Supplemental Materials Molecular Biology of the Cell

Patrinostro et al.

Supplemental Methods

Primers

Gene	Forward Primer (5'→3')	Reverse Primer (5'→3')				
mACTA1	CACCTCACTTCCTACCCTCGGCA	GCAAAACAGAATGGCTGGCTT				
Cloning						
mACTA2	CACCGCTGCTCCAGCTATGTGTGA	ATCCATGCACGTGTGTATGCTTTA				
Cloning						
mACTB	CACCGCGAGCACAGCTTCTTTG	AGGTAAGGTGTGCACTTTTATTGGT				
Cloning						
mACTC	CACCCGCCTACAGAACCCACCAAA	TGCAAGTCCTGGTCTGGTTTA				
Cloning						
mACTG1	CACCCCGCCGCCGGCTTACAC	CAGTTACTGCAGCACTTTTATTTC				
Cloning						
mACTG2	CACCTTGCTCTGGTATTTCTGCCAA	GGTTTTAATGATCTGTGGCTGGTC				
Cloning						
Note: CACC is added to all forward cloning primers in order to facilitate directional cloning into						
pDENTR vector, they are not part of the actin gene sequence.						
mACTA1 qRT	GCCAGCCTCTGAAACTAGACA	CCCACGATGGATGGGAACAC				
mACTA2 qRT	TCCAGCTATGTGTGAAGAGGA	CCAACCATTACTCCCTGATGTCT				
mACTB qRT	GCGAGCACAGCTTCTTTG	TTTGCACATGCCGGAGCCGTT				
mACTC qRT	GATGTGTGACGACGAGGAGA	ATACCCACCATGACACCCTGG				
mACTG1 qRT	GATTAAGATCATTGCTCCCCCTGA	GCACCTGCTCAGTCCATCTA				
mACTG2 qRT	ATGTGTGAAGAAGAGACCACCG	GCCCATTCCCACCATCACAC				

ON-TARGET Plus siRNA Sequences

Control	5'-UGGUUUACAUGUCGACUAA-3'		
ON-TARGETplus Non-targeting Pool	5'-UGGUUUACAUGUUGUGUGA-3'		
Cat# D-001810-10-05	5'-UGGUUUACAUGUUUUCUGA-3'		
	5'-UGGUUUACAUGUUUUCUA-3'		
βcyto-actin	5'-GCAAGUGCUUCUAGGCGGA-3'		
ON-TARGETplus Mouse Actb siRNA-	5'-UUUUAAAUCUUCCGCCUUA-3'		
SMARTpool	5'-CCAAGUAUCCAUGAAAUAA-3'		
Cat# L-057827-01-0005	5'-GCAGUUGGUUGGAGCAAAC-3'		
γcyto-actin	5'-ACGCAGAUAAUGUUUGAAA-3'		
ON-TARGETplus Mouse Actg1 siRNA-	5'-CCUAGCACGAUGAAGAUUA-3'		
SMARTpool	5'-AGAGGGAAAUUGUUCGUGA-3'		
Cat# L-042869-00-0005	5'-GCAUGGAGUCCUGUGGUAU-3'		

Supplemental table 1

Mouse Actin	Target Scan	microRNA.org	PicTar	Consensus miRNA
Isoform				
ACTB	mir-1	mir-1	mir-124a	mir-145
	mir-132	mir-1192	mir-145	mir-205
	mir-145	mir-1295p	mir-18a	
	mir-205	mir-132	mir-18b	
	mir-206	mir-145	mir-205	
	mir-212	mir-194		
	mir-212-3p	mir-205		
	mir-34a	mir-206		
	mir-34b	mir-212		
	mir-194	mir-495		
	mir-613	mir-544		
		let-7a		
		let-7b		
ACTG1	mir-103a	mir-103	mir-10a	mir-10a
	mir-107	mir-107	mir-10b	mir-10b
	mir-10a	mir-10a	mir-145	mir-145
	mir-10b	mir-10b	mir-199a	
	mir-10c	mir-145		
	mir-145	mir-186		
	mir-31	mir-199a		
	mir-485	mir-31		
		mir-361		
		mir-381		
		mir-615		
		mir-873		

Supplemental table 1: Predicted Actb and Actg1 3'UTR binding microRNAs Three miRNA prediction databases were used to analyzed possible miRNAs that target either/both Actb and Actg1 3'UTRs. Consensus miRNAs that were predicted in all databases are listed in the right column.

Supplemental Figure Legends

β_{cyto} Y_{cyto} GAPDH

Supplemental figure 1: β_{cyto} -actin sKO SV40 LargeT antigen immortalized MEFs were not growth impaired. (A) Representative Western blot of SV40 LargeT antigen transformed (T) CT and KO MEF lysates blotted with α_{sm} -actin, β_{cyto} -actin and γ_{cyto} -actin antibodies; GAPDH served as loading control. (B-D) Growth curve analysis of SV40 LargeT antigen transformed (T) CT and KO MEFs (n=3, hand counted in duplicate). Asterisks denote *P<0.05, *** P<0.001. (Two-way ANOVA with Bonferoni post-test, error bars are s.e.m.).

Supplemental figure 2: Mouse actin isoform standard curves and primer specificity analysis. (A-F) Representative standard curves generated using specific actin isoform primers with the corresponding control actin construct in a ten-fold dilution. (G) Representative graph of qRTPCR primer specificity. Each primer set was used to amplify all actin isoform control

constructs to calculate relative quantity. Color bars represent individual actin isoform, y-axis denotes relative quantity, x-axis denotes primer set.

Supplemental figure 3: β_{cyto} and γ_{cyto} -actin are the dominant actin isoforms in NIH3T3 fibroblast. (A) Actin isoform transcript profiling in NIH3T3 fibroblasts. Calculated transcript amount (pmol) were calculated based on the standard curve, amplified in parallel (n=1, in triplicate). (B) Representative Western blot of NIH3T3 fibroblast lysates blotted with α_{sm} -actin, β_{cyto} -actin and γ_{cyto} -actin antibodies; GAPDH served as loading control. Calculated protein concentrations (ng/µL of lysate) were determined based on the standard curve, blotted in parallel (n=1, in duplicate).

Supplemental figure 4: Cald1 and CNN1 protein expression are upregulated in β_{cvto} -actin siRNA KD MEFs. (A) Representative Western blot analysis of CT and KD MEFs at 3dpi for sKD and 4dpi for dKD blotted with Cald, CNN1, and Sm22a; GAPDH was used as loading control. (B-D) Relative protein expression were normalized to GAPDH and relative to the paired embryo control (n=3). (One sample T-test, error bars are s.e.m.).

Supplemental figure 5: MRTF-A protein expression is down regulated ion β_{cyto} -actin KD MEFs. (A) Representative Western blot analysis of CT and KD MEFs at 3dpi for sKD and 4dpi for dKD blotted with MRTF-A and SRF; GAPDH served as loading control. (B) Calculated relative protein expression were normalized to GAPDH and relative to the paired embryo control (n=3). Asterisk denotes *P<0.05 (One sample T-test, error bars are s.e.m.).

Supplemental figure 6: Representative quantitative Western blots. (A, C, E) β/γ_{cyto} -Actin CT - and β/γ_{cyto} -Actin dKO, at 9dpi, from 3 separate embryos are blotted with α_{sm} -, β_{cyto} - and γ_{cyto} - actin antibodies. (B, D, F) β/γ_{cyto} -Actin CT - and β/γ_{cyto} -Actin dKD, at 4dpi, from 3 separate embryos blotted with α_{sm} -, β_{cyto} - and γ_{cyto} -actin antibodies. For α_{sm} -actin Western blots, both

KO and KD samples were diluted by at least 5-fold in order for the immune activity intensity to fit within the standard curve. An increasing amount of purified α_{sm} -, β_{cyto} - and γ_{cyto} -actins are blotted in parallel to generate a standard curve and used to calculate the amount of individual actin isoform in lysates.