TET2 functions as a resistance factor against DNA methylation acquisition during Epstein-Barr virus infection

SUPPLEMENTARY FIGURES AND TABLES

Supplementary Figure S1: The genes downregulated and upregulated by EBV infection. A. The epigenetic factors downregulated by EBV infection include *HDAC8*, which was downregulated in two of EBV-infected MKN7 clones. **B.** The epigenetic factors upregulated by EBV infection include *SUZ12* and *BMI1*, which were upregulated in two of EBV-infected MKN7 clones.

www.impactjournals.com/oncotarget/

<i>TET2</i> variant 1		3′ UTR	0 250	500 bp
Exon 11	9 29a-1 29a-2	93 371a-1 106b 29a-3 22 29a-4	186371a-2	
				3284
hsa-miR-9	3′UA – UGUCG	AUC – – – UAUUGO	3 U U U C 5'	
TET2 199	5' AUGGCAUC	UAGGAAAAGACO	CAAAG 3'	
hsa-miR-29a-1	3'UAAAGUCU	АССАССА 5′		
TET2 439	5' AUACCAUC	UGGUGCU 3'		
hsa-miR-29a-2	3′CUA – AAG –	– U C – – U A C C A C G	3A 5′	
TET2 582	5' GAUGUUCU	AAGAAAUGGUGO	CU 3'	
hsa-miR-106b	3' ACGUGACA	GUCGUGAAA 5'		
TET2 889	5' UGUUUUAG	AAGCACUUU ³		
hsa-miR-93	3' ACGUGCUU	GUCGUGAAA 5'		
TET2 889	5′ UGUUUUAG	AAGCACUUU 3'		
hsa-miR-29a-3	3′ UG – GCUAA	AGUCUACCACG <i>4</i>	4 5′	
TET2 1141	5' ACAUGUUU	UC – – – UGGUGCU	J 3'	
hsa-miR-22	3′ UUGACCGU	CGA 5′		
TET2 1507	5′ AACAGGCA	G C U 3'		
hsa-miR-29a-4	3′ UGGCUAAA	G U – C U A C C A C G A	\ 5'	
TET2 1699	J J J 5'AUUCACAU		J 3'	
hsa-miR-371a-1	3' GGGGGUGU	- CAAACUC 5'		
TET2 1760	5' UCAUUAAA	UGUUUGAG 3'		
hsa-miR-186	3' UAAGAAA 5	,		
TET2 2048	5' AUUCUUU 3	,		
hsa-miR-371a-2	3′GGGGGUGU	CAAACUC 5'		
TET2 2169	5' UUUUAAAA	GUUUGAG 3'		

Supplementary Figure S2: The predicted target regions of 7 miRNAs targeting *TET2.* hsa-miR-29a has 4 sites and has-miR-371a has 2 sites to bind 3' UTR of *TET2.*

Supplementary Figure S3: Representation of an unmethylated gene (*HIAT1*), a methylation-sensitive gene (*CNKSR1*), a methylation-resistant gene (*CCDC24*), and an originally methylated gene (*PRKCZ*) during EBV infection. When *de novo* methylation is induced by EBV infection, there are two types of methylation acquisition around promoter regions. Methylation-sensitive genes undergo complete methylation around the promoter regions; methylation-resistant genes undergo methylation in regions surrounding their promoters, but maintain an unmethylated status in narrow regions around the TSS.

Supplementary Figure S4: Representative genes with an hmC peak, but no mC peak, e.g., *ADAM17*, and those with mC peak and no hmC peak, e.g., *PAX7*, are shown. The β values of the former genes were very low, e.g., 0.05 for *ADAM17*. The β values of the latter genes were markedly higher, e.g., 0.65 for *PAX7*.

Supplementary Table S1: EBV miRNA and the targeting human genes

See Supplementary File 1

target gene	strand	sequence
TET2	top	CCGG <u>CAGATGCACAGGCCAATTAAG</u> CTCGAG <u>CTTAATTGGCCTGTGCATCTG</u> TTTTTG
	bottom	AATTCAAAAACAGATGCACAGGCCAATTAAGCTCGAGCTTAATTGGCCTGTGCATCTG
Non-target	top	CCGG <u>CAACAAGATGAAGAGCACCAA</u> CTCGAG <u>TTGGTGCTCTTCATCTTGTTG</u> TTTTTG
	bottom	AATTCAAAAAACAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTG

Supplementary Table S2: shRNA target sequences in lentivirus

Oligonucleotide sequences of shRNA against *TET2* (shTET2) and control non-target shRNA (shNON), inserted into pLKO.1 vector between EcoRI and AgeI sites, are shown, and 21-mer target sequences are underlined.

Gene	Primer types	Primer Sequence	Anneal (°C)	Product (bp)
TET1	Forward	CTTACAGAGTTTGGCTACACGAT	(0)	93
	Reverse	CGGGCAACATTTTCATATTCCAC	60	
TET2	Forward	ATTGAAACAAGACCAAAAGGCTA	(0)	109
	Reverse	CTTATCACTCAAATCGGAGACA	60	
TET3	Forward	CCACGGCTTCCAGACAGACCAC	(0)	91
	Reverse	CAGGGGCAGCTTTCTCCGTTCCCA	60	
GAPDH	Forward	CCAGGTGGTCTCCTCTGACTTC	(0)	108
	Reverse	TCATACCAGGAAATGAGCTTGACA	00	
PPIA	Forward	ACAGTGCTTGCTGGCAGTTAGA	(0)	120
	Reverse	CAAATCCGCCACCTCTAGGATAG	60	150

Supplementary Table S3: Primer sequences for real-time RT-PCR

	-	
IP Buffer	20 mM tris-HCl pH8.0	
	2 mM EDTA	
	150 mM NaCl	
	1.0% Triton-X100	
Wash Buffer	20 mM Tris-HCl pH8.0	
	2 mM EDTA	
	300 mM NaCl	
	0.1% SDS	
	1.0% Triton-X100	
Elution Buffer	25 mM Tris-HCl pH8.0	
	10 mM EDTA	
	0.5% SDS	
	100 mM NaCL	

Supplementary Table S4: Buffers for DIP experiment

Gene	Primer types	Primer Sequence	Anneal (°C)	Product (bp)	hMe/Me
Positive control regions					
NEDD9	Forward	GCTTCATGCCTGCTACATATACTCC	60	106	hMe, Me
	Reverse	TGTGGTCTGTTTGTGTGTAAGAGG	00	100	
	Forward	CATGCAGAGCAGCGATTTAAA	(0)	00	hMe
HMGA2	Reverse	GCCTTTCTTCTTGCTTTAGGACAA	60	99	
ACTD	Forward	GAGGGAAATGAGGGCAGGACTT	(0)	127	hMe
ACID	Reverse	GCTGCCCTGAGGCACTCTTC	00		
4 1 4 D 1	Forward	CGAGCCAGGTCTGAGGC	(0)	77	Me
AJAF I	Reverse	GGTCGCTCACCTGAGTCCTA	00		
Negative control region					
HBB	Forward	GGGCTGAGGGTTTGAAGTCC	60	20	hMe, Me
	Reverse	CCACAGGGTGAGGTCTAAGTG	00	89	
Validation region					
	Forward	CTTCCTCCATCTCTATCGGGCAA	60	72	hMe
	Reverse	CTAATCCTGGAGGCGGCATCTGA	00	15	

Supplementary Table S5: Primers for hMeDIP/MeDIP-PCR

Gene	strand	Primer types	Primer Sequence	Anneal (°C)	Product (bp)
FRG1B	bottom	Forward	GAGTGTTGTGGGAATGTGG	56	101
		Reverse*	ТССТСАААТАСССССТССААААТТАААСТ		
		Sequencing	GGTGGAGAGTTATGGT	58	134
HTRA1	HTRA1 bottom	Forward*	GGAGAGTGTAGGAGGGTTT		
		Reverse	CCATCCCACCAACCCCCATC		
		Sequencing	CACCCCTACCAAACCAATAAACT		

Supplementary Table S6: Primers for pyrosequencing

* Primers with 5'-biotin tag.