Anti-FIRs (PUF60) auto-antibodies are detected in the sera of early-stage colon cancer patients

Supplementary Materials

Supplementary Figure S1: (A) Schematic view of splice variants of the FIR gene. (B) The adenoma-carcinoma sequence. Progression of FIRs is accumulated in adenoma.

Supplementary Figure S2: Purified FIRAexon2 protein was used as antigen to detect the possible presence of anti-FIR antibodies in the sera of colorectal cancer patients in a dose-dependent manner by dot blot assay.

Supplementary Figure S3: (A) Expression vector pET50b (+) -FIR Δ exon2. pET50b (+) -FIR Δ exon2 expression vector was constructed by inserting the FIR Δ exon2 gene into the pET-50b (+) DNA (Novagen) vector. (B) Co-affinity chromatography of purified FIR Δ exon2 protein at the second phase. Imidazole concentrations are shown in green, and absorbance of 280 nm ultraviolet rays is shown in blue (0% = 10 mM, 100% = 500 mM). (C) The NaCl concentration of anion column chromatography of purified FIR Δ exon2 protein is shown in green, and absorbance of 280 nm ultraviolet rays is shown in blue (0% = 50 mM, 100% = 1000 mM). (D) A 55.7-kDa band, which is the molecular weight of FIR Δ exon2, was confirmed by gel electrophoresis after the His-Nus tag excision.

Supplementary Figure S4: Correlation between anti-FIR antibodies and well-known other tumor markers. Correlation between anti-FIR antibodies and three well-known tumor markers was analyzed by using statistical graphics. The level of anti-FIR antibodies detected in the sera of colorectal cancer patients was expressed as a percentage volume in the X-axis (horizontal axis). (A) The correlation between anti-FIR antibodies and anti-p53 antibodies. The level of anti-p53 antibodies measured in the sera of colorectal cancer patients was labeled in the Y-axis (vertical axis). (B) The correlation between anti-FIR antibodies and tumor marker CEA. The level of CEA measured in the sera of colorectal cancer patients was labeled in the Y-axis. (C) The correlation between anti-FIR antibodies and tumor marker CA19-9. The level of CA19-9 antibody measured in the sera of colorectal cancer patients was labeled in the Y-axis.

Supplementary Figure S5: (A) Anti-FIR or anti-FIR Δ exon2 antibodies against Nus-tag FIR or -FIR Δ exon2 as antigens were detected in nine relapsed cases of colon cancer patients after the operation. (B) The changes of anti-FIR or anti-FIR Δ exon2 antibodies, CEA, and CA19-9 in case 9 before and after operation with relapse of cancers.

Supplementary Figure S6: Vector map for GST-fused FIR and FIR Δ exon2 in the pET-50(b) expression vector. Both of the GST-fused FIR (A) and FIR Δ exon2 (B) were expressed in the Nus-tag conjugated form and the Nus-tag was removed by the cleavage with HRV-3C enzyme in the purification process.

Supplementary Figure S7: Detection rate of anti-FIRs or anti-FIR Δ exon2 antibodies in early-stage (Dukes A, B) and advanced (Dukes C, D) colorectal cancers patients in < 70 or 70 < year-old.

Colon polyps	Age	Sex	Grade	Site	Size (mm)
	56	М	3	Rectum	40
	61	Μ	3	Ascending	7
	72	F	5	Rectum	20
	60	М	3	Rectum	10×15
	69	М	3, 5	Sigmoid	8,10
Colorectal cancers	Age	Sex	Dukes stages	Sites	
	58	F	С	Cecum	
	72	Μ	D	Sigmoid	
	68	М	С	Sigmoid	
	64	F	С	Decending	
	43	F	С	Rectum	
	58	F	С	Cecum	
	49	М	В	Rectum	
	39	F	С	Rectum	
	48	F	С	Decending	
	50	М	С	Rectum	
	55	М	D	Rectum	
	72	М	D	Sigmoid	
	68	М	С	Sigmoid	
	82	М	С	Ascending	
	76	F	С	Ascending	
	61	М	С	Rectum	

Supplementary Table S1: Clinicopathological characteristics