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A Existence of an MMPE strategy profile
We recall the utility function of individual i defined in the Methods section below,

ui(ai,{a j} j∈Ni ,s(t)) = aiβ

(
c0− c1(1− si(t)) ∑

j∈Ni

a js j(t)− c2si(t) ∑
j∈Ni

a j(1− s j(t))
)
. (S1)

Define the space of probability distributions on the action space (0 ≤ ai ≤ 1) [0,1] as 4([0,1]). A mixed strategy
profile σ(·) is a function that maps the state s ∈ {0,1}n to the space of probability distributions on the actions space, i.e.,
σi : {0,1}n→4([0,1]). The definition of a mixed MMPE strategy profile σ∗ := {σ∗i : {0,1}n→4[0,1]} is a distribution on
the action space that satisfies the following, for all t = 1,2, . . . , and i ∈N ,

ui(σ
∗
i (s(t)),σ

∗
Ni
(s(t)),s(t))≥ ui(σi(s(t)),σ∗Ni

(s(t)),s(t)) (S2)

for any σi ∈ {0,1}n→4([0,1]) where σ∗Ni
:= {σ∗j : j ∈Ni}. From the existence of a mixed Nash equilibrium in games with

continuous payoffs, we know that a mixed MMPE exists for the game with payoffs (S1).
In the following we constructively show that in the stochastic disease network game with payoffs in (S1), a degenerate (pure)

MMPE strategy profile σ∗ := {σ∗i : {0,1}n→ [0,1]} that satisfies the above relation in (S2) exists. Note that a degenerate
distribution puts weight one on a single action value, that is, the strategy profile corresponds to a single action profile for any
state.

Since in the stochastic game population response is determined by the current state of the disease only, i.e., equilibrium is
stationary, it suffices to show the existence of a pure Nash equilibrium strategy for the stage game with state s ∈ {0,1}n. A pure
Nash equilibrium (NE) strategy profile σ∗ : {0,1}n→ [0,1]n of the stage game with payoffs (S1) and state s satisfies

ui(σ
∗
i ,σ

∗
Ni
,s)≥ ui(σi,σ

∗
Ni
,s) (S3)

for any σi ∈ {0,1}n→4([0,1]). We define the corresponding equilibrium action profile as a∗ := σ∗(s) for a given state s.
For a given individual i with state si ∈ {0,1}, neighbors’ state sNi := {s j} j∈Ni , and neighbor action profile aNi we have the

best response of individual i as follows,

BRi(aNi ,si,sNi) := argmax
ai∈[0,1]

ui(ai,aNi ,sNi) (S4)

= 1

(
c0 > c1(1− si) ∑

j∈Ni

a js j + c2si ∑
j∈Ni

a j(1− s j)

)
(S5)

where 1(·) is the indicator function. Since the payoffs are linear in self-actions, the actions that maximize the payoffs are in the
extremes – ai = 1 or ai = 0 – depending on the states and actions of their neighbors. We can equivalently represent the NE
definition in (S3) as a fixed point equation by using the best response definition,

a∗i = BRi(a∗Ni
,si,sNi) ∀i ∈N . (S6)

In the following we define the concept of strictly dominated action which will be a useful in finding the Nash equilibrium.

Definition 1 (Strictly dominated action) For a given state s ∈ {0,1}n, an action ai ∈ [0,1] is strictly dominated if and only if
there exists an action a′i ∈ [0,1] such that

ui(a′i,aNi ,s)> ui(ai,aNi ,s) ∀aNi (S7)
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Figure S1. The iterated elimination process in Definition 3 on a 5 individual network. The payoff constants are such that 2c1 > c0 > c1
and c0 > 2c2. Individuals 1 and 2 are sick (s1 = 1, s2 = 1) and the rest are healthy. The contact network is shown at k = 0. At step k = 1,
individuals in n(1) = {1,2,4,5} eliminate all actions except 1 by (S9) given c0 > c1 and c0 > 2c2. Individual 3 cannot eliminate any action
from the space. At step k = 2, individual 3 eliminates all actions except 0 by (S10). Since all individuals have singleton non-dominated action
spaces, i.e., N \ (n(1)

⋃
n(2)) = /0, the process ends. Furthermore, the corresponding action profile is a Nash equilibrium of the stage game

in (S1) by Lemma 2.

If an action ai is strictly dominated then there exists a more preferable action a′i for any circumstance. It is clear that if an action
is strictly dominated then it cannot be a rational action from (S6). In a game we can iteratively remove the strictly dominated
actions, this process is called the iterated elimination of strictly dominated strategies and is defined below.

Definition 2 (Iterated elimination of strictly dominated actions) Set the initial set of actions A0
i = [0,1] for all i, and for

any k ∈ N set

Ak
i = {ai ∈ Ak−1

i

∣∣ai is not strictly dominated given any aNi ∈ Ak−1
Ni
} (S8)

We denote the set of actions of individual i that survive the iterated elimination by A∞
i :=

⋂
∞
k=0 Ak

i . When A∞
i has a single

element, we say A∞
i is a singleton.

We formally state an iterated elimination process for the game in (S1).

Definition 3 (An iterated elimination process for the epidemic game) Begin with action spaces A0
i = [0,1] for all i ∈N .

Fix s ∈ {0,1}n. Iterate k = 1,2, . . .

1) [k = odd] Let Ak
i = 1 for all i ∈ n(k) where

n(k) :=

{
i ∈N \

k−1⋃
l=1

n(l) : c0 >

(
c1(1− si) ∑

j∈Ni\
⋃

l=even n(l)
s j + c2si ∑

j∈Ni\
⋃

l=even n(l)
(1− s j)

)}
(S9)

2) [k = even] Let Ak
i = 0 for all i ∈ n(k) where

n(k) :=

{
i ∈N \

k−1⋃
l=1

n(l) : c0 <

(
c1(1− si) ∑

j∈Ni
⋂⋃

l=odd n(l)
s j + c2si ∑

j∈Ni
⋂⋃

l=odd n(l)
(1− s j)

)}
(S10)

If n(k) = /0 then stop iteration of k.

Our next result shows that the process described above eliminates all strictly dominated strategies in finite time.

Lemma 1 Consider the process described in Definition 3. There exists an iteration step k ≤ n such that {Ak
i }i∈N are the set of

actions that are not strictly dominated for the game with payoffs (S1) and state s ∈ {0,1}n.

Proof: First consider the odd iteration steps, k = odd. If the condition inside the bracket in (S9) holds then for any action
that individual j ∈Ni \

⋃
l=even n(l) takes, a′i = 1 dominates any other action ai ∈ [0,1]\{1} by Definition 1. To see this first
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recall the best response of individual i (S5). Note that by the even steps, individuals j ∈
⋃

l=even n(l) have a j = 0 as the only
not dominated action. Hence the best response of individual i can be rewritten as

1

(
c0 >

(
c1(1− si) ∑

j∈Ni\
⋃

l=even n(l)
a js j + c2si ∑

j∈Ni\
⋃

l=even n(l)
a j(1− s j)

))
(S11)

where we remove neighbors that only have zero as the not dominated action. If the inequality inside the indicator function is
true even when the remaining neighbors of i take action 1, then ai = 1 dominates all the other actions [0,1) of i, that is, for all
a j ∈ [0,1] for j ∈N \ i,

1

(
c0 >

(
c1(1− si) ∑

j∈Ni\
⋃

l=even n(l)
s j + c2si ∑

j∈Ni\
⋃

l=even n(l)
(1− s j)

))
≤

1

(
c0 >

(
c1(1− si) ∑

j∈Ni\
⋃

l=even n(l)
a js j + c2si ∑

j∈Ni\
⋃

l=even n(l)
a j(1− s j)

))
(S12)

Assuming the left hand side of the above inequality is one then by the definition of strictly dominated action in Definition 1,
ai = 1 is the only action that is not dominated.

Next, we consider the even iteration steps, k = even. If the condition inside the bracket in (S10) holds then for any action
that individual j ∈Ni \

⋃
l=odd n(l) takes, a′i = 0 dominates ai ∈ [0,1] \ {0} by Definition 1. To see this first recall the best

response of individual i (S5). Note that by the odd steps, individuals j ∈
⋃

l=odd n(l) have a j = 1 as the only not dominated
action. Hence the best response of individual i can be rewritten as

1

(
c0 >

(
c1(1− si)

(
∑

j∈Ni\
⋃

l=odd n(l)
a js j + ∑

j∈Ni
⋂⋃

l=odd n(l)
s j

)

+ c2si

(
∑

j∈Ni\
⋃

l=odd n(l)
a j(1− s j)+ ∑

j∈Ni
⋂⋃

l=odd n(l)
(1− s j)

)))
(S13)

where we separate neighbors j ∈Ni
⋂⋃

l=odd n(l) that only have a j = 1 as the not dominated action from the other neighbors
j ∈Ni \

⋃
l=odd n(l). If the inequality inside the indicator function is false even when the remaining neighbors of i take action 0,

then ai = 0 dominates all the other actions (0,1] of i, that is, for any a j ∈ [0,1] for j ∈Ni \
⋃

l=odd n(l)

1

(
c0 <

(
c1(1− si)

(
∑

j∈Ni
⋂⋃

l=odd n(l)
s j

)
+ c2si

(
∑

j∈Ni
⋂⋃

l=odd n(l)
(1− s j)

)))
≤

1

(
c0 <

(
c1(1− si)

(
∑

j∈Ni\
⋃

l=odd n(l)
a js j + ∑

j∈Ni
⋂⋃

l=odd n(l)
s j

)

+ c2si

(
∑

j∈Ni\
⋃

l=odd n(l)
a j(1− s j)+ ∑

j∈Ni
⋂⋃

l=odd n(l)
(1− s j)

)))
(S14)

Assuming the left hand side of the above inequality is one then by the definition of strictly dominated action in Definition 1,
ai = 0 is the only action that is not dominated.

Further if no individual can eliminate a dominated strategy n(k) = /0 at an iteration k then at following iterations
k+1,k+2, . . . there won’t be any individuals that eliminate any actions as strictly dominated. To see this, assume the opposite
is true, that is, n(k+1) 6= /0. Since n(k) = /0 then the condition in n(k+1) is identical to the conditions inside (S9) or (S10) for
n(k−1) depending on whether k+1 is odd or even, respectively. There cannot be an individual that satisfies the conditions at
iteration k+1 because n(k+1) is selected among individuals that have not been previously in any set, i.e., i ∈N \

⋃k
l=1 n(l).

This contradicts n(k+ 1) 6= /0. As a result, at each iteration k the number of individuals in n(k) has to be positive until an
iteration step n(k) at which either there is no individual left N \

⋃k
l=1 n(l) = /0 or there is no individual that satisfies the

condition after the colon in (S9) or (S10).
Suppose now that the process stops at iteration k, i.e., n(k) = /0, but there exists an individual i ∈N \

⋃k−1
l=1 n(l) with strictly

dominated action (S7) ai ∈ Ak
i . Suppose k is odd then by (S12), any action ai ∈ Ak

i \{1} must be dominated by a′i = 1. Suppose
k is even, then by (S14) any action ai ∈ Ak

i \{0} must be dominated by a′i = 0. Then n(k) 6= /0 which is a contradiction. This
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together with the fact that if n(k) = /0 then n(l) = /0 for l > k implies that if the process in Definition 3 stops all the strictly
dominated strategies are eliminated.

Finally, the fact that the number of elements of n(k) is positive at every iteration except the last iteration in Definition 3
implies that the iteration ends in at most n iterations.

The following Lemma shows that once all the strictly dominated strategies are eliminated, the action profile that assigns
socialize to susceptible individuals and do not socialize to infected individuals is a pure Nash equilibrium strategy profile.

Lemma 2 Consider the game defined by the payoffs in (S1) given state s ∈ {0,1}n and the iterated elimination process in
Definition 3. Denote the action space of i ∈N that is not strictly dominated by A∗i . Let a∗i = A∗i if A∗i is a singleton. If A∗i is not
a singleton then let a∗i = 1 for si = 0 and a∗i = 0 for si = 1. The resulting action profile a∗ is a pure Nash equilibrium of the
game.

Proof: We will use the following equivalent definition in (S6) of Nash equilibrium for the stage game in (S1),

a∗i = 1

(
c0 > c1(1− si) ∑

j∈Ni

a∗js j + c2si ∑
j∈Ni

a∗j(1− s j)

)
. (S15)

Note that at the end of the elimination process in Definition 3, the action space of an individual i is either a singleton
or is equal to A∗i = [0,1]. A strictly dominated action cannot satisfy the above equation, hence the equilibrium action of an
individual with a singleton non-dominated action space is given by a∗i = A∗i .

Now consider i ∈N such that A∗i = [0,1]. Suppose a∗i = 1 for a susceptible individual (si = 0) is not a Nash equilibrium
action. Then individual i can deviate and by the above equation it must be that a∗i = 0 is a Nash equilibrium action because

c0 < c1 ∑
j∈Ni

a∗js j. (S16)

Note that by our assumption a∗j = 0 for all the infected individuals (s j = 1) at which 0 is not a strictly dominated action, i.e.,
when A j = [0,1]. Hence in the right hand side of the above inequality only individuals that do not have 0 in their not dominated
action set will matter. Furthermore, if 0 is a strictly dominated action, socialize action 1 is the only remaining not strictly
dominated action. Hence, we can write the above inequality as follows,

c0 < c1 ∑
j∈Ni:{0}/∈A∗j

s j. (S17)

Now note that if the above inequality is true then 1 should be strictly dominated by action 0 for individual i. Hence, it is a
contradiction to the fact that the action space is not a singleton, A∗i ∈ [0,1].

A similar contradiction argument can be made for the infected individuals (si = 1) and the equilibrium action a∗i = 0.
Therefore, the action profile described in the statement must be a pure Nash equilibrium of the game.

Lemma 1 shows that the process in Definition 3 eliminates all dominated actions in finite time. Furthermore, if all individuals
are included in the process, i.e., if N =

⋃n
k=1 n(k) then we end up with a singleton action profile that is not strictly dominated.

This means the game has an unique pure Nash equilibrium by definition of strictly dominated action. If at the end of the process
in Definition 3, if all individuals are not included in the process, i.e., N \

⋃n
k=1 n(k) 6= /0 then the set of not strictly dominated

actions is not a singleton. Lemma 2 proposes a pure strategy profile that is a Nash equilibrium of the game in (S1) for the case
that action spaces of individuals that survive strict elimination process are not all singleton.

Lemmas 1 and 2 considered the stage game with payoffs (S1) given state s ∈ {0,1}n. An MMPE strategy profile σ is a
mapping from any state to the action space. We can obtain a pure MMPE strategy profile using Lemma 2 for all possible states
s ∈ {0,1}n. That is, we use the elimination process in Definition 3 and the action assignment given in Lemma 2 for all the
states to construct an MMPE strategy profile. In our simulations, in this paper, we construct the MMPE equilibrium strategy
profiles following this process – see Fig. S1 for an example.

B Price of Anarchy of the stage game
In this section, we consider the sub-optimality of the decisions of individuals that play according to an MMPE strategy profile.
By the definition of MMPE strategy, individuals consider current payoffs and play according Nash equilibrium strategy of that
stage game. In the following we show the worst stage game Nash equilibrium strategy can be n fold worse than the optimal
action profile given a network and state.
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Define the stage game Γ(s,G ,c) with payoffs in (S1) parametrized by the disease state s, contact network G and utility
constants c := {c0,c1,c2}. The welfare value of the action profile a in this game is the sum of utilities of the individuals,

W (a,s(t)) =
n

∑
i=1

ui(ai,aNi ,s(t)) =
n

∑
i=1

c0ai− (c1 + c2) ∑
(i, j)∈E

(1− si(t))s j(t)aia j. (S18)

Note that the first summation is over all the individuals and the second summation is over all the edges E in the network G . We
define the optimum action profile as the maximizer of the welfare function above, i.e., aopt = argmaxa W (a,s(t)). We denote
the set of Nash equilibrium action profiles by A∗ and define the price of anarchy (PoA) as the ratio of the worst possible Nash
action profile to the optimum action profile,

PoA :=
mina∈A∗W (a)

W (aopt)
. (S19)

Obviously, PoA≤ 1. In the following we provide a lower bound on the price of anarchy.

Proposition 1 For a game Γ(s,G ,c), the price of anarchy (S19) has the following lower bound

PoA≥ 1− maxi∈N |Ni|max(c1,c2)

nc0
(S20)

where |Ni| is the degree connectivity of i.

Proof: Consider the derivatives of ui in (S1) and W in (S18) with respect to ai, respectively,

∂ui

∂ai
= c0−

(
c1(1− si) ∑

j∈Ni

s ja j + c2si ∑
j∈Ni

(1− s j)a j

)
(S21)

∂W
∂ai

= c0− (c1 + c2)

(
(1− si) ∑

j∈Ni

s ja j + si ∑
j∈Ni

(1− s j)a j

)
. (S22)

First note that ∂ui
∂ai
≥ ∂W

∂ai
for any s and a−i because

∂W
∂ai

=
∂ui

∂ai
−
(

c2(1− si) ∑
j∈Ni

s ja j + c1si ∑
j∈Ni

(1− s j)a j

)
. (S23)

Therefore, given actions of others a−i and state s, it could be that ∂ui
∂ai

> 0 while ∂W
∂ai

< 0. Consider the optimal and equilibrium

action profiles where aopt
j = a∗j for j ∈N \ i, and aopt

i = 0 but a∗i = 1. That is, we have ∂u j
∂a j

< 0 and ∂W
∂a j

< 0 for all j 6= i but
∂ui
∂ai

> 0 while ∂W
∂ai

< 0. Then, the difference between the equilibrium profile welfare W (a∗,s) and optimal action profile welfare
W (aopt ,s) is equal to (S23), that is,

W (a∗,s)−W (aopt ,s) =
∂W
∂ai

(S24)

We divide the difference above by W (aopt ,s) to get

−1+
W (a∗,s)

W (aopt ,s)
=

∂W
∂ai

W (aopt ,s)
. (S25)

Now assume ∂ui
∂ai

= ε > 0 to get

W (a∗,s)
W (aopt ,s)

= 1+
ε−
(

c2(1− si)∑ j∈Ni s ja j + c1si ∑ j∈Ni(1− s j)a j

)
W (aopt ,s)

. (S26)

A trivial lower bound on the term for the numerator above is −max(c1,c2)|Ni| for any state s. Furthermore a trivial upper
bound for W (aopt ,s) is nc0. Using these bounds we obtain a bound for the above equality,

W (a∗,s)
W (aopt ,s)

≥ 1− max(c1,c2)|Ni|
nc0

(S27)
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Figure S2. Price of anarchy in the star network (Example 1). We consider the strong empathy (c0 < (n−1)c2) and strong averseness
(c0 < c1) case in Figure 2(d) of the main manuscript. Left and right figures show the two stage game pure Nash equilibria. The Nash
equilibrium action profile shown by the right figure is optimal with welfare equal to (n−1)c0. The Nash equilibrium action profile shown by
the left figure attains a welfare equal to c0. The PoA is equal to 1/n−1.

Now note that the choice of the individual i is arbitrary. When this individual is the individual with the largest number of
neighbors we get a lower bound on the right hand side of the above inequality which is the worst case lower bound on the price
of anarchy in (S20).

Note that this upper bound can be arbitrarily bad, i.e., in the order of 1/n. In the discussion following Figure 2(d) in the
main text we show that this bound is tight. We repeat this example below.

Example 1 Consider a star network with n individuals. The center individual with n− 1 neighbors is the only infected
individual. Payoff constants are such that c0 < c1 and c0 < (n−1)c2. There are two stage game Nash equilibria: 1) aopt

i = 1 if
si = 0 and aopt

i = 0 if si = 1, and 2) a∗i = 0 if si = 0 and a∗i = 1 if si = 1. The first Nash equilibrium is also the optimal action
profile aopt yielding a welfare of (n−1)c0. The second Nash equilibrium a∗ obtains a welfare of c0 resulting in a PoA of 1

n−1 .

Another example on a star network follows.

Example 2 Consider the star network shown in Figure S2. The center individual 1 has n−1 neighbors and is the only infected
individual. Constants are such that c0 = c1 +ρ1 and c0 = (n−1)c2 +ρ2 for arbitrarily small positive constants ρ1 > 0 and
ρ2 > 0, so that c0 < (n−1)(c1 + c2). The unique NE action profile is that all individuals are social, a∗i = 1 for all i ∈N . The
welfare for the NE is W (a∗) = nc0− (n−1)(c1 + c2) = (n−1)ρ1 +ρ2. The optimal action profile is that only the susceptible
nodes are social aopt

i = 1 for i 6= 1 and aopt
1 = 0. The welfare for the aopt is W (aopt) = (n−1)c0. Then PoA≈ ρ1/c0 for large

n.

Here, we see that PoA is determined by the closeness of c1 to c0. Note that in this example, equilibrium is unique and, unlike
Example 1, the optimal action profile is not a Nash equilibrium.

Another notion that enables us to gauge the optimality of equilibria is the Price of Stability (PoS). PoS is the ratio of the
best possible Nash action profile to the optimum action profile,

PoS :=
maxa∈A∗W (a)

W (aopt)
(S28)

Note that PoS≤ 1 by definition of aopt . We remark that in Example 2, the equilibrium is unique, meaning PoS = PoA. Therefore,
not only the PoA but also the PoS can be arbitrarily bad.

C R0 bound
We formally define the reproductive ratio R0 in the following.
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Definition 4 Let the initial state of the population be given by s(1) where si(1) = 1, otherwise s j(1) = 0 for all j 6= i for some
randomly selected individual i. Then R0 is the expected number of individuals that contract the disease from the randomly
selected individual i until i heals,

R0 := E

[
E

[
∞

∑
t=1

n

∑
j=1

1(s j(t +1)− s j(t) = 1, i→ j)1(si(l) = 1 for l < t)
∣∣s(1)]] (S29)

where 1(s j(t +1)− s j(t) = 1, i→ j) is the indicator function that is one if individual j transitions to an infected state at time
t and i is the one infecting j, and 1(si(l) = 1 for l < t) is the indicator function that is one if individual i has not healed yet.
The outside expectation is with respect to the uniform distribution that selects the initial infected individual, and the inside
expectation is with respect to the transition probabilities of the Markov chain.

In the following, we derive bounds for R0 given that individuals act according to an MMPE strategy profile and we select the
initial infected individual randomly from the network.

Theorem 1 Consider a network with degree distribution P(k). Assume the infected individual is chosen from the population
uniformly at random. Scale c0 with β for convenience, i.e., c0 := βc0, and assume c0 > c1.Assume c0 > c1. Then R0 defined in
(S29) has the following upper bound,

R0 ≤
β

δ

K

∑
k=1

kP(k) (S30)

where K := min(bc0/c2c,n).

Proof: We start by moving the second expectation inside the sum in the definition of R0 (S29) to get the following,

R0 = E

[
∞

∑
t=1

n

∑
j=1

E
[
1(s j(t +1)− s j(t) = 1, i→ j)1(si(l) = 1 for l < t)

∣∣s(1)]] . (S31)

Now consider the conditional expectation inside the summation which we can equivalently represent as the following conditional
probability

E[1(s j(t +1)− s j(t) = 1, i→ j)1(si(l) = 1 for l < t)
∣∣s(1)]

= P
(
s j(t +1)− s j(t) = 1, i→ j,si(l) = 1 for l < t

∣∣s(1)) . (S32)

Note that the above conditional probability is the probability that j is infected by i at time t and i remained infected until time t
given i is infected at t = 0. Using the chain rule and law of total probability, we can write the above conditional probability as
follows

P(s j(t +1)− s j(t) = 1, i→ j,si(l) = 1 for l < t
∣∣s(1)) =(

P
(
s j(t +1)− s j(t) = 1, i→ j

∣∣si(t) = 1,s j(t) = 0,s(1)
)

P(si(t) = 1,s j(t) = 0
∣∣si(l) = 1 for l < t,s(1))

+P
(
s j(t +1)− s j(t) = 1, i→ j

∣∣si(t) = 0,s j(t) = 0,s(1)
)

P(si(t) = 0,s j(t) = 0
∣∣si(l) = 1 for l < t,s(1))

+P
(
s j(t +1)− s j(t) = 1, i→ j

∣∣si(t) = 1,s j(t) = 1,s(1)
)

P(si(t) = 1,s j(t) = 1
∣∣si(l) = 1 for l < t,s(1))

+P
(
s j(t +1)− s j(t) = 1, i→ j

∣∣si(t) = 0,s j(t) = 1,s(1)
)

P(si(t) = 0,s j(t) = 1
∣∣si(l) = 1 for l < t,s(1))

)
P
(
si(l) = 1 for l < t

∣∣s(1)) (S33)

Note that the first four lines on the right hand side equal to the probability that i infects j at time t given that i remained infected
until t−1 by law of total probability. The last line is the probability that i remained infected given that i started infected since
si(1) = 1. Observe that the probability that i infects j is zero if individual i is susceptible at time t or individual j is infected,
i.e., P

(
s j(t +1)− s j(t) = 1, i→ j

∣∣si(t) = 0
)
= 0 or P

(
s j(t +1)− s j(t) = 1, i→ j

∣∣s j(t) = 1
)
= 0. Hence only the first line of

the four line expression is nonzero which simplifies the identity above as follows

P(s j(t +1)− s j(t) = 1, i→ j,si(l) = 1 for l < t
∣∣s(1)) =

P
(
s j(t +1)− s j(t) = 1, i→ j

∣∣si(t) = 1,s j(t) = 0,s(1)
)

P(si(t) = 1,s j(t) = 0
∣∣si(l) = 1 for l < t,s(1))

P
(
si(l) = 1 for l < t

∣∣s(1)) (S34)
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The probability of healing at each step is independent, hence the last conditional probability is equal to (1− δ )t−1. The
conditional probability that i remains infected and j is infected at time t given that i is infected until time t is less than 1−δ by
the argument below,

P(si(t) = 1,s j(t) = 0
∣∣si(l) = 1 for l < t,s(1))

= P(s j(t) = 0
∣∣si(t) = 1,si(l) = 1 for l < t,s(1))P(si(t) = 1

∣∣si(l) = 1 for l < t,s(1)) (S35)

≤ P(si(t) = 1
∣∣si(l) = 1 for l < t,s(1)) (S36)

= 1−δ . (S37)

The first equality above follows by chain rule. The inequality follows by the fact that the probability is less than one. The
second equality is true by the transition probability of individual i from an infected state. Substituting these identities inside the
equation (S34) we obtain the following

P(s j(t +1)− s j(t) = 1, i→ j,si(l) = 1 for l < t
∣∣s(1))≤

P
(
s j(t +1)− s j(t) = 1, i→ j

∣∣si(t) = 1,s j(t) = 0,s(1)
)
(1−δ )t . (S38)

Now consider the conditional probability on the right hand side of (S38), the probability that j is infected at time t +1 by i
given that j is susceptible and i is infected at time t. We have the following upper bound,

P(s j(t +1)− s j(t) = 1, i→ j
∣∣si(t) = 1,s j(t) = 0,s(1))

= P
(
s j(t +1) = 1, i→ j

∣∣si(t) = 1,s j(t) = 0,s(1)
)

= P
(
s j(t +1) = 1, i→ j

∣∣a∗i (t) = 1,a∗j(t) = 1,si(t) = 1,s j(t) = 0,s(1)
)

P
(
a∗i (t) = 1,a∗j(t) = 1

∣∣si(t) = 1,s j(t) = 0,s(1)
)

≤ P
(
s j(t +1) = 1, i→ j

∣∣a∗i (t) = 1,a∗j(t) = 1,si(t) = 1,s j(t) = 0,s(1)
)

P
(
a∗i (t) = 1

∣∣si(t) = 1,s j(t) = 0,s(1)
)

= β1( j ∈Ni)P
(
a∗i (t) = 1

∣∣si(t) = 1,s j(t) = 0,s(1)
)

(S39)

The first equality is by the fact that s j(t +1) = 1 if s j(t) = 0 and s j(t +1)− s j(t) = 1. The second equality above is by the law
of total probability and by the fact that if i or j takes an action to self-isolate, i.e., a j(t) = 0 or ai(t) = 0, then i cannot infect
j. The inequality follows by the fact that P

(
ai(t) = 1,a j(t) = 1

∣∣si(t) = 1,s j(t) = 0
)
≤ P

(
ai(t) = 1

∣∣si(t) = 1,s j(t) = 0
)
. The

last equality follows because if both agents socialize at normal levels then the infection probability is β when agent j and i are
connected, j ∈Ni.

Now we consider a∗i (t). We know that the MMPE action of individual i is a best response to best response actions of
neighbors from (S6) where best response function is given by (S5). Specifically from the perspective of an infected individual i,
the best response action is given by the following

a∗i (t) = 1

(
c0 > c2 ∑

j∈Ni

a∗j(t)(1− s j(t))

)
(S40)

Consider t = 1. If c0 > c1, then a∗j(1) = 1 for all j ∈Ni. Hence, if c0 > c2|Ni| then a∗i (1) = 1, i.e., a∗i (1) = 1(c0 > c2|Ni|) .
Also note that if a∗i (1) = 1 then a∗i (t) = 1 for all t > 1. Moreover, if a∗i (1) = 0 then i never infects another node if it is the only
initially infected individual. Hence, we have a∗i (t) = a∗i (1) for all t. That is, the action of agent i at time t is determined by the
initial action and is independent of the state at time t. Therefore, we can write

P
(
a∗i (t) = 1

∣∣si(t) = 1,s j(t) = 0,s(1)
)
= P

(
a∗i (1) = 1

∣∣s(1))
= 1(c0 > c2|Ni|). (S41)

Substituting the above identity in (S39) and using (S39) in (S38), which then we substitute to (S32), we get the following upper
bound for R0 in (S31),

R0 ≤ E

[
∞

∑
t=1

n

∑
j=1

β1(c0 > c2|Ni|)1( j ∈Ni)(1−δ )t

]
. (S42)
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Now note the indicator function terms depend on the network of individual i but they do not depend on the identities of the
neighbors. In fact, ∑

n
j=1 1( j ∈Ni) is equal to the number of neighbors of i, i.e., |Ni|. In addition, we have ∑

∞
t=1(1−δ )t = 1/δ .

Using these identities, we can write the above bound as follows,

R0 ≤
β

δ
E [|Ni|1(c0 > c2|Ni|)] (S43)

Individual i is chosen uniformly random and it has k neighbors with probability P(k), therefore, the expectation on the right
hand side is equal to the following,

R0 ≤
β

δ

n

∑
k=1

k1(k <
c0

c2
)P(k) (S44)

Bound in (S30) follows.

D R0 bound scale-free
Corollary 1 Consider a random scale free network where the degree distribution follows P(k) ∼ k−γ for γ = 2. Then R0
defined in (S29) has the following upper bound,

R0 ≤
n

2n−1
β

δ
log(min(bc0/c2c,n)+1). (S45)

Proof: We directly use the bound in (S30) and substitute in P(k) = L(−2,n)k−2 where L(−2,n) = (∑n
k=1 k−2)−1 is the

normalization constant for the scale-free distribution

R0 ≤ L(−2,n)
β

δ

min(bc0/c2c,n)

∑
k=1

k−1 (S46)

We first upper bound the normalization constant L(−2,n) by the fact that ∑
n
k=1 k−2 > 2− 1

n . Hence, L(−2,n)≤ n
2n−1 . Next we

note that the summation behaves logarithmically which yields the desired bound in (S45).

E R∗ bound
We formally define the reproductive ratio R∗ in the following.

Definition 5 Let the initial state of the population be given by s(1) where si(1) = 1, otherwise s j(1) = 0 for all j 6= i for some
randomly selected individual i. The probability that we select an initial sick individual with degree k is given by Q(k) := kP(k)

∑k kP(k) .
Then R∗ is the expected number of individuals that contract the disease from a randomly selected individual i until i heals,

R∗ := E

[
E

[
∞

∑
t=1

n

∑
j=1

1(s j(t +1)− s j(t) = 1, i→ j)1(si(l) = 1 for l < t)
∣∣s(1)]] (S47)

where 1(s j(t +1)− s j(t) = 1, i→ j) is the indicator function that is one if individual j transitions to an infected state at time
t and i is the one infecting j, and 1(si(l) = 1 for l < t) is the indicator function that is one if individual i has not healed yet.
The outside expectation is with respect to the probability distribution Q(k), and the inside expectation is with respect to the
transition probabilities of the Markov chain.

Below we present a bound for R∗ for a generic network.

Theorem 2 Consider a network with degree connectivity distribution P(k). Assume c0 > c1. Then R∗ defined in Definition 5
has the following upper bound,

R∗ ≤
β

δ

min(bc0/c2c,n)

∑
k=1

k2P(k)
∑

n
k=1 kP(k)

(S48)
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β = 0.1 β = 0.2 β = 0.3

Figure S3. Effect of risk averseness c1 and empathy c2 constants on mean eradication time. We fix the healing rate to δ = 0.2
and the population size to n = 100. The infection rate β values equal to 0.1,0.2, and 0.3 for figures left, middle, and right,
respectively. We let c0 = 1 for each figure. The axes in the figures correspond to the constant values of c1 and c2. For a given
value of c1 and c2, we generate 50 scale-free networks using the preferential attachment algorithm and run the stochastic
disease network game for 200 steps for each network. Each run starts with all individuals infected. The grid color represents
the average eradication time among runs where we let eradication time be equal to 200 if the disease is not eradicated. The
eradication time decreases as c1 or c2 increases in the region where disease is eradicated fast, i.e., R∗ > 1.

Proof: First note that the only difference between the R0 definition and R∗ is the difference in probability distributions of
selecting the initial infected individual. Hence, the bound in (S43) applies to R∗ which we repeat here for convenience,

R∗ ≤
β

δ
E [|Ni|1(c0 > c2|Ni|)] (S49)

where now the expectation is with respect to the distribution Q(k). Therefore, the expectation on the right hand side is equal to
the following,

R∗ ≤
β

δ

n

∑
k=1

k1(k <
c0

c2
)Q(k) (S50)

Bound in (S48) follows by using the definition of Q(k) = kP(k)
∑k kP(k) .

F R∗ bound scale-free
Corollary 2 Consider a random scale free network where the degree distribution follows P(k)∼ k−γ for γ = 2. Then R∗ given
by Definition 5 has the following upper bound,

R∗ ≤
β

δ

min(bc0/c2c,n)
log(n)

. (S51)

Proof: We directly use the bound in (S48) and substitute in P(k) = L(−2,n)k−2 where L(−2,n) = (∑n
k=1 k−2)−1 is the

normalization constant for the scale-free distribution

R∗ ≤
β

δ

min(bc0/c2c,n)

∑
k=1

L(−2,n)
L(−2,n)∑

n
l=1 l−1 =

β

δ

min(bc0/c2c,n)

∑
k=1

1
∑

n
l=1 l−1 . (S52)

The bound in (S51) follows by noting that ∑
n
l=1 l−1 ≈ log(n).

G Mean eradication time
See Figure S3 for the effect of parameters c1, c2, β on eradication time.

H Average infectivity levels
See Figure S4 for the effect of parameters c1, c2, β on infectivity level.
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β = 0.1 β = 0.2 β = 0.3

Figure S4. Effect of risk averseness c1 and empathy c2 constants on average infectivity level. We fix the healing rate to
δ = 0.2 and the population size to n = 100. The infection rate β values equal to 0.1,0.2, and 0.3 for figures left, middle, and
right, respectively. We let c0 = 1 for each figure. The axes in the figures correspond to the constant values of c1 and c2. For a
given value of c1 and c2, we generate 50 scale-free networks using the preferential attachment algorithm and run the stochastic
disease network game for 200 steps for each network. Each run starts with all individuals infected. The grid color represents
the average of infectivity level at time t = 200 among runs. Increasing c1 reduces the average number of infected in the
population whether the disease is endemic or not.

I Critical empathy thresholds for modified scale-free networks
In the preferential attachment model, used in Figures 4-6 of the main text, a node is added at each step and is connected
to an existing node selected randomly proportional to their degree–see the Barabasi-Albert algorithm1. A modification to
this algorithm is when each added node is connected to two existing nodes selected randomly proportional to their degree.
This modified algorithm generates scale-free networks with an expected scaling degree of γ = 2.3 while the non-modified
preferential attachment algorithm generates an expected scaling degree of γ = 2.

In Figure S5, we test the accuracy of the bounds for R0 and R∗ in equations (S30) and (S48) (equations (1) and (4) in
the main text) for scale-free networks generated according to the modified preferential attachment algorithm. Using these
inequalities and substituting for P(k) = L(−2.3,n)k−2.3 where L(−2.3,n) is a normalizing constant, we solve for empathy
constant values c2 that make the right hand side of equations (1) and (4) less than one – see the caption of Fig. S5 for the
critical empathy values. We note that the closed form critical thresholds of the empathy constant c2 in equations (S45) and
(S51) (equations (3) and (6) of main text) are obtained when the network is scale-free with scaling degree γ = 2. The critical
empathy values obtained for γ = 2.3 are greater than the critical empathy values when γ = 2. Numerical experiments show that
the critical empathy constants that make R∗ < 1 are still good indicators of fast disease eradication.

J Sensitivity to initial level of infectivity
We assess the robustness of the critical empathy threshold to initial conditions by considering initial infectivity levels of
{5%,20%,50%} in Figure S6. Besides the difference in initial conditions, the numerical setup is identical to Figure 6 in main
text. The numerical experiments confirm that the critical empathy threshold for R∗ in (S51) is a good indicator for disease
eradication. There are only a few runs which fail to eradicate the disease within 200 time steps when the critical empathy for
R∗ < 1 is exceeded – refer to the caption of Figure S6 for details.

K Epidemic threshold when c2 = 0
If c2 = 0, an MMPE action profile at time t can simply be written as follows,

a∗i (t) = 1

(
c0 > c1(1− si(t)) ∑

j∈Ni

s j(t)

)
. (S53)

That is, the infected will socialize normally at all times and a susceptible agent will socialize if the number infected around is
less than c0

c1
. Given the MMPE profile above, the infection probability of a susceptible individual i is given by

pi
01(t) = P(si(t +1) = 1|si(t) = 0) = 1− ∏

j∈Ni

(1−βa∗i (t))s j(t). (S54)
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Figure S5. Effect of risk averseness c1 and empathy c2 constants on disease eradication with scale-free networks with higher
scaling degree. We consider n = 100 individuals, and let δ = 0.2, and c0 = 1. The scale-free network is generated according to
the modified preferential attachment algorithm resulting in a scale-free network with average scaling degree of γ = 2.3. The
average node degree is 3.94. The critical values of c2 {0.04,0.35,1.01} that make R0 < 1 for β = {0.1,0.2,0.3} calculated
using equation (S30) are marked with white dotted dashed lines. The critical values of the empathy constant,
c2 = {0.12,0.27,0.35} (marked with red solid lines), that make R∗ < 1 for β = {0.1,0.2,0.3} calculated using equation (S48)
are still accurate in determining fast eradication.
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Figure S6. Effect of risk averseness c1 and empathy c2 constants on disease eradication when initial number of infected is 5%
(top), 20% (middle), and 50% (bottom) of the population. We consider n = 100 individuals, and let δ = 0.2, and c0 = 1. For a
given value of c1 and c2, we generate 50 scale-free networks using the preferential attachment algorithm and run the stochastic
disease network game for 200 steps for each network. The grid color represents the ratio of runs in which disease is eradicated
within 200 steps. For figures left, middle, and right the eradication of threshold βλmax(A)/δ is equal to 2.65, 5.3, and 8,
respectively. The critical values of c2 {0.02,0.16,0.36} that make R0 < 1 for β = {0.1,0.2,0.3} calculated using equation
(S45) are marked with white dotted dashed lines. The critical values of the empathy constant, c2 = {0.11,0.22,0.33}, that
make R∗ < 1 for β = {0.1,0.2,0.3} calculated using equation (S51) are accurate in determining fast eradication for any value
of c1 (marked with red solid lines). The rate of disease eradication is above 95% among 50 trials when the value of the empathy
constant is above the threshold that makes R∗ < 1. That is, for c2 that make R∗ < 1 there are only a few trials that fail to
eradicate the disease within 200 steps which are observed when β = 0.1 and 20% initially infected, and when β = {0.2,0.3}.
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We can bound the above conditional probability as follows by using the relation 1−∏ j∈Ni (1−βaia js j(t))≤ βai ∑ j∈Ni a js j(t),

pi
01(t)≤ βa∗i (t) ∑

j∈Ni

s j(t). (S55)

Next we obtain a n-state approximation of the Markov chain dynamics – see for a similar approximation2. Define the
probability of infection of individual i at time t pi(t) = E[si(t)]. Let p(t) ∈ [0,1]n be n infection probability vector of the
population. By law of total probability,

pi(t +1) = pi(t)(1−δ )+(1− pi(t))pi
01(t). (S56)

Using the upper bound above for pi
01(t) and noting that a∗i = 1(c0 > βc1 ∑ j∈Ni s j(t)) from (S53) if si(t) = 0 , we obtain

pi(t +1)≤ pi(t)(1−δ )+(1− pi(t))β1
(

c0 > c1 ∑
j∈Ni

s j(t)
)

∑
j∈Ni

s j(t). (S57)

We now approximate the above bound by replacing s j(t) terms with p j(t) to get

pi(t +1)≈ pi(t)(1−δ )+(1− pi(t))β1
(

c0 > c1 ∑
j∈Ni

p j(t)
)

∑
j∈Ni

p j(t). (S58)

When we linearize the dynamics of p(t) defined by (S58) around the fixed point origin 0n, i.e., the state of disease eradication
pi(t) = 0 for all i, we get the following,

p(t +1) = ((1−δ )In +βA)p(t) (S59)

where In is the n× n identity matrix and A ∈ [0,1]n×n is the adjacency matrix of the contact network, i.e., its i jth element
Ai j = 1 if j ∈Ni, otherwise Ai j = 0. The approximate disease dynamics in (S59) is linear. Furthermore, the origin 0n is a
globally stable fixed point if and only if λmax((1−δ )In +βA)< 13. We can equivalently write this condition as β

δ
λmax(A)< 1.

This result implies that the state of disease eradication is unstable if β

δ
λmax(A)> 1. Note that this threshold does not depend on

the risk averseness constant c1. This implies that risk aversion cannot by stop an outbreak when c2 = 0, except in the extreme
case of c0 < c1.
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