CHEMBIOCHEM

Supporting Information

Integrin-Targeting Fluorescent Proteins: Exploration of RGD Insertion Sites

Michael H. Sonntag, Jurgen Schill, and Luc Brunsveld* $^{\text{[a]}}$

cbic_201600514_sm_miscellaneous_information.pdf

Materials and methods

All chemicals and compounds have been used without prior purification, if not otherwise stated. The restriction enzymes, T4 ligase, and isopropyl-beta-D-thiogalactopyranoside (IPTG) have been obtained from Fermentas. DNA polymerase Platinum-Taq, and fetal bovine serum (FBS) was purchased from Invitrogen. All oligonucleotides were ordered from eurofinsgenomic. Bio-safe Coomassie Brilliant Blue, 30% acrylamide mix (30% Acrylamide/Bis Solution, 29:1 (3.3%C)), brom phenol blue, 6x DNA loading dye and N,N,N',N'-tetramethyl-ethane-1,2-diamine (TEMED) were purchased from BioRad. Sodium dodecyl sulfate (SDS), yeast extract, sodium chloride, imidazole, ammonium persulfate (APS), manganese (II) chloride (MnCl₂), and Tween20 were ordered from Merck. Glycerol, glycine, guanidine hydrochloride (GndHCl) and ethylenediaminetetraacetic acid (EDTA) were obtained from Calbiochem. All competent E.coli cells, benzonase, Bugbuster, phosphate buffered saline (PBS) tablets and Ni-NTA resin were obtained from Blue-white select screening reagent, ß-mercaptoethanol, ampicillin, urea, egg lysozyme, nickel(II)sulfate hexahydrate (NiSO4), trypsin, sodium hydroxide (NaOH), tris (2-carboxyethyl) phosphine (TCEP), dithiothreitol (DTT), tris-base, magnesium chloride (MgCl₂), and bovine serum albumin were obtained from Sigma. Agar was purchased from Difco. Amicon dialysis and concentration devices were obtained from Millipore. Filters (0.2 µm, 0.45 µm) were obtained from Pall. NucleoSpin Gel and PCR Cleanup kit was ordered from Macherey-Nagel and QIAprep Spin Miniprep kit from Qiagen. MaxiSorb plates were obtained from Nunc. All integrin variants were purchased from Millipore in Triton X-100 formulation. Goat anti-6-His antibody was obtained from Bethyl. Donkey Anti-Goat IgG (HRPO) antibody was bought from Leinco. TMB substrate and stopper solution were obtained from Cell Signaling. Milk powder was bought from Campina. The pHT293 plasmid containing the His-mCitrine was previously developed by us.1

<u>Site-directed mutagenesis of His-mCitrine-Strep:</u>

The mutations in His-mCitrine-Strep were performed using the site-directed mutagenesis kit from Stratagene and primers listed below.

Primer to insert or exchange to cysteines or GRGDS / GRADS sequences:

Primer to insert the GRGDS sequence			
0/1_F	aattaaaggaggaaggatctatgggggggggggggactctcaccatcatcatcatcattcttc		
0/1_R	gaagaatgatgatgatgatgatgatgatgatccccgcgccccatagatccttcct		
240/241_F	ggagccatccgcaatttgaaaaagggcgcggggactcttaacgtccccggg		
240/241_R	cccggggacgttaagagtccccgcgccctttttcaaattgcggatggctcc		
49/50_F	aagttcatctgcaccggggggactctaccggcaagctgccc		
49/50_R	gggcagcttgccggtagagtccccgcgcccggtgcagatgaactt		
78/79_F	ctaccccgaccacatgggggggggggggactctaagcagcacgacttct		
78/79_R	agaagtcgtgcttagagtccccgcgccccatgtggtcggggtag		
116/117_F	gtgaagttcgagggcgggggggggggggggggggggggg		
116/117_R	gttcaccagggtgtcagagtccccgcgccctcgaacttcac		

Supporting information

Г			
140/141_F	catcctggggcacaagggggggggggggggggggggggg		
140/141_R	tgtagttgtactccagagagtccccgcgccccttgtgccccaggatg		
134/135_F	ttcaaggaggacggggggggactctaacatcctggggcac		
134/135_R	gtgccccaggatgttagagtccccgccgccgtcctccttgaa		
157/158_F	catggccgacaagcaggggcgcggggactctaagaacggcatcaagg		
157/158_R	ccttgatgccgttcttagagtccccgcgcccctgcttgtcggccatg		
172/173_F	gccacaacatcgaggggcgcggggactctgacggcagcgtgca		
172/173_R	tgcacgctgccgtcagagtccccgcgcccctcgatgttgtggc		
194/195_F	ggccccgtgctgggggcgcggggactctctgcccgacaac		
194/195_R	gttgtcgggcagagagtccccgcgccccagcacggggcc		
189/190_F	ccccatcggcgggggggactctgacggccccgt		
189/190_R	acggggccgtcagagtccccgccgccgatggggg		
213/214_F	caaagaccccaacgaggggcgcggggactctaagcgcgatcacatgg		
213/214_R	ccatgtgatcgcgcttagagtccccgcgcccctcgttggggtctttg		
Primers to excha	ange original mCitrine sequence to GRGDS sequence		
49/53 FE	gaccctgaagttcatctgcggcaggggggattcgcccgtgccctggcccacc		
49/53 RE	ggtgggccagggcgaatcgcccctgccgcagatgaacttcagggtc		
78/82 FE	ttcgcccgctaccccgaccacgggagggggacagcttcttcaagtccgccatgcc		
78/82 RE	ggcatggcggacttgaagaagctgtccccctcccgtggtcggggtagcgggcgaa		
116/121 FE	gcgccgaggtgaagttcgagggccgcggcgattcgaaccgcatcgagctgaagggca		
116/121 RE	tgcccttcagctcgatgcggttcgaatcgccgcggccctcgaacttcacctcggcgc		
140/144 FE	cggcaacatcctggggcacgggggggacagctacaacagccacaacgtc		
140/144 FR	gacgttgtggctgttgtagctgtcccccgcccgtgccccaggatgttgccg		
,			
135/138 FE	aagggcatcgacttcaaggaggacggcaggggcgatagccacaagctggagtacaactacaacagcc		
135/138 FR	ggctgttgtagttgtactccagcttgtggctatcgccctgccgtcctccttgaagtcgatgccctt		
,	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
156/160 FE	ccacaacgtctatatcatggccgacggggggggacagcatcaaggtgaacttcaagatccg		
156/160 RE	cggatcttgaagttcaccttgatgctgtcccccgccgtcggccatgatatagacgttgtgg		
30,-00 200	-00000		
171/174 FE	cttcaagatccgccacaacggcaggggcgacagcgtgcagctcgccgac		
171/174 RE	gtcggcgagctgcacgctgtcgccctgccgttgtggcggatcttgaag		
	0:-00-0u0-u0-u0-u0-u0-u0-u0-u0-u0-u0-u0-u0		

194/198 FE	gcgacggccccgtggggcggcgacagccactacctgagct			
194/198 RE	agctcaggtagtggctgtcgccccacggggccgtcgc			
190/194 FE	gaacacccccatcggccgcggcgactcgctgcccgacaac			
190/194 RE	gttgtcgggcagcagcgagtcgccgcggtggtgttc			
211/215 FE	ccagtccgccctgagcaaagacggcagggggatagcgatcacatggtcctgctgga			
211/215 RE	tccagcaggaccatgtgatcgctatccccctgccgtctttgctcagggcggactgg			
Primers to exchange the original mCitrine sequence to a GRADS sequence				
140/141GRADS_ F	catcctggggcacaaggggcgcgggactctctggagtacaactaca			
140/141GRADS_R	tgtagttgtactccagagagtccgcgcgccccttgtgccccaggatg			
194/195GRADS_ F	ggccccgtgctggggcgcgcggactctctgcccgacaac			
194/195GRADS_R	gttgtcgggcagagagtccgcgcgccccagcacggggcc			
Primer for mCitrine negative control				
C48V_F	gcaagctgaccctgaagttcatcgtgaccaccggcaagctg			
C48V_R	cagcttgccggtggtcacgatgaacttcagggtcagcttgc			

Amino acid sequence of His-mCitrine-Strep:

- -mCitrine: bold
- -GRGDS insertion positions: underlined
- GRGDS exchange positions: green box

MHHHHHHSSGLVPRG<u>SV</u>SKGEELFTGVVPILVELDGDVNGHKFSVSGEG EGDATYGKLTLKFIC<u>TTGKL</u>PVPWPTLVTTFGYGLMCFARYPDH<u>MKQ</u>HD FFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFE<mark>GDTLV</mark>NRIELKGIDFKE D<mark>GNILG</mark>HKLEYNYNSHNVYIMADK<u>OKNG</u>IKVNFKIRHNIEDGSVQLADH YQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGISR VDVAWSHPQFEKStop

Expression of His-mCitrine-Strep:

The different constructs were transformed in *E.coli* BL21 (DE3) cells. Clones containing the respective plasmid were inoculated in 20 ml Luria Bertani (LB) culture containing 50 μg / ml ampicillin. The culture was grown in a shaking incubator at 37°C overnight. On the next day, 10 ml of the overnight culture were used to inoculate 1 liter LB media containing 50 μg / ml ampicillin. The culture was placed on a shaking incubator at 37°C for about 2.5 hours. At an optical density of A_{600} = 0.9, the expression was induced with IPTG, final concentration 1 mM. The culture was placed back into the shaking incubator and incubated at 25°C overnight. Subsequently, the culture was harvested and pelleted by centrifugation at 10000 g, 10 min, at 4°C. The cell pellet was stored at -80°C.

Purification of His-mCitrine-Strep:

The cell pellet was thawed at room temperature and re-suspended in 5-10 ml Bugbuster containing 1 μ l / ml benzonase. To lyse the cells, the mixture was incubated 30 min at 4°C on a shaker and centrifuged at 10000 g for 10 min. The soluble fraction was collected and loaded onto 5 ml Ni-NTA resin equilibrated with 5

Supporting information

column volumes <u>binding buffer</u> (20 mM Tris, 500 mM NaCl, pH 7.8). Subsequently the resin was washed with 5 column volumes wash buffer (binding buffer, 40 mM imidazole) and eluted with 5 column volumes elution buffer (binding buffer, 300 mM imidazole). All obtained fractions (loading, washing, eluting) were analyzed by SDS-PAGE gel electrophoresis and LC-MS. The eluent fraction was dialyzed 4 times against PBS and concentrated via Amicon filters (cut-off 10 kDa) to a final volume of 0.5 - 2 ml.

SDS-PAGE:

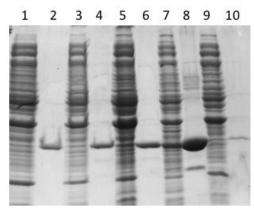
SDS-PAGE electrophoresis was performed on a Mini-PROTEAN 3 electrophoresis system (Biorad, Hercules, California). The gel consisted of a 5% stacking gel and a 12% or 15% separating gel. The running buffer contained 25mM Tris-HCl, 250mM glycine, and 0.1% (w/v) SDS in H₂O. Prior loading onto the SDS-gel, all protein samples have been a) mixed with sample buffer (100mM Tris-HCl, 20% (v/v) glycerol, 4% (w/v) SDS, 0.2% (w/v) bromophenol blue, pH 6.8 in Millipore H₂O) in a ratio 1:3, b) reduced by addition of β -mercaptoethanol and c) denatured by heating up the sample to 95 °C for 10 min. The electrophoresis was run at room temperature at 80 V for 20 min. and then at 140-160V for 60 min. The protein bands were stained with Coomassie Brilliant Blue.

Microtiter-plate based integrin binding assay:

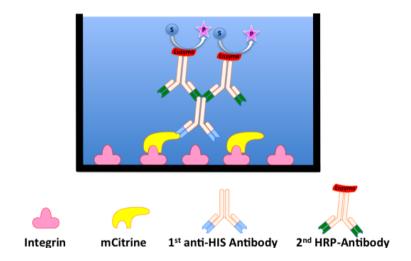
MaxiSorb plates were coated with 100 μ l integrin (0.5 μ g / ml dissolved in: 50 mM Tris, 150 mM NaCl, 1 mM MgCl₂, 2 mM MnCl₂, pH 7.4) on a shaker for 24 h at room temperature. Subsequently each well was washed three times 10 min with 100 μ l blocking buffer (50 mM Tris, 150 mM NaCl, 1 mM MgCl₂, 2 mM MnCl₂, pH 7.4, 0.1% milk powder (w/v)). The plates were incubated 24 h at 4°C in the dark with 100 μ l HismCitrine-Strep (150 μ g / ml diluted in blocking buffer) and washed three times 10 min with 100 μ l wash buffer (50 mM Tris, 150 mM NaCl, 1 mM MgCl₂, 2 mM MnCl₂, pH 7.4, 0.05% Tween 20 (w/v)). The washed plate was blocked three times 10 min with 100 μ l blocking buffer and subsequently incubated with 100 μ l Goat anti-6-His antibody (1:1000 diluted in blocking buffer). After an incubation time of 24 h at 4°C in the dark, the antibody was removed and the plate washed three times for 10min with 100 μ l wash buffer as well as 100 μ l blocking buffer. After blocking, 100 μ l of the second antibody (Donkey Anti-Goat IgG (HRPO) 1:10000 diluted in blocking buffer) was added and the plate was incubated 24 h at 4°C in the dark. Subsequently, the second antibody was removed and the plates washed three times for 10 min with 100 μ l wash buffer as well as 100 μ l blocking buffer. 100 μ l TMB substrate was added and the plate was incubated for 15 min at 37°C in the dark. The enzymatic substrate conversion was stopped by the addition of 100 μ l stopper solution and the absorption was read out at 450 nm.

Fluorescent spectroscopy:

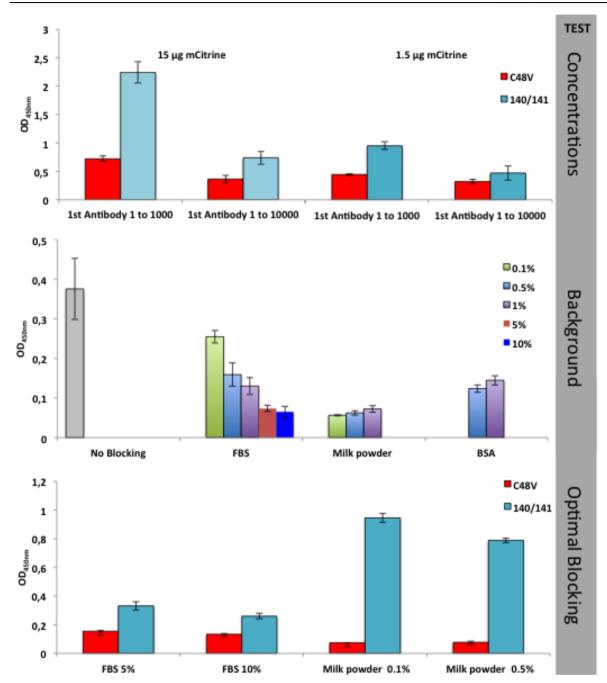
The fluorescence spectra (λ_{ex} = 515 nm, λ_{em} = 520 – 650 nm) of all His-mCitrine-Strep mutants were measured in Varian Cary Eclipse fluorescence equipped with a Perkin-Elmer PTP-1 Peltier temperature control system. All measurements were perform in quartz cuvettes (10 mm light path), 2 ml minimal volume, at 20°C, concentration 1 μ M in PBS.

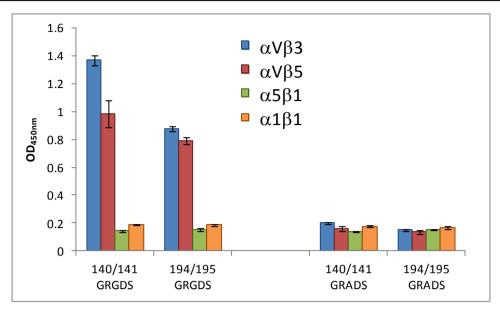

Absorbance spectroscopy:

The UV-VIS absorbance spectra of all His-mCitrine-Strep mutants were recorded in a Jasco V-650 spectrophotometer equipped with a Perkin-Elmer PTP-1 Peltier temperature control system. All measurements were perform in quartz cuvettes (10 mm light path), 2 ml minimal volume, at 20° C, concentration 1 μ M in PBS.


Supporting Figures and Tables

Supporting Table 1: Amino acid positions for GRGDS or cysteine insertion / exchange. Underlined amino acids: inserted / exchanged amino acids. *Mutation that could not be obtained.


	Before mutagenesis	After mutagenesis
GRGDS inserted		
0/1	RGSVSK	RGS <u>GRGDS</u> VSK
49/50	FICTTG	FIC <u>GRGDS</u> TTG
78/79	DHMKQH	DHM <u>GRGDS</u> KQH
116/117	FEGDTL	FEG <u>GRGDS</u> DTL
134/135	EDGNIL	EDG <u>GRGDS</u> NIL
140/141	GHKLEY	GHK <u>GRGDS</u> LEY
157/158	DKQKNG	DKQ <u>GRGDS</u> KNG
172/173	NIEDGS	NIE <u>GRGDS</u> DGS
189/190	PIGDGP	PIG <u>GRGDS</u> DGP
194/195	PVLLPD	PVL <u>GRGDS</u> LPD
213/214	PNEKRD	PNE <u>GRGDS</u> KRD
240/241	PQFEK	PQFEK <u>GRGDS</u>
GRGDS exchanged		
49/53	TTGKL	<u>GRGDS</u>
78/82	MKQHD	<u>GRGDS</u>
116/121	GDTLV	<u>GRGDS</u>
135/138	GNILG	<u>GRGDS</u>
140/144	KLEYN	<u>GRGDS</u>
156/160	KQKNG	<u>GRGDS</u>
171/174	IEDGS	<u>GRGDS</u>
190/194	DGPVG	DGPVG*
194/198	LLPDN	<u>GRGDS</u>
211/215	PNEKR	<u>GRGDS</u>
Control		
C48V	KFICTTG	KFI <u>V</u> TTG


Supporting Figure 1. Representative SDS-PAGE of selective protein constructs comparing different mCitrine-RGD constructs before and after Ni-NTA purification. The gel is representative for all mCitrine-RGD/cysteine constructs. <u>Lane</u> 1/2: 49/50, <u>lane</u> 3/4: 78/79, <u>lane</u> 5/6: 116/117, <u>lane 7/8:</u> 140/141, <u>lane 9/10:</u> 134/135.

Supporting Figure 2. Schematic representation of the microtiter-plate based integrin binding assay. Integrins receptors were immobilized on the surface of multi-well plates and incubated with RGD-mCitrine. Binding of RGD-mCitrine (containing a His-tag) was detected using primary anti-His antibodies. The signal was amplified using a secondary antibody conjugated to horseradish peroxidase (HRPO). Following TMB substrate conversion by HRPO, the binding was quantified at 450 nm.

Supporting Figure 3. Determination of optimal conditions for the microtiter-plate based integrin binding assay. Top: Comparison of different mCitrine and primary antibody concentration on plates coated with human integrin receptor $\alpha V\beta 3$ (0.05 μg / well in 96 well-plates), blocking reagent 0.5% BSA, Middle: Comparison of different blocking reagents, primary antibody 1:1000 diluted, well-plates not coated. Bottom: Comparison of the blocking reagents FBS and milk powder on plates coated with human integrin receptor: $\alpha V\beta 3$ (0.05 μg / well using 96 well-plates), primary antibody 1:1000 diluted. mCitrine-RGD 140/141 was used as positive control, mCitrine C48V was used as negative control. Primary antibody: goat-anti-His, secondary antibody: anti-goat HRPO. All antibodies were diluted in 0.1% blocking reagent, the secondary antibody was diluted 1:10000. Optimal determined concentrations: mCitrine: 15 μg / well, primary antibody: 1:1000, secondary antibody: 1:10000, Blocking reagent: milk powder 0.1%.

Supporting Figure 4. Screening overview of mCitrine-RGD mutants in comparison to the respective mCitrine-RAD mutants. All mutants were screened against four human integrin receptors: $\alpha V \beta 3$, $\alpha V \beta 5$, $\alpha 5 \beta 1$ and $\alpha 1 \beta 1$.

Supporting References

¹ T. Phan, H. D. Nguyen, H. Göksel, S. Möcklinghoff, L. Brunsveld Phage display selection of miniprotein binders of the Estrogen Receptor Chem. Commun., 2010,46, 8207-8209.