlations with East-
JJA-O3 among these four predictors, which can be explained as follows. The atmospheric 
variability that influences ozone concentrations in the eastern United States consists of two 
sources: one follows the variability of northern tropical Atlantic SSTs (Fig. 4), and the other 
arises from atmospheric internal variability or other processes. By responding to both these types 
of atmospheric variability, the northeast Pacific SSTs may explain more variability of ozone in 
the eastern United States than northern tropical Atlantic SSTs. We formulate this hypothesis, 
however, on a relative short history (~34 years) of ozone observations, and there is some 
uncertainty in our conclusion.  

Correlation of MAM SSTs in Northeast Pacific with other JJA meteorological factors
(a) 500 hPa omega (b) Precipitation (c) Solar radiation
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Fig. S10. The correlations of summertime MDA8 ozone in the eastern United States with MAM 
(a) northeastern Pacific SSTs (red rectangle in Fig. 1b), (b) northern tropical Atlantic SSTs 
(black rectangle in Fig. 1b), (c) central Pacific SLPs (black rectangle in Fig. 1e), and (d) North 
America SLPs (red rectangle in Fig. 1e). All data are detrended by subtracting the 7-year moving 
averages. In all panels, gridboxes with statistically significant (p < 0.05) correlations are stippled. 
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10. EOF analysis of the Northeast Pacific SST 

 
Fig. S11. (a-b) The first two EOF patterns of mean MAM SSTs for 1948-2013 in the Northeast 
Pacific (180°W-100°W, 20°N-60°N). Before performing EOF analysis, we scale the time series 
of SST in each grid box to achieve zero mean and unit standard deviation. The red rectangle in 
panel b is same as the one in Fig. 1b, which is used to predict the summertime ozone in the 
eastern United States. The variances in surface temperature explained by each EOF mode are 
shown inset. (c) Scatter plot of the EOF2 time series and average anomalies in the central 
Northeast Pacific SSTs (red rectangle in panel b), with the correlation coefficient inset.  
 
11. Correlations of JJA surface temperatures in the eastern United States with SSTs in 

each AMIP model 
To evaluate the capability of climate models to capture the observed links between mean JJA 
temperatures in the eastern United States and patterns in SSTs, we analyze the correlations in one 
simulation in the suite of simulations available for each AMIP model. We arbitrarily chose the 
“r1i1p1” simulation – i.e., realization 1, initialization method 1, and perturbed physics 1. Our 
approach does not represent a rigorous evaluation of any particular model since each model may 
perform differently with different initializations and physical conditions. But taken together, the 
ensemble results likely reveal some common features in these models. Using observations, Fig. 
5a shows that the correlations of JJA surface air temperatures in the eastern United States with 
SSTs in spring display a spatial pattern similar to that for ozone in Fig. 1b, with a tripole mode in 
the Atlantic and negative correlations in the northeast Pacific and U.S. west coast. However, only 
a few AMIP models (CanAM4, CSIRO-Mk3-6-0, EC-EARTH and MRI-AGCM3-2H) can 
capture the observed pattern (Fig. S12). In summer, observations show that the region with 
negative correlations expands in the Pacific (Fig. 5b), representing the Pacific extreme pattern 
that is associated with more heatwaves in the eastern United States (7). Most AMIP models can 
simulate the positive correlations in the Atlantic and negative correlations in the Pacific, but the 
correlations are much weaker than those in the observations (Fig. S13). Our results suggest that it 
is challenging for climate models to capture these seasonally evolving teleconnections related to 
summer temperatures in the eastern United States. Reasons for this difficulty are unclear. 
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Fig. S12. Correlations of mean JJA surface air temperatures averaged over the eastern United 
States (100°W-65°W, 31°N-50°N, quadrangle in Fig. 1) with SSTs in spring over 1979-2008 for 
each AMIP model. The dashed contour lines enclose regions in which the correlations are 
statistically significant (p < 0.05). All data are detrended by subtracting the 7-year moving 
averages. We use the ensemble member r1i1p1 for each model.   
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Fig. S13. Correlations of mean JJA surface air temperatures averaged over the eastern United 
States (100°W-65°W, 31°N-50°N, quadrangle in Fig. 1) with SSTs in summer over 1979-2008 
for each AMIP model. The dashed contour lines enclose regions in which the correlations are 
statistically significant (p < 0.05). All data are detrended by subtracting the 7-year moving 
averages. We use the ensemble member r1i1p1 for each model. 
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12. EOF analysis of summertime surface air temperature from 1979 to 2008 
We apply EOF analysis to test the skills of individual AMIP models in simulating spatial-
temporal temperature variability. We proceed as follows. Using the NCEP Reanalysis, we first 
calculate the EOFs of JJA surface air temperature over North America and surrounding oceans 
for 1979-2008, as shown in Fig. S14.  The first EOF pattern, explaining 22.8% of the total 
variance, shows a positive anomaly expanding from tropical Atlantic and Pacific to the eastern 
North America and a negative anomaly in the western United States and central Pacific. The 
second EOF pattern, explaining 18.3% of the total variance, displays a bimodal structure with 
positive anomaly in the eastern Pacific and negative anomaly in the North America and northern 
Atlantic. In the AMIP models, the first two EOF patterns in JJA surface temperatures generally 
resemble those observed (Fig. S15-16). But the AMIP EOF1 patterns display a range of 
anomalies from negative to positive in the eastern United States (Fig. S15), while the observed 
EOF1 is uniformly positive there (Fig. S14). Then we calculate the time series of the two 
principal components, PC1 and PC2, for the 20th Century Reanalysis and for each model by 
projecting the temperature fields onto the constructed EOF basis. For the AMIP models, this is 
written as 

PC1k=Tk�EOF1 
PC2k=Tk�EOF2 

where T is the mean JJA temperature and k in an index of the AMIP models.  We then compare 
the standard deviations of the PC vectors in the 20th Century Reanalysis and in each AMIP 
model to those in NCEP. Fig. S17 reveals that all models show less temporal variability in both 
EOF1 and EOF2, suggesting that the AMIP models cannot fully reproduce the observed EOF 
patterns of summertime temperature over North America and surrounding oceans.	
	

	
Fig. S14. The first two EOF patterns of mean JJA surface air temperature for 1979-2008. Before 
performing EOF analysis, we scale the time series of temperature in each grid box to achieve 
zero mean and unit standard deviation. The variances in surface temperature explained by each 
EOF mode are shown inset. 
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Fig. S15. The first EOF pattern of mean JJA surface air temperatures over 1979-2008 in each 
AMIP model. Before performing EOF analysis, we scale the time series of temperature in each 
grid box to achieve zero mean and unit standard deviation. The variances in surface temperature 
explained by each EOF mode are shown inset. 
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Fig. S16. Similar as Fig. S15, but for the second EOF pattern. 
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Fig. S17. Standard deviations (std dev) of the time series of the two principal components (PC1 
and PC2) in the NCEP reanalysis, 20th Century Reanalysis, and AMIP model ensemble. Each 
black dot represents results from one AMIP model.  See text for more details.  
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13. Correlation of summertime surface temperatures in the eastern United States and SLP. 

 
Fig. S18. Same as Fig. 5, but for SLP. 
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14. Influence of tropical Atlantic SSTs on surface temperatures in the eastern United States.  
To create an idealized representation of the Atlantic Multidecadal Oscillation (AMO) for 
simulations in the GISS ModelE2, we rely on the HadISST SST dataset and proceed as follows.  
We first remove high-frequency fluctuations in the 1900-2012 timeseries of annual mean global 
SSTs outside the North Atlantic (0-60°N, 75°W-7.5°W) by applying a low-pass filter.  More 
specifically, we use locally-weighted scatterplot smoothing (Lowess) with a smoothing 
parameter of 2/3 (8).  We next define an AMO index as the annual mean difference between 
average North Atlantic SSTs and average low-pass-filtered SSTs elsewhere, as in Sutton et al. 
(9). We standardize the AMO index to zero mean with variance ± 1.0 and further smooth the 
AMO timeseries by applying an 11-year moving average.  Following Sutton et al. (3, 4), we then 
regress the 1900-2012 annual mean SSTs in each gridbox onto the standardized and smoothed 
AMO index, yielding the SST sensitivity to a unit change of AMO (Fig. S19a). We apply this 
regression only to those gridboxes within the tropical Atlantic (0-30°N), the region we show has 
a strong influence on U.S. surface temperatures.  This procedure produces a map of SST 
anomalies in the tropical Atlantic associated with the positive phase of an idealized AMO. 
Simply reversing the sign of the anomalies yields the SST pattern associated with the negative 
phase of an idealized AMO. 
 
As in Sutton et al. (3, 4), we scale the resulting patterns of positive and negative mean AMO 
SSTs by a factor of 4 and apply these patterns to the GISS ModelE2. The scaling allows the 
climate model to reach equilibrium with a shorter integration time.  We define TA+ as the 
simulations representing the positive AMO phase, and TA- as the simulations representing the 
negative AMO phase, based on the 1900-2012 climatological mean SST. The model is integrated 
for 21 years with the first year discarded. To achieve a realistic outcome, we rescale the modeled 
surface temperatures anomalies over land by 1/4. 
 
The leading SST patterns in the CLIVAR experiments are calculated using rotated empirical 
orthogonal functions (EOFs) with varimax rotations (10). The third EOF pattern of global SST in 
this study is mainly confined to the north Atlantic Ocean and resembles the AMO pattern in 
Sutton et al. (3, 4) as well as the one we used to drive GISS ModelE2.  We focus on the 
simulations forced by the SST anomaly in the tropical Atlantic (88°W-13°W and 12°N-18°N), as 
in Schubert et al. (10). Outside the tropical Atlantic, this SST anomaly tapers linearly and 
becomes zero at 6°N and 24°N (Fig. S20a).  The region covered by this SST anomaly is smaller 
that that in Sutton et al. (3, 4) and what we apply to the GISS ModelE2 (Fig. S19a). The TA+ and 
TA- simulations were integrated for 51 years with these idealized positive and negative SST 
anomaly patterns (10). Because no TA- simulation exists for NCAR CAM3.5, we show the 
difference of TA+ and the control simulation (neutral Atlantic Ocean) for this model. 
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Fig. S19. (a) The perturbation in SSTs used to drive ModelE2 (TA+ - TA-). This pattern in SST 
warming is typical of positive AMO conditions, with an average warming of 0.25 K in the region 
enclosed by the rectangle (88°W-13°W, 10°N-20°N). (b) Simulated response in JJA surface air 
temperatures to warming of the tropical Atlantic (panel a) in ModelE2.  Gridboxes with 
statistically significant temperature changes are stippled (p < 0.05).   
 
 

 

 
Fig. S20. (a) The perturbation in sea surface temperatures used to drive the CLIVAR models. 
The average warming in the region enclosed by the rectangle (88°W-13°W, 10°N-20°N) is 0.25 
K. (b-c) Simulated response in JJA surface air temperatures to warming of the tropical Atlantic 
(panel a) in NCAR CAM3.5 and GFDL AM2.1.  Gridboxes with statistically significant 
temperature changes are stippled (p < 0.05).  
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(b)  ∆T in GISS ModelE2

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
K

(a) SST forcing

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b)  ∆T in NCAR CAM3.5

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c)  ∆T in GFDL AM2.1

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
K



	 24	

15. Correlations of summertime ozone in the eastern United States with SSTs/SLPs in the 
high-NOx and low-NOx timeframe. 

Anthropogenic NOx emissions in the United States have been decreasing since the 1980s, with 
the fastest decrease occurring since 2003 (Fig. S21). An unanswered question is whether these 
emission changes will affect the correlations of summertime ozone in the eastern United States 
with large-scale meteorological patterns. More specifically, will the predictability of seasonal 
ozone increase or decrease in the cleaner environment of the future? 
 
To address this question, we calculate the correlations of summertime ozone in the eastern 
United States with SSTs in the leading months over the high-NOx (1980-1996) and low-NOx 
(1997-2013) time periods. In both periods, high ozone concentrations are associated with a warm 
northern tropical Atlantic and cool northeastern Pacific (Fig. S22a-b), consistent with Fig. 1. 
However, correlations with tropical Atlantic SSTs decrease from 1980-1996 to 1997-2013 (Fig. 
S22a-b), suggesting reduced seasonal ozone predictability in recent decades. Unlike ozone, JJA 
surface temperatures in the eastern United States show strong dependence on tropical Atlantic 
and northeast Pacific SSTs in both timeframes (Fig. S22c-d). Does this mean the relationship of 
ozone and temperature has weakened in a cleaner environment? Fig. S23 displays the correlation 
of summertime ozone and temperature in the East. In the more recent decade, these correlations 
strengthen across the East and the region with significant correlations expands. This result 
implies that the decline in ozone predictability in Fig. S22 does not arise from reduced sensitivity 
of temperature in the eastern United States to SSTs, but from some other process.  
 
Using SLPs instead of SSTs, we repeat this correlation analysis over the high-NOx and low-NOx 
time periods, finding that the correlation patterns remain largely unchanged between the two 
periods (Fig. S24). Given the relatively short time periods considered here (17 years) and the 
contrasting results using SSTs and SLPs, we cannot yet with confidence diagnose a trend in 
ozone predictability.  

 
Fig. S21. U.S. anthropogenic NOx emissions from 1980 to 2014. Data are from the U.S. 
Environmental Protection Agency (https://www.epa.gov/air-emissions-inventories/air-pollutant-
emissions-trends-data). 
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Fig. S22. Correlations of JJA MDA8 ozone in the eastern United States with seasonal mean 
SSTs in MAM and JJA over two time periods with (a) high NOx (1980-1996) and (b) low NOx 
(1997-2013) emissions. Panels c-d are the same as panel a-b, but for JJA surface temperatures in 
the East. Dashed contour lines enclose regions in which the correlations reach statistical 
significance (p < 0.10). 

 

(c) Correlation of SSTs with JJA T in East (1980−1996)

MAM JJA
(d) Correlation of SSTs with JJA T in East (1997−2013)

MAM JJA

(a) Correlation of SSTs with JJA ozone in East (1980−1996)

MAM JJA
(b) Correlation of SSTs with JJA ozone in East (1997−2013)

MAM JJA

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
r



	 26	

 

Fig. S23. Correlations of JJA MDA8 ozone and surface temperatures in (a) 1980-1996 and (b) 
1997-2013. 
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Fig. S24. Similar with Fig. S22, but for the correlations of JJA MDA8 ozone in the eastern 
United States with seasonal mean SLPs.  
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16. Non-linear ozone trend from 1980 to 2013 and the choice of detrending method in 

quality planning 
Figure S25a displays the non-linear summertime ozone trends in the eastern United States from 
1980 to 2013. Average MDA8 ozone concentrations decrease at a relatively slow rate of -0.065 
ppbv a-1 from 1980 to 2002, compared to a much faster rate of -0.486 ppbv a-1 from 2002 to 2013. 
This abrupt change is caused by the rapid decrease of ozone precursors since 2002 (11), as seen 
from Fig. S21. To remove this non-linear trend, detrended data and anomalies are obtained using 
two different approaches. Using a 7-year moving average (MA) to detrend the timeseries yields a 
correlation coefficient r of 0.59 between observed and predicted ozone. Using a 7-term 
Henderson Filtered (HF) averaged can yield a higher correlation coefficient of 0.67. However, 
these two centered moving average approaches cannot be used in practical air quality planning 
because they require ozone concentrations in both the past and future years. However, we can 
still obtain good ozone predictability if an appropriate assumption of the ozone trend is made. 
For example, if we detrend the timeseries by subtracting the quadratic fitted (QF) trend, as 
suggested by Fig. S25a and Figure S21, the correlation coefficient of observed and predicted 
ozone is 0.59 (Fig. S25b), which matches the value obtained with the 7-year MA approach. 
 

 
Fig. S25. (a) Timeseries of average JJA MDA8 ozone concentrations in the eastern United States. 
The red curve denotes the quadratic fitted (QF) trend of this timeseries. The blues lines denote 
the linear fit of this timeseries in the timeframe 1980-2002 and 2002-2013. The slopes are shown 
inset. (b) Same as Fig. 3, but here the detrended ozone concentrations and meteorology are 
obtained by subtracting the quadratic fitted trend. 
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17. Comparison of detrending methods 

Figure S26 displays the detrended JJA MDA8 ozone concentration in the eastern United States 
by subtracting the 7-year moving average (MA), the 7-term Henderson filter (HF), and the 
quadratic fitted (QF) trends. The Henderson filter relies on a weighted moving average and 
assumes the trends follows a local cubic polynomial, which can better damp irregular changes 
(12), as seen in Fig. S26. The standard deviation of detrended timeseries is 2.31 ppbv using HF, 
compared to 3.15 ppbv using MA and 3.20 ppbv using QF. 
 

 
 

Fig. S26. Timeseries of detrended JJA MDA8 ozone concentrations averaged over the eastern 
United States using different detrending methods, including subtracting the 7-year moving 
average (MA), the 7-term Henderson filter (HF) and the quadratic fitted (QF) trends.  
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