
Supplementary file: Mathematical and statistical models

N. von Ellenrieder, F. Dubeau, J. Gotman, and B. Frauscher

Manuscript: Physiological and Pathological High-Frequency Oscillations have distinct
Sleep-Homeostatic Properties

In this supplementary document we give a detailed description of the models adopted for the High
Frequency Oscillation (HFO) rate and spatial spread, and the model comparison approach used for
statistical testing.

1 Rate:

1.1 Model

A Poisson process was adopted for modeling the occurrence of HFOs. This process models events that
cannot overlap in time, and in which the probability of occurrence is independent from the time elapsed
since the last occurrence. Since we are modeling the subject-level HFOs, i.e. we count any simultaneous
events in any set of channels as a single event, the data does not have overlapping HFOs, and the Poisson
process is an appropriate model.

The probability function of the number of events of a Poisson process occurring in a given time
interval is given by

P{x = k} =
λk

k!
e−λ, (1)

where x is the observed number of events, and λ is the parameter of this Poisson distribution, i.e. the
rate of events per unit time.

To model our problem, we divide the EEG recordings in intervals of 30 s duration, and count the
number of HFOs in each of these intervals. The 30 s segments are selected to coincide with the epochs
of the sleep scoring. The HFO rate in each of the 30 s segments is modeled as a fixed value associated
to the patient, with relative variations given by a linear combination of predictor variables

λn,m = λm

(
1 +

3∑
i=1

Ii,n,m(αstage,i + αAT,itn,m,i + αDA,iδn,m,i + αSW,isn,m,i)

)
(2)

where λm,n is the HFO rate in segment n of patient m, λm is the average rate in all investigated segments
of patient m, Ii,n,m is an indicative variable that takes value 1 if the segment n of patient m is in the i-th
sleep stage, with i = 1 for REM sleep, i = 2 for N2 sleep, and i = 3 for N3 sleep. The variable tn,m,i
is the accumulated time spend in sleep stage i at segment n for patient m. The variable δn,m,i is the
delta band RMS amplitude at segment n for patient m, when the sleep stage is i, and zero otherwise.
Similarly, sn,m,i is the average amplitude of sleep slow waves in segment n for patient m, when the sleep
stage is i, and zero otherwise. The coefficients αstage,i, αAT,i, αDA,i, and αSW,i indicate the degree to
which the sleep stage, accumulated sleep time, delta band activity, and slow wave amplitude affect the
average HFO rate in the patient cohort. Note that there is a maximum of twelve α coefficients if all the
variables are included in the model, plus one λm coefficient for each patient. In cases in which the sleep
stages are not included in the model, expression (2) simplifies to

λn,m = λm(1 + αAT tn,m + αDAδn,m + αSW sn,m), (3)
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with a maximum of three α coefficients.
An important point is that the predictor variables accumulated sleep time, delta band activity, and

slow wave amplitude are transformed so that in each sleep stage they have zero mean. The delta band
activity and slow wave amplitude variables are also normalized to have unit variance in each sleep stage,
in order to make them independent of the measuring units and of equal importance. The accumulated
time is expressed in hours, which also leads to a variance close to one.

Note that the coefficients of the predictor variables are constant for all the patients, i.e. while the
average HFO rate is assumed to be patient dependent, the relative variation due to the predictive
variables are supposed to explain common phenomena of the whole cohort.

Writing (3) in a compact matrix notation

λ̄ = λ̄m ◦ (1 +Xᾱ), (4)

where λ̄ is the vector formed by the concatenation of the HFO rate in every segment of every subject,
λ̄m is a vector of the same size as λ̄ formed by the average HFO rate in each subject (λm) repeated
for each segment of the corresponding subject, ◦ is the Hadamard product (i.e. one to one element-wise
product), X is a matrix where each column corresponds to a different predictor variable and each row is
formed by the value of the predictor variables in segment n of patient m. Finally, ᾱ is the concatenation
of the coefficients associated to the different predictor variables.

Then, the joint probability of all the observations can be written as

P{xn,m = kn,m} =

N∏
n=1

M∏
m=1

λ
kn,m
m (1 + ᾱT x̄n,m)kn,m

kn,m!
e−λm(1+ᾱT x̄n,m), (5)

where kn,m is the number of HFOs observed in time segment n of patient m, and x̄n,m is the row of
matrix X corresponding to the value of the predictor variables in segment n for patient m.

1.2 Parameter estimation:

In this section we find the maximum likelihood (ML) estimators of the parameters of the distribution
(i.e. λm and ᾱ). The log-likelihood function is given by

L(λ, α) =

M∑
m=1

Nm∑
n=1

[
−ln (kn,m!) + kn,mlnλm + kn,mln

(
1 + ᾱT x̄n,m

)
− λm

(
1 + ᾱT x̄n,m

)]
. (6)

By taken the derivative with respect to λm and equating to zero, we get

λm + λmᾱ
T 1

Nm

Nm∑
n=1

x̄n,m =
1

Nm

Nm∑
n=1

kn,m. (7)

By construction all the predicting variables have zero mean, then
∑Nm

n=1 x̄n,m = 0̄, and (7) reduces to

λm =
1

Nm

Nm∑
n=1

kn,m, (8)

showing that the estimates of the λm parameters are decoupled from ᾱ.
Once the estimates of λm are known, the ML estimate of ᾱ can be obtained by maximizing (6), with

a numerical optimization method. We performed an unconstrained minimization with a quasi-Newton
method.
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2 Spread:

2.1 Model

For the spread we adopted a model based on a Geometric Distribution. In this model, the difference
in the probability of an HFO occurring simultaneously in j + 1 channels compared to j channels is
independent of j. This model is just an approximation to the real distribution, since in theory the
model would allow simultaneous HFOs in an arbitrarily large number of channels, albeit with almost
null probability. However, the approximation provided by this model is very good, as can be seen in
Supplementary Figure S3.

The probability of an HFO being simultaneously detected in j channels is then given by

P{y = j} = µ−1(1− µ−1)j−1, (9)

where y is the observed number of involved channels and µ is the mean number of channels in which an
HFO is simultaneously detected, i.e. the mean spread.

Again, we base our model on a fixed mean spread, with a patient dependent average value and relative
variations common to the whole cohort

µn,m = µm

(
1 +

3∑
i=1

Ii,n(βstage,i + βAT,itn,m,i + βDA,iδn,m,i + βSW,isn,m,i)

)
, (10)

where µm,n is the mean HFO spread in segment n of patientm, µm is the average spread in all investigated
segments of patient m, the coefficients βstage,i, βAT,i, βDA,i, and βSW,i indicate the degree to which the
sleep stage, accumulated sleep time, delta band activity, and slow wave amplitude affect the average
HFO spread in the patient cohort. Or, in the case of models not taking into account the sleep stage

µn,m = µm(1 + βAT tn,m + βDAδn,m + βSW sn,m). (11)

This can be written in a compact matrix notation as

µ̄ = µ̄m ◦ (1 +Xβ̄), (12)

where µ̄ is the vector form by the concatenation of the mean HFO spread in every segment of every
subject, µ̄m is a vector of the same size as µ̄ formed by the average HFO spread in each subject (µm)
repeated for each segment of the corresponding subject, and β̄ is the concatenation of the coefficients
associated to the different predictor variables.

The joint probability function for all the observations can be written then as

P{yn,m = jn,m} =

N∏
n=1

M∏
m=1

µ−1
m (1 + β̄T x̄n,m)−1

[
1− µ−1

m (1 + β̄T x̄n,m)−1
]jn,m−1

, (13)

where jn,m is the spread observed for segment n of patient m.

2.2 Parameter estimation

To obtain the ML estimator of the distribution parameters µm and β̄ we start with the log-likelihood
function

L(µ, β) =

M∑
m=1

Nm∑
n=1

{
ln
[
µm
(
1 + β̄T x̄n,m

)]
+ cn,mln

[
1− µ−1

m

(
1 + β̄T x̄n,m

)]}
. (14)

where cm,n is the observed average spread in each 30 s segment. By maximizing with respect to µm, we
get

(µm − 1) + µmβ̄
T 1

Nm

Nm∑
n=1

x̄n,m =
1

Nm

Nm∑
n=1

(cn,m − 1). (15)
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Again, the fact that the mean value of the predicting variables is null leads to a decoupling of the β̄
parameters, yielding

(µm − 1) =
1

Nm

Nm∑
n=1

(cn,m − 1). (16)

Once the estimates of µm are known, the ML estimate of β̄ can be obtained by maximizing (6), with
a numerical optimization method. We performed an unconstrained minimization with a quasi-Newton
method.

3 Model Selection: Akaike Information Criterion

We compare models that include different subsets of the predictor variables, and use the Akaike Infor-
mation Criterion (AIC) to select the best model. A classical approach for selecting the best model would
be to test for coefficients significantly different from zero, e.g. for nested Gaussian models a classical
model selection would imply F-tests on the coefficients. The AIC is completely equivalent to F-tests in
the case of nested Gaussian models, but it can handle non-nested, non-Gaussian models as well. Just
as in the case of classical tests, the AIC looks for a balance between goodness-of-fit and simplicity, the
latter measured by the number of parameters in the model in the case of AIC, and related to the number
of degrees-of-freedom in classical tests.

The AIC value of any model is given by

AIC = 2k − 2L(θ̄), (17)

where k is the number of parameters in the model, L(·) is the log-likelihood function of the model, and
θ̄ is a vector with the k ML estimates of the parameters. When comparing models, the best model is
the one with the lowest AIC value.

When comparing different models, there will always be a ‘best model’, i.e. one of the competing
models will have the lowest AIC value. However, there is randomness in the measurements, that affects
the value of the likelihood function, and leads to randomness in the AIC value even if computed for
data generated by the same model. Hence, it is convenient to determine whether a model is significantly
better than another from a statistical point of view. This can be done by comparing the AIC values by
computing the relative likelihood of the models

RLi,j = e
(
AICi−AICj

)
/2. (18)

If the relative likelihood between two models is larger than 20 times, there will a probability lower than
0.05 of selecting the wrong ‘best’ model through the use of AIC. This relative likelihood of 20 corresponds
to a difference of 6 in AIC values.

To perform a selection between two models, first the AIC value of each model must be computed,
and the model with lowest AIC value is considered significantly better if the difference in AIC values is
larger than six. The expression of the log-likelihood function to be used can be found in the previous
sections, and should be evaluated at the parameter values obtained as ML estimates.
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