Supplemental Data

Sulfur transfer and activation by ubiquitin-like modifier system Uba4•Urm1 link protein urmylation and tRNA thiolation in yeast

André Jüdes¹, Alexander Bruch¹, Roland Klassen¹, Mark Helm² and Raffael Schaffrath¹*

¹ Universität Kassel, Institut für Biologie, FG Mikrobiologie Heinrich-Plett-Str. 40, 34132 Kassel, Germany

² Johannes Gutenberg Universität Mainz, Institut für Pharmazie und Biochemie Staudinger Weg 5, 55128 Mainz, Germany

* Corresponding author:	eMail: <u>schaffrath@uni-kassel.de</u>
	Phone: +49-561-804-4175
	FAX: +49-561-804-4337

1. Supplementary Tables

Table S1. Yeast strains used in this study.

Strain	Genotype	Source
BY4741	MATa his3∆1 leu2∆0 met15∆0 ura3∆0	Euroscarf
Y01400	BY4741, <i>urm1∆::kanMX4</i>	Euroscarf
Y01939	BY4741, <i>uba4∆::kanMX4</i>	Euroscarf
Y02507	BY4741, <i>tum1∆::kanMX4</i>	Euroscarf
Y07242	BY4741, ncs2∆::kanMX4	Euroscarf
Y04577	BY4741, ncs6∆::kanMX4	Euroscarf
Y02720	BY4741, ahp1∆∷kanMX4	Euroscarf
Y02742	BY4741, elp3∆::kanMX4	Euroscarf
Y07270	BY4741, deg1∆::kanMX4	Euroscarf
RK28	BY4741, elp3∆::kanMX4 uba4∆::ScHIS3	[1]
FEY14	BY4741, urm1∆∷kanMX4 AHP1-c-myc::ScHIS3	[2]
FEY15	BY4741, urm1∆::kanMX4 uba4∆::natNT2	[2]
FEY16	BY4741, ahp1∆∷kanMX4 urm1∆::ScHIS3	[2]
FEY19	BY4741, ncs2∆::kanMX4 urm1∆::SpHIS5	this study
FEY20	BY4741, ncs6∆::kanMX4 urm1∆::SpHIS5	this study
FEY21	BY4741, <i>tum1∆::kanMX4 urm1∆::SpHIS5</i>	this study
FEY25	BY4741, urm1∆::kanMX4 uba4∆::natNT2 ahp1∆::SpHIS5	[2]
FEY26	BY4741, urm1∆::kanMX4 uba4∆::natNT2 AHP1-c-myc::ScHIS3	[2]
FEY31	BY4741, uba4∆::kanMX4 deg1∆::SpHIS5	this study
FEY32	BY4741, urm1∆::kanMX4 uba4∆::natNT2 tum1∆::SpHIS5	this study
FEY34	BY4741, urm1∆::kanMX4 uba4∆::natNT2 ncs2∆::SpHIS5	this study
FEY35	BY4741, urm1∆::kanMX4 uba4∆::natNT2 ncs6∆::SpHIS5	this study
FEY41	BY4741, elp3∆::kanMX4 uba4∆::ScHIS3 tum1∆::KIURA3	this study
FEY49	BY4741, uba4∆::kanMX4 deg1∆::SpHIS5 tum1∆::KIURA3	this study
FEY50	BY4741, uba4∆::kanMX4 deg1∆::loxP	this study
AWJ137	Kluyveromyces lactis zymocin producing killer strain	Lab stock

Primer	Sequence (5'-3')	Application
DEG1koF	ggtgcccacatgcaatctttactgccctactataacctcccttgacagctgaagcttcgtacgc	DEG1 ko
DEG1koR	gaaatatagtcttcaaggttatattatacaggtttatatattattgcataggccactagtggatctg	DEG1 ko
KO_NCS2_FW	tgctattgtccatccctatcctagttttaaaaatataattctatcaagttcagctgaagcttcgtacgc	NCS2 ko
KO_NCS2_RV	taaataaataaatacataaccattggaatagcgaagcctttgacatttcagcataggccactagtggatctg	NCS2 ko
KO_NCS6_FW	aaaattttggcgatgagacgatatggtaagagtaaagcaaaggaaccgtccagctgaagcttcgtacgc	NCS6 ko
KO_NCS6_RV	tatattatattatgttacgctgcattcttctactgcgagctatatata	NCS6 ko
KO_TUM1_FW	acaatgaggacaaaagcataaagttgtgaagaaaattgcccatacattcacagctgaagcttcgtacgc	<i>TUM1</i> ko
KO_TUM1_RV	ttaatatatgtagctaaataaatcgacttgtcaagaatatatttctcttagcataggccactagtggatctg	<i>TUM1</i> ko
KO_URM1_FW	caatactgatttctgatactaaaacgagataggttaatagcaaaatcgggcagctgaagcttcgtacgc	URM1 ko
KO_URM1_RV	ctttatatatatatatgtagctgcttcttaaaaattatttgctgctatttgcataggccactagtggatctg	URM1 ko
UBA4_C225S_FW	ccaaatgccgtgacctcttcccaagaaggcggtgtgatag	UBA4 SM
UBA4_C225S_RV	ctatcacaccgccttcttgggaagaggtcacggcatttgg	UBA4 SM
UBA4_C397S_FW	cagtaatatagtgattctttcccgctacggtaacgactctc	UBA4 SM
UBA4_C397S_RV	gagagtcgttaccgtagcgggaaagaatcactatattactg	UBA4 SM
UBA4_K122R_FW	gagtcggaatgttgagatgtgagtcggccag	UBA4 SM
UBA4_K122R_RV	ctggccgactcacatctcaacattccgactc	UBA4 SM
UBA4_K132R_FW	gccaggcaatatatcacacgagactgaacccacacattaac	UBA4 SM
UBA4_K132R_RV	gttaatgtgtgggttcagtctcgtgatatattgcctggc	UBA4 SM
UBA4_K156R_FW	ccagtaatgcttttgacattttcagaggttacaattatatattagactg	UBA4 SM
UBA4_K156_RV	cagtctaatatatatatgtaacctctgaaaatgtcaaaagcattactgg	UBA4 SM
UBA4_K248R_FW	gatggctgtagaaactttgagacttatcctaggaatctaca	UBA4 SM
UBA4_K248R_RV	gtgtagattcctaggataagtctcaaagtttctacagccatc	UBA4 SM
UBA4_FW_Ndel	gggcatatgaatgactaccatctcgaggataccacgtctg	PC 1
UBA4_RV_NotI	ggggcggccgccagtgtgatggatatctgcagaattcctagtccacactgattctctcatc	PC ¹
UBA4(329-440)_fw_Ndel	catatggcatttcagcgtatctacaagg	PC ²
MOCS3/UBA4_rv_Sacl	cccgagctcaaagccttcgagcgtccc	PC ²

Table S2. Primers used in this study.

Abbreviations:

ko: knock-out SM: site-directed mutagenesis PC: plasmid construction of ¹pAJ82 or ²pAJ113 (see Table S3).

Table S3. Plasmids used in this study.

Plasmid	Description	Reference
pRS423	2µ ori, ScH/S3	[3]
YCplac33	ARS1-CEN4, ScURA3	[4]
YCplac111	ARS1-CEN4, ScLEU2	[4]
YEplac195	2µ ori, ScURA3	[4]
pHA-URM1	HA-URM1 cloned into pRS426 _{Smal}	[5]
pCB45	PGAL1-TAP-URM1 cloned into YCplac33 _{Hindlll/Sall}	[2]
pAJ16	P _{ADH1} -UBA4-T _{CYC1} cloned into YCplac111 _{BamHI/Sacl}	[2]
pAJ52	P _{ADH1} -UBA4-c-myc-T _{CYC1} cloned into YCplac111 _{EcoRI/Sacl}	[2]
pAJ64	P _{ADH1} -uba4-C225S-T _{CYC1} cloned into YCplac111 _{BamHI/Sacl}	this study
pAJ65	P _{ADH1} -uba4-C397S-T _{CYC1} cloned into YCplac111 _{BamHI/Sacl}	this study
pAJ69	P _{ADH1} -uba4-C225S/C397S-T _{CYC1} cloned into YCplac111 _{BamHI/Sacl}	this study
pAJ82	UBA4 ₁₋₃₂₈ cloned into pAJ16 _{Notl/Ndel}	this study
pAJ105	P _{ADH1} -uba4-K122R-c-myc cloned into YCplac111 _{EcoRI/Sacl}	this study
pAJ106	P _{ADH1} -uba4-K132R-c-myc cloned into YCplac111 _{EcoRI/Sacl}	this study
pAJ107	P _{ADH1} -uba4-K248R-c-myc cloned into YCplac111 _{EcoRI/Sacl}	this study
pAJ108	P _{ADH1} -uba4-K156R-c-myc cloned into YCplac111 _{EcoRl/Sacl}	this study
pQKE	tQ ^{UUG} tK ^{UUU} tE ^{UUC} cloned into pRS425	[2]
pAJ113	P _{ADH1} -UBA4 ₃₂₉₋₄₄₀ -T _{CYC1} cloned into pRS423 _{BamHI/Sacl}	this study

2. Supplementary Figures

Fig. S1:

FIGURE S1: Peroxiredoxin Ahp1 is targeted for urmylation in yeast. Protein extracts from an *urm1* Δ reporter strain expressing *TAP-URM1* in the indicated genetic backgrounds, i.e. wildtype (wt) *AHP1*, *ahp1* Δ or *AHP1-c-myc*, were subjected to anti-TAP-based EMSA or immune blots with anti-Cdc19 antibodies (loading control). Arrows indicate the positions of nonconjugated (free) TAP-Urm1 as well as TAP-Urm1 conjugated to Ahp1 or Ahp1-c-myc, respectively. Fig. S2:

FIGURE S2: The decrease in Urm1 abundance at 39°C is independent of cycloheximide inhibition of translation. An *urm1* Δ strain expressing *TAP-URM1* was grown at 30° or 39°C for the indicated time in the absence (-) or presence (+) of 200 µg/ml cycloheximide. Upon protein extraction, Western blots (see Fig. S1) were used to compare protein stability and abundance between non-conjugated (free) TAP-Urm1 and pyruvate kinase (Cdc19) used as loading control. Fig. S3:

FIGURE S3: Global urmylation efficiency is reduced in a *tum1* \triangle **mutant**. Protein extracts from an *urm1* \triangle strain expressing *TAP-URM1* were obtained from wild-type (wt), *tum1* \triangle , *uba4* \triangle , *ncs2* \triangle or *ncs6* \triangle strain backgrounds and subjected to Urm1 conjugation studies (see Fig. S1). Unspecific TAP-Urm1 dependent signals are marked (*).

Fig. S4:

FIGURE S4: Unlike Ahp1, urmylation of Uba4 seems not to be affected by lack of sulfur transferase Tum1. Conjugation of HA-tagged Urm1 to c-myc-marked Uba4 was analyzed in wild-type (wt), $tum1\Delta$, $ncs2\Delta$, $ncs6\Delta$ or $ahp1\Delta$ backgrounds using EMSA (see Fig. S1) and Western blots specific for HA (Urm1), c-myc (Uba4) and Cdc19 (loading control). Arrows indicate non-conjugated (free) forms of c-myc-tagged Uba4 and HA-marked Urm1 as well as Ahp1 and c-myc-tagged Uba4 each conjugated to HA-Urm1.

Fig. S5:

FIGURE S5: Thermosensitivity of *elp3* Δ *uba4* Δ or *deg1* Δ *uba4* Δ strains is partially rescued by Cys to Ser substitution mutations (C225S, C397S and C225S/C397S) in Uba4. Ten-fold serial dilutions of *elp3* Δ *uba4* Δ (**A**) or *deg1* Δ *uba4* Δ (**B**) reporter strains transformed with the indicated *UBA4* wild-type or mutant alleles were cultivated at 30°C (**A**, **B**), 35°C (**B**) or 39°C (**A**) for 3 days on YPD medium and compared to single *elp3* Δ (**A**) or *deg1* Δ (**B**) mutants alone and wild-type (WT) cells.

Fig. S6:

FIGURE S6: Temperature sensitivity of $elp3 \Delta uba4 \Delta$ or $deg1 \Delta uba4 \Delta$ reporter strains is slightly suppressed by Uba4₁₋₃₂₈ and in a fashion independent of *TUM1* gene function. Ten-fold serial dilutions of $elp3 \Delta uba4 \Delta$ (A) or $deg1 \Delta uba4 \Delta$ (B) reporter strains transformed with the indicated *UBA4* wild-type or mutant alleles or carrying an additional *TUM1* gene deletion (*tum1* Δ) were cultivated at 30°C (A, B), 34°C (B) or 39°C (A) for 3 days on YPD medium and compared to single $elp3\Delta$ (A) or $deg1\Delta$ (B) mutants alone and wild-type (WT) cells.

Fig. S7:

FIGURE S7: Proper Uba4 functions in tRNA thiolation and urmylation are not sustained upon co-expression of its individual MoeBD (Uba4₁₋₃₂₈) and RHD (Uba4₃₂₉₋₄₄₀) domains. (A) Expression of Uba4₃₂₉₋₄₄₀ alone or together with Uba4₁₋₃₂₈ fail to complement tRNA thiolation defects. The indicated *UBA4* alleles or vector controls were introduced into the *deg1* Δ *uba4* Δ reporter strain. Following cultivation at 30°C or 34°C (see Fig. S6B) thermosensitivity was compared between the transformants, the single *deg1* Δ mutant alone and wild-type (WT) cells. (B) RHD (Uba4₃₂₉₋₄₄₀) and MoeBD (Uba4₁₋₃₂₈) co-expression cannot rescue protein urmylation defects, and RHD expression alone copies *uba4* Δ cells lacking urmylation. Urmylation studies used EMSA based on anti-TAP Western blots (see Fig. S1). Non-conjugated (free) TAP-Urm1 and different TAP-Urm1 conjugates are indicated.

FIGURE S8: Site-directed mutagenesis of the MoeBD region in Uba4 identifies candidate Lys residues critical for urmylation of Ahp1 and/or Uba4 itself. Conjugation of HA-tagged Urm1 to Ahp1 and c-myc-marked Uba4 was analyzed in *uba4*∆ mutant cells carrying wild-type (wt) *UBA4* allele and the indicated Uba4 Lys (K) to Arg (R) substitution mutations. Urmylation was assessed by EMSAs (see Fig. S4) using Western blots specific for HA (Urm1), c-Myc (Uba4) and Cdc19 (loading control). Arrows indicate non-conjugated (free) forms of Uba4-c-myc and HA-Urm1 as well as HA-Urm1 conjugated to Ahp1 and c-myc-tagged Uba4, respectively.

Fig. S9:

FIGURE S9: Models to explain residual contribution of Uba4₁₋₃₂₈ to Urm1 activation and low-level tRNA thiolation and urmylation in the absence of both Tum1 and the RHD. (A) Uba4₁₋₃₂₈ is still directly involved in the sulfur transfer to Urm1. The MoeBD region of the truncated activator Uba4₁₋₃₂₈ adenylates Urm1. Adenylated Urm1 forms an acyl-disulfide bond with a persulfide, which was previously formed at a cysteine residue within the MoeBD of Uba4₁₋₃₂₈. Persulfide formation could involve Nfs1 and/or an unknown (?) Tum1-independent S-transferase. (B) Sulfur incorporation into Urm1 is not directly mediated by Uba4₁₋₃₂₈. In this case Uba4₁₋₃₂₈ is only involved in E1-like adenylation of Urm1. The thiocarboxylation of Urm1 could be directly mediated by Nfs1 or an S-transferase alternative to Tum1 (?). Both routes (A,B) may generate Urm1-COSH levels sufficient for the observed low residual tRNA thiolation and urmylation capacities (see Fig. 5 and Fig. S7) of cells producing the MoeBD region (without the RHD) on Uba4₁₋₃₂₈.

4. Supplementary References

1. Klassen R, Grunewald P, Thüring KL, Eichler C, Helm M, and Schaffrath R (**2015**). Loss of anticodon wobble uridine modifications affects tRNA^{Lys} function and protein levels in *Saccharomyces cerevisiae.* **PLoS ONE** 10(3): e0119261.

2. Jüdes A, Ebert F, Bär C, Thüring KL, Harrer A, Klassen R, Helm M, Stark MJ, and Schaffrath R (**2015**). Urmylation and tRNA thiolation functions of ubiquitin-like Uba4·Urm1 systems are conserved from yeast to man. **FEBS Lett** 589(8): 904-909.

3. Christianson TW, Sikorski RS, Dante M, Shero JH, and Hieter P (**1992**). Multifunctional yeast high-copy-number shuttle vectors. **Gene** 110(1): 119-122.

4. Gietz RD and Sugino A (**1988**). New yeast-*Escherichia coli* shuttle vectors constructed with *in vitro* mutagenized yeast genes lacking six-base pair restriction sites. **Gene** 74(2): 527-534.

5. Furukawa K, Mizushima N, Noda T, and Ohsumi Y (**2000**). A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. **J Biol Chem** 275(11): 7462-7465.