Construction of differential mRNA-IncRNA crosstalk networks based on ceRNA hypothesis uncover key roles of IncRNAs implicated in esophageal squamous cell carcinoma

Supplementary Material

Assessment of different values of δ for searching the significant changes of crosstalks between mRNAs and lncRNAs

Different values of δ in the limit fold change (LFC) model used to identify DCLs have been discussed, and 0.1 was the recommended numerical value of δ [1]. In present study, in view of crosstalks between mRNAs and lncRNAs coming from prior-knowledge rather than random mRNA-lncRNA pairs, the percentage of significant changes of crosstalks between mRNAs and lncRNAs (δ) was relaxed appropriately. Moreover, in the next analysis, the changes of crosstalks between mRNAs and lncRNAs that were not differential expressed genes (DEGs) were also filtered. Thus, we retained a slightly high percentage of significant changes of crosstalks and set δ = 0.2 in our study. To verify the reliability of our results, we reset δ = 0.1 and reconstructed two differential mRNA-lncRNA crosstalk networks. The top 10 genes in betweenness, degree, closeness and DCLs enrichment of two networks were shown in table S7. In addition, comparing hub genes of networks constructed by different values of δ , the high proportion of overlaps were found (Figure S7).

Table

Supplementary Table S1. Correlations between subtypes of ESCC and clinical features

Clinical features	P-value
Tumor grade	3.55e-05
Tumor stage	0.15
Alcohol use	0.06
Sex	0.48
Tobacco use	0.69
T stage	0.26
N stage	0.97
Arrhythmia	0.19
Pneumonia	0.54
Anastomotic leak	1
Adjuvant therapy	0.45

Fisher's exact test was used.

Supplementary Table S2. Contingency table of tumor grade versus subtypes of ESCC

Subtypes\Tumor grade	Well (obs./exp.)	Moderately (obs./exp.)	Poorly (obs./exp.)
Subtype1	13/10.5	37/29	4/14.5
Subtype2	10/12.5	27/35	28/17.5

	Network 1	Network 2	Overlapping		
			Num	Percentage 1	Percentage 2
Coding genes	1,449	1,688	777	54%	46%
lncRNAs	75	86	52	69%	60%
Edges	3,698	4,131	294	8%	7%
DCLs	4,786	4,868	209	4%	4%
The "gain"	1,019	786			
The "loss"	3,767	4,082			

Supplementary Table S3. The detail information of two differential mRNA-lncRNA crosstalk networks

Supplementary Table S4. Overlaps of the "loss" crosstalks and positive correlations between mRNAs and lncRNAs in the adjacent tissues of two subtypes of ESCC

		The "loss" crosstalks between mRNAs and lncRNAs		
		Subtype 1	Subtype 2	
Positive correlation	Subtype 1	3,767	2,127	
between mRNAs and	Subtype 2	1.583	4.082	
lncRNAs		9	7	

Supplementary Table S5. The top 10 miRNAs mediated differential mRNA-lncRNA crosstalk networks

	Network 1		Network 2		
Names	Frequency	Percentage	Names	Frequency	Percentage
miR-16-5p	406	10.98%	miR-26b-5p	478	11.57%
miR-17-5p	362	9.79%	miR-16-5p	459	11.11%
miR-93-5p	359	9.71%	miR-15b-5p	407	9.85%
miR-106a-5p	339	9.16%	miR-497-5p	404	9.78%
miR-15b-5p	338	9.14%	miR-424-5p	388	9.39%
miR-15a-5p	335	9.06%	miR-15a-5p	386	9.34%
miR-20a-5p	335	9.06%	miR-195-5p	356	8.62%
miR-20b-5p	330	8.92%	miR-26a-5p	287	6.95%
miR-424-5p	330	8.92%	miR-1297	269	6.51%
miR-106b-5p	330	8.92%	miR-103a-3p	245	5.93%

Disease-related miRNAs were highlighted in bold font.

Supplementary Table S6. Hub coding genes and associated lncRNAs in two modules

	Hub coding	Degree	Associated-IncRNAs	
	genes			
Module	NTNG1	3	BOLA3-AS1; TRAF3IP2-AS1;LINC00689	
1	BHLHE22	3	BOLA3-AS1; TRAF3IP2-AS1;LINC00689	
	UTRN	3	BOLA3-AS1; TRAF3IP2-AS1;LINC00689	

	ANK2	3	BOLA3-AS1; TRAF3IP2-AS1;LINC00689
	EDNRB	3	BOLA3-AS1; TRAF3IP2-AS1;LINC00689
	NEGR1	3	BOLA3-AS1; TRAF3IP2-AS1;H19
Module	GRB10	4	LINC00240; SNHG1; RP11-588K22.2; AC156455.1
2	LPCAT1	4	LINC00240; SNHG1; RP11-588K22.2; AC156455.1
	BID	4	LINC00240;AP000525.9;RP11-588K22.2; AC156455.1
	GREM2	4	LINC00240; AP000525.9; RP11-588K22.2; AC156455.1
	DYNC1I1	4	LINC00240; AP000525.9; RP11-588K22.2; AC156455.1
	DCBLD2	4	LINC00240; AP000525.9; RP11-588K22.2; AC156455.1
	HOXD8	4	LINC00240; AP000525.9; RP11-588K22.2; AC156455.1
	TMEM38B	4	LINC00240; AP000525.9; RP11-588K22.2; AC156455.1
	RAD51AP1	4	LINC00240; AP000525.9; RP11-588K22.2; AC156455.1
	PPT1	4	LINC00240; AP000525.9; RP11-588K22.2; AC156455.1
	DPY19L1	4	LINC00240; SNHG1; AP000525.9;AC156455.1

Supplementary Table S7. The top 10 genes in betweenness, degree, closeness and DCLs enrichment of two differential mRNA-lncRNA crosstalk networks using $\delta = 0.1$

				DCLs	
	Betweenness	Degree	Closeness	enrichment	Overlaps
	PVT1	PVT1	PVT1	PVT1	PVT1
	SNHG14	LINCO0689	SNHG14	LINC00689	SNHG14
	LINCO0689	SNHG14	FENDRR	SNHG14	RP11-834C11.4
1	RP11-834C11.4	RP11-834C11.4	RP11-834C11.4	HOXA-AS2	LINC00240
ork	HOXA-AS2	FENDRR	LINC00240	LINC00152	LINC00152
etw	FENDRR	HOXA-AS2	PPFIA1	FENDRR	FENDRR
Z	LINC00240	LINC00152	SLC16A14	RP11-834C11.4	LINC00689
	LINC00152	LINC00240	BOLA3-AS1	H19	
	BOLA3-AS1	MAGI2-AS3	LINC00689	RP11-115C21.2	
	MAGI2-AS3	BOLA3-AS1	LINC00152	LINC00240	
	LINC00240	LINC00240	LINC00240	LINC00240	LINC00240
	SNHG1	AP000525.9	SNHG1	AP000525.9	SNHG1
	RP11-361F15.2	SNHG1	AC156455.1	AC156455.1	AC156455.1
5	AC156455.1	AC156455.1	PCDH19	RP11-677M14.3R	RP11-588K22.2
Network	RP11-588K22.2	RP11-588K22.2	FENDRR	RP11-361F15.2	
	AP000525.9	RP11-361F15.2	ZNF469	P11-588K22.2	
	RP11-677M14.3	AC009948.5	RP11-588K22.2	FLG-AS1	
	FLG-AS1	RP11-677M14.3	RFC3	SNHG1	
	SNHG14	SNHG14	GRB10	TINCR	
	AC009948.5	FENDRR	AC009948.5	RP11-175K6.1	

Cancer-related lncRNAs were highlighted in bold font.

Figure S1. A-D. Difference between cancer-associated lncRNAs and other lncRNAs in four topological properties of differential mRNA-lncRNA crosstalk networks

Figure S2. A-B. Top 10 significantly enriched GO terms based on their first neighbor mRNAs of *PVT1* and *LINC00240*.

Figure S3.

Figure S3. A-B. Top 5 miRNAs-mediated differential mRNA-lncRNA crosstalk networks.

Figure S4. Correlations between *PTTG1* and *PVT1* in different tissues and subtypes of ESCC. A. Correlation between *PTTG1* and *PVT1* in adjacent tissues of the subtype 1 of ESCC. B. Correlation between *PTTG1* and *PVT1* in adjacent tissues of the subtype 2 of ESCC. C. Correlation between *PTTG1* and *PVT1* in the subtype 1 of ESCC. D. Correlation between *PTTG1* and *PVT1* in the subtype 2 of ESCC. CC represents the correlation coefficient. Pearson test assessed the different significance.

Figure S5.

Figure S5. Expression levels of mRNAs and lncRNAs.

Figure S6. Differentially expressed genes (DEGs) in the two subtypes. A-B. Differentially expressed mRNAs in the subtype 1 and 2. C-D. Differentially expressed lncRNAs in the subtype 1 and 2.

Figure S7. Consistency analysis of different values of δ . A-E. Venn diagram shows the overlaps of top 10 hub genes in different topological properties (betweenness, degree, Closeness, DCLs enrichment and overlapping hub) using different δ (0.1 and 0.2) to construct the differential mRNA-lncRNA crosstalk networks in the subtype 1 of ESCC. F-J. Venn diagram shows the overlaps of top 10 hub genes in different topological properties (betweenness, degree, Closeness, DCLs enrichment and overlapping hub) using different δ (0.1 and 0.2) to construct the differential mRNA-lncRNA crosstalk networks in the subtype 2 of ESCC.

REFERENCES

1. Yu H, Liu B-H, Ye Z-Q, Li C, Li Y-X and Li Y-Y. Link-based quantitative methods to identify differentially coexpressed genes and gene pairs. BMC bioinformatics. 2011; 12(1):1.