Dataset	genomic region	\mathbf{PS}	\mathbf{SS}	#days to	#time	# se-	# se-
				first sam- pling	points recipient	quences	quences
DC				pung	recipient	recipient	40101
BC			_	109	0	19	10
Andreo et al. [1]	env	exp	exp	183	2	13	10 6
Blanchard <i>et al.</i> [2]	env	\exp	\exp	1149	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	6
Compliance at al [2]	gag	con	con	01	0	2 20	0 Q
Cornenssen <i>et al.</i> [3]	env	con	con	∠⊥ "	2 "	20	ð 0
Diaz Zhang at al [4]	gag	\exp	\exp			20	9
Diaz-Linang et al. [4]	0004	007	000	701	4	30	61
source→recipA	спv "	,, ,,	,,	791 670	4 5	59 56	,, ,,
Source \rightarrow recipib	0.0011	log	log	070 216	0 1	50 11	91
Kao $et at$. [5] Motalian et al. [6]	env	log	log	310 420	1	50	51 50
Welfs <i>et al</i> $[7]$	env	exp	exp	420 30	1 1	90 8	00 0
wons et al. [1]	env	con	con	э0 "	1 1	0 10	9
	gag	exp	exp	117 5	1 9.1	10 2	0
			nean	447,0 368	∠,⊥ 1.5	19,0 19	20,5 0
		m	ieuian	909	1,0	12	9
HET							
Boeras $et al.$ [8]							
RW36	env	\exp	\exp	5	1	41	59
RW56	env	\exp	\exp	31	1	39	58
ZM201	env	\log	\log	14	1	46	93
ZM216	env	\log	\log	14	1	59	75
ZM221	env	\exp	\log	14	1	72	71
ZM238	env	\exp	\exp	47	1	38	72
ZM242	env	\exp	\exp	14	1	31	44
ZM292	env	\exp	\exp	14	1	39	71
Derdeyn et al. [9]							
13	env	\cos	con	123	1	16	23
53	env	\exp	\exp	23	1	19	34
55	env	exp	exp	14	1	16	36
71	env	exp	exp	14	1	11	10
83	env	log	log	20	1	11	12
106	env	con	con	53	1	13	12
109	env	exp	exp	14	1	13	13
135	env	exp	exp	26	1	20	32
Haaland et al. [10]							
RW19	env	exp	exp	5	1	40	40
RW35	env	log	log	5	1	40	37
RW41	env	exp	exp	5	1	40	40
RW53	env	exp	exp	14	1	42	36
RW57	env	exp	exp	5	1	42	40
RW66	env	exp	exp	14	1	41	42
ZM190	env	log	log	14	1	48	35
ZM198	env	exp	exp	20	1	41	42
ZM205	env	log	log	16	-	32	45
ZM2200	env	exp	exp	5	1	27	22
ZM943	env	exp	evn	14	- 1	45	36
ZM948	env	log	log	20	± 1	57	56
Havman et al [11]	0117	105	108	20	T	01	00
don1 9	0017	con	con	1462	1	3	10
$\frac{1}{2}$	спv "	"	,,	1402 267	1 1	ม ว	10 "
$don1 \rightarrow 19$	"	"	"	307 1897	⊥ 1	ა 6	"
$don1 \rightarrow 22$				1021	1	U Continue 1	n nort
						Continued of	1 next page

Table $1 - c$	$\mathbf{ontinued}$
from previo	us page

Dataset	genomic region	\mathbf{PS}	\mathbf{SS}	#days to first sam-	#time points	# se- quences	# se- quences
				pling	recipient	recipient	donor
$don17 \rightarrow 23$	env	log	log	913	1	3	6
Liu <i>et al.</i> [12]		0	0				
D	env	\exp	\exp	61	1	11	19
\mathbf{E}	env	\exp	\exp	61	1	15	16
\mathbf{F}	env	\exp	\exp	39	1	14	15
G	env	\exp	\exp	23	1	13	14
I	env	\log	\log	52	1	9	15
J	env	\exp	\exp	5	1	10	13
Scaduto $et al.$ [13]							
$CC \ 01 \rightarrow 02$	env	\exp	\exp	101	1	20	20
$01 \rightarrow 03$	"	"	"	606	1	20	"
$01 \rightarrow 04$	"	"	"	777	1	20	"
$01 \rightarrow 05$	"	"	"	697	1	20	"
$01 \rightarrow 06$	"	"	"	737	1	20	"
$01 \rightarrow 07$	"	"	"	471	1	20	"
$CC \ 01 \rightarrow 02$	pol	\exp	\exp	"	"	20	20
$01 \rightarrow 03$	"	"	"	"	"	20	"
$01 \rightarrow 04$	"	"	"	"	"	20	"
$01 \rightarrow 05$	"	"	"	"	"	20	"
$01 \rightarrow 06$	"	"	"	"	"	20	"
$01 \rightarrow 07$	"	"	"	"	"	20	"
WA $04 \rightarrow 01$	env	exp	exp	132	1	20	20
$04 \rightarrow 02$	"	"	"*	161	1	20	"
$04 \rightarrow 03$	"	"	"	511	1	20	"
$04 \rightarrow 05$	"	"	"	205	1	19	"
$04 \rightarrow 06$	"	"	"	207	1	17	"
WA $04 \rightarrow 01$	pol	exp	exp	"	"	20	20
$04 \rightarrow 02$,, ,,	"	"	"	"	20	"
$04 \rightarrow 03$	"	"	"	"	"	20	"
$04 \rightarrow 05$	"	"	"	"	"	19	"
$04 \rightarrow 06$	"	"	"	"	"	17	"
Wolfs et al [7]	env	exp	exp	5	1	8	8
	CIIV	скр	mean	203.9	1	24.7	33 7
		n	redian	23	1	20	34
24024			iouiuii	20	1	20	01
				0.409	4	20	C
Bailey et al. [14]	gag	\exp	\exp	9493	4	38	6
Butler et al. [15]						10	F 0
sourceABC \rightarrow A	env	\exp	\exp	83	1	10	53
sourceABC→B		,,	,,,	71	1	8	
sourceABC \rightarrow C	77	"	77	48	1	5	77
D	env	\exp	\exp	128	1	13	13
E	env	\exp	\exp	73	1	17	22
F	env	\exp	\exp	84	1	19	44
Edo-Matas <i>et al.</i> [16]	env	log	log	2994	4	40	23
Edwards <i>et al.</i> $[17]$	env	log	log	242	4	67	33
	gag	\log	\log	"	4	64	39
Frost $et al.$ [18]							
004-007	env	\exp	\exp	10	1	12	12
206-201	env	\exp	\exp	10	1	11	12
						Continued or	n next page

Dataset	genomic region	PS	SS	#days to first sam- pling	#time points recipient	# se- quences recipient	# se- quences donor
206-204	env	exp	exp	10	1	12	13
512-558	env	exp	exp	104	1	14	11
512-559	env	exp	exp	104	1	11	11
551-550	env	exp	exp	10	1	12	13
564-557	env	exp	exp	10	1	15	14
Herbeck <i>et al.</i> [19]							
1	gag	\exp	\exp	36	15	304	20
1	env	\log	\log	"	12	418	21
1	pol	\exp	\exp	"	12	152	10
2	gag	\exp	\exp	13	1	18	10
2	env	\exp	\exp	"	"	18	10
2	pol	\exp	\exp	"	"	18	10
3	gag	\exp	\exp	30	1	93	10
3	env	\exp	\exp	"	"	93	10
3	pol	\exp	\exp	"	"	93	10
4	gag	\exp	\exp	20	1	30	38
4	env	\exp	\exp	"	"	30	38
4	pol	\exp	\exp	"	"	30	38
Lawson <i>et al.</i> $[20]$	env	\exp	\exp	5	2	19	10
Li et al. [21]							
AD18-AD17	env	\exp	\exp	10	1	25	17
AD75-AD77	env	con	con	10	1	27	19
AD83-04013240	env	\exp	\exp	10	1	66	22
LAC-HOBR	env	\exp	\log	10	1	21	13
Rachinger $et \ al. \ [22]$							
$pat3 \rightarrow 1$	env	\log	\log	153	5	46	65
$pat3 \rightarrow 2$	"	"	"	284	6	61	"
$pat3 \rightarrow 1$	gag	\log	\log	"	5	46	63
$pat3 \rightarrow 2$	"	"	"	"	7	46	"
$pat3 \rightarrow 1$	pol	\exp	\exp	"	2	26	24
$pat3 \rightarrow 2$	"	"	"	"	3	15	"
			mean	Х	Х	Х	Х
		m	edian	Х	Х	Х	Х

Table 1 – continued from previous page

Overview of the examined transmission chains. For each article in which we found useful data, we detail from what genomic region the sequences originate (env = Envelope, gag = Gag polyprotein, pol = Polymerase). We also give the number of sequences by recipient and donor and what demographic model came out best by the path sampling (PS) and stepping stone sampling (SS) marginal likelihood estimators (exp = exponential, con = constant, log = logistic). We also also specify the time between the most recent boundary of the transmission interval and the first sampling of the recipient as well as the number of available time points for the recipient. When multiple transmission chains were available, we kept the original naming and specify all details for each chain separately. Similarly, when a chain comprises multiple transmission events, the data are specified per event.

References

 Andreo, S.M.S., Barra, L.A.C., Costa, L.J., Sucupira, M.C.A., Souza, I.E.L., Diaz, R.S.: Hiv type 1 transmission by human bite. AIDS Res Hum Retroviruses 20(4), 349–50 (2004)

- [2] Blanchard, A., Ferris, S., Chamaret, S., Guétard, D., Montagnier, L.: Molecular evidence for nosocomial transmission of human immunodeficiency virus from a surgeon to one of his patients. J Virol 72(5), 4537–40 (1998)
- [3] Cornelissen, M., Mulder-Kampinga, G., Veenstra, J., Zorgdrager, F., Kuiken, C., Hartman, S., Dekker, J., van der Hoek, L., Sol, C., Coutinho, R.: Syncytium-inducing (si) phenotype suppression at seroconversion after intramuscular inoculation of a non-syncytium-inducing/si phenotypically mixed human immunodeficiency virus population. J Virol 69(3), 1810–8 (1995)
- [4] Diaz, R.S., Zhang, L., Busch, M.P., Mosley, J.W., Mayer, A.: Divergence of hiv-1 quasispecies in an epidemiologic cluster. AIDS 11(4), 415–22 (1997)
- [5] Kao, C.-F., Hsia, K.-T., Chang, S.-Y., Chang, F.-Y., Nelson, K., Yang, C.-H., Huang, Y.-F., Fu, T.-Y., Yang, J.-Y.: An uncommon case of hiv-1 transmission due to a knife fight. AIDS Res Hum Retroviruses 27(2), 115–22 (2011)
- [6] Metzker, M.L., Mindell, D.P., Liu, X.-M., Ptak, R.G., Gibbs, R.A., Hillis, D.M.: Molecular evidence of hiv-1 transmission in a criminal case. Proc Natl Acad Sci U S A 99(22), 14292–7 (2002)
- [7] Wolfs, T.F., Zwart, G., Bakker, M., Goudsmit, J.: Hiv-1 genomic rna diversification following sexual and parenteral virus transmission. Virology 189(1), 103–10 (1992)
- [8] Boeras, D.I., Hraber, P.T., Hurlston, M., Evans-Strickfaden, T., Bhattacharya, T., Giorgi, E.E., Mulenga, J., Karita, E., Korber, B.T., Allen, S., Hart, C.E., Derdeyn, C.A., Hunter, E.: Role of donor genital tract hiv-1 diversity in the transmission bottleneck. Proc Natl Acad Sci U S A 108(46), 1156–63 (2011)
- [9] Derdeyn, C.A., Decker, J.M., Bibollet-Ruche, F., Mokili, J.L., Muldoon, M., Denham, S.A., Heil, M.L., Kasolo, F., Musonda, R., Hahn, B.H., Shaw, G.M., Korber, B.T., Allen, S., Hunter, E.: Envelopeconstrained neutralization-sensitive hiv-1 after heterosexual transmission. Science **303**(5666), 2019–22 (2004)
- [10] Haaland, R.E., Hawkins, P.A., Salazar-Gonzalez, J., Johnson, A., Tichacek, A., Karita, E., Manigart, O., Mulenga, J., Keele, B.F., Shaw, G.M., Hahn, B.H., Allen, S.A., Derdeyn, C.A., Hunter, E.: Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype a and c hiv-1. PLoS Pathog 5(1), 1000274 (2009)
- [11] Hayman, A., Moss, T., Simmons, G., Arnold, C., Holmes, E.C., Naylor-Adamson, L., Hawkswell, J., Allen, K., Radford, J., Nguyen-Van-Tam, J., Balfe, P.: Phylogenetic analysis of multiple heterosexual transmission events involving subtype b of hiv type 1. AIDS Res Hum Retroviruses 17(8), 689–95 (2001)
- [12] Liu, Y., Curlin, M.E., Diem, K., Zhao, H., Ghosh, A.K., Zhu, H., Woodward, A.S., Maenza, J., Stevens, C.E., Stekler, J., Collier, A.C., Genowati, I., Deng, W., Zioni, R., Corey, L., Zhu, T., Mullins, J.I.: Env length and n-linked glycosylation following transmission of human immunodeficiency virus type 1 subtype b viruses. Virology **374**(2), 229–33 (2008)
- [13] Scaduto, D.I., Brown, J.M., Haaland, W.C., Zwickl, D.J., Hillis, D.M., Metzker, M.L.: Source identification in two criminal cases using phylogenetic analysis of hiv-1 dna sequences. Proc Natl Acad Sci U S A 107(50), 21242–7 (2010)
- [14] Bailey, J.R., O'Connell, K., Yang, H.-C., Han, Y., Xu, J., Jilek, B., Williams, T.M., Ray, S.C., Siliciano, R.F., Blankson, J.N.: Transmission of human immunodeficiency virus type 1 from a patient who developed aids to an elite suppressor. J Virol 82(15), 7395–410 (2008)
- [15] Butler, D.M., Delport, W., Kosakovsky Pond, S.L., Lakdawala, M.K., Cheng, P.M., Little, S.J., Richman, D.D., Smith, D.M.: The origins of sexually transmitted hiv among men who have sex with men. Sci Transl Med 2(18), 18–1 (2010)

- [16] Edo-Matas, D., Rachinger, A., Setiawan, L.C., Boeser-Nunnink, B.D., van 't Wout, A.B., Lemey, P., Schuitemaker, H.: The evolution of human immunodeficiency virus type-1 (hiv-1) envelope molecular properties and coreceptor use at all stages of infection in an hiv-1 donor-recipient pair. Virology 422(1), 70–80 (2012)
- [17] Edwards, C.T.T., Holmes, E.C., Wilson, D.J., Viscidi, R.P., Abrams, E.J., Phillips, R.E., Drummond, A.J.: Population genetic estimation of the loss of genetic diversity during horizontal transmission of hiv-1. BMC Evol Biol 6, 28 (2006)
- [18] Frost, S.D.W., Liu, Y., Pond, S.L.K., Chappey, C., Wrin, T., Petropoulos, C.J., Little, S.J., Richman, D.D.: Characterization of human immunodeficiency virus type 1 (hiv-1) envelope variation and neutralizing antibody responses during transmission of hiv-1 subtype b. J Virol 79(10), 6523–7 (2005)
- [19] Herbeck, J.T., Rolland, M., Liu, Y., McLaughlin, S., McNevin, J., Zhao, H., Wong, K., Stoddard, J.N., Raugi, D., Sorensen, S., Genowati, I., Birditt, B., McKay, A., Diem, K., Maust, B.S., Deng, W., Collier, A.C., Stekler, J.D., McElrath, M.J., Mullins, J.I.: Demographic processes affect hiv-1 evolution in primary infection before the onset of selective processes. J Virol 85(15), 7523–34 (2011)
- [20] Lawson, V.A., Oelrichs, R., Guillon, C., Imrie, A.A., Cooper, D.A., Deacon, N.J., McPhee, D.A.: Adaptive changes after human immunodeficiency virus type 1 transmission. AIDS Res Hum Retroviruses 18(8), 545–56 (2002)
- [21] Li, H., Bar, K.J., Wang, S., Decker, J.M., Chen, Y., Sun, C., Salazar-Gonzalez, J.F., Salazar, M.G., Learn, G.H., Morgan, C.J., Schumacher, J.E., Hraber, P., Giorgi, E.E., Bhattacharya, T., Korber, B.T., Perelson, A.S., Eron, J.J., Cohen, M.S., Hicks, C.B., Haynes, B.F., Markowitz, M., Keele, B.F., Hahn, B.H., Shaw, G.M.: High multiplicity infection by hiv-1 in men who have sex with men. PLoS Pathog 6(5), 1000890 (2010)
- [22] Rachinger, A., Groeneveld, P.H.P., van Assen, S., Lemey, P., Schuitemaker, H.: Time-measured phylogenies of gag, pol and env sequence data reveal the direction and time interval of hiv-1 transmission. AIDS 25(8), 1035–9 (2011)

Table 1: Overview of the dataset composition.

$risk \ group$	# transmission chains	gag	pol	env
BC	7(8)	3	-	7
HET	39(50)	-	2	39
MSM	24(26)	7	5	23
total	70(84)	10	7	69

The number of analyzed transmission chains is given, with the total number of transmission events between brackets. The majority of the chains (60/70, 85.7%) represent 1 transmission event (range: 1 to 6). Sometimes, data of multiple genomic regions were available, augmenting the total number of datasets to n = 86. The number of chains is also given for each genomic region. Most data are available of the *env* region.

Table 2: Results of the fixed effects analyses.

¹ The demographic model of each dataset was specified according to the model selected by the PS and SS marginal likelihood estimators.

 2 In this analysis, all transmission chains were parametrized using the logistic growth model.

³ This is the mean effect size and HPD interval (in ln units) of the predictor conditioned on inclusion of the effect in the model (i.e., $\beta_i | \delta_i = 1$).

⁴ The average percentage of genetic diversity lost at transmission calculated using all datasets. The value between brackets was obtained after excluding the dataset with the smallest transmission bottleneck.

subtype	risk group (# taxa)	date range	% male
A1	HET (44) IDU (23)	1986-2008 1997-2007	$29.5 \\ 55.5$
В	HET (54) MSM (73)	1996-2009 1983-2012	44.4 100
CRF01_AE	HET (77) MSM (57)	$\begin{array}{c} 19902009 \\ 20072011 \end{array}$	48.7^{1} 100

Table 3: Risk group evolutionary rate dataset characteristics.

 1 In these datasets there were a number of taxa with unknown gender origins. The reported male proportion does not take these into account.