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Discovery and replication of microRNAs for breast cancer risk 
using genome-wide profiling

SUPPLEMENTARY INFORMATION

NanoString® data pre-processing and analysis

One important step of preprocessing miRNA 
profiling data is to apply optimal normalization 
method. The purpose of data normalization is to 
minimize systematic bias due to technical variation. 
Normalization is very critical for getting the true 
biological signal, however, normalization method for 
miRNA data continues to be very challenging due to 
the lack of invariant stable miRNA [1]. At present, 
there is little consensus on normalization methods 
for pre-processing of miRNA expression [1]. In our 
study, we used two-step normalization where technical 
normalization was performed based on internal positive 
controls followed by global mean normalization 
[2] as recommended by NanoString. A global mean 
normalization strategy has been shown to be the most 
sensitive and accurate approach for miRNA normalization 
compared to normalization using multiple most stably 
miRNAs [3] or quantile normalization [4]. Additionally, 
we compared the two-step normalization with the 
commonly used quantile normalization [5] and found the 
two step normalization to be more precise since they have 
lower variance (CV) across duplicates (Supplementary 
Figure 1).

Specifically, the raw NanoString data were 
subjected to both technical normalization and global 
mean normalization. First, technical normalization 
was performed to minimize the impact of lane-to-lane 
variations that could arise during processing. Raw data 
was normalized by making the geometric mean of the 
positive internal control (synthetic miRNA sequences) 
counts to be the same across all samples. Geometric 
mean was used since it is more robust to outliers [6]. 
After the data was normalized for processing variability, 
it was necessary to further normalize for RNA content. 
Ideally, assays that were going to be compared should be 
performed with the same total amount of RNA with the 
same total amount of RNA. However, the RNA content 
in an assay was frequently affected by small inaccuracies 
in quantification or pipetting. Since invariant miRNAs 
were not well defined, we normalized the counts to the 
top 50 miRNAs with the highest mean expression across 
all samples (excluding problematic miRNAs, the one with 
+++). Specifically, we normalized the counts so that the 
geometric means of the top 50 miRNAs were the same 
across all samples.

We filtered out miRNAs that do not have signals 
in most of the samples (e.g., counts [before global 
normalization] less than background detection threshold 
in more than 50% of the total samples). A 168 miRNA 
subset passed the filter. Background thresholds were 
calculated for each sample as the mean of internal negative 
controls (unique probes with non-human target sequences) 
+ 2 standard deviation (SD). Additionally, after global 
normalization, samples with very low overall counts 
(those with normalization factor > 10) were also filtered 
out. These samples have substantially less miRNA content 
(less efficient ligation and counting) than all the others 
that maybe due to sample degradation or contaminants in 
the RNA.

Comparison with quantile normalization

To make sure we have selected the appropriate 
normalization methods, we normalized our data using 
the method described above and compared it with data 
normalized using quantile normalization [5] which was 
commonly used to normalize gene expression data. 
Unsupervised hierarchical clustering was performed 
to compare the two normalization methods on samples 
that were assayed in duplicates. The coefficients of 
variations (CVs) of the normalized expression are shown 
in Supplementary Figure 1. As shown in Supplementary 
Figure 1, after the two step normalization, duplicates 
have lower variance than quantile or no normalization. 
This suggests that normalization is necessary and 
that our normalization strategy performs better than 
quantile normalization. Our decision to not use quantile 
normalization is also supported by Prokopec et al [4] 
which found quantile normalization removing correlation 
with quantitative real-time PCR (qPCR) results.

Quality control

We used principal component analysis (PCA) as a 
QC tool to detect the presence of batch effects and other 
technical artifacts that can bias our analysis. The first thing 
we would like to make sure is that miRNAs do not cluster 
together because of normalization factor. Supplementary 
Figure 2 shows the first two components. We can see 
that there is no clear separation between high and low 
normalization factors which indicate no evidence of 
confounding by normalization factor. We have also check 
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for batch effects due to cartridge (data not shown) and did 
not find any obvious patterns.

Checking for confounders

We used PCA to identify variables that represent 
potential confounders. First, PCA plots of the first 
and second component were used as exploratory step 
to identify potential confounders for each of our risk 
factors (e.g. race, dichotomized age). We do not see 
any clear separation of our samples which indicate that 
none of the risk factors in our data is a confounding 
factor (data not shown except for Race which was 
plotted in Supplementary Figure 2). Supplementary 
Figure 2 displays one example of the PCA plot with the 
color indicating race. This plot shows that race is not a 
confounding variable.

Univariate analysis

Chi-squared tests were used to compare the 
categorical characteristics factors between participants 
in the two RM studies. Categorical characteristics for 
“unknown” status were excluded in the Chi-squared tests. 
In the case where the expected counts were small, the 
sampling distribution of the chi-squared statistics does 
not follow the chi-squared distribution. In such cases, 
we used Monte Carlo to simulate distribution of the 
chi-squared statistics [9]. Wilcoxon rank sum tests were 
used to compare expression of each miRNA individually 
between high and low risk women. P-values were adjusted 
for multiple comparisons using the Benjamini-Hochberg 
False Discovery Rate (FDR) algorithm [10].

miRNA model identification (Multivariate 
analysis)

Multivariate analysis, Sparse Partial Least Square 
Discriminant Analysis (sPLS-DA) was done using 
mixOmics (4.0-2) package in R [11, 12]. sPLS-DA, 
an extension of PLS is a class of technique where two 
matrices, X and Y are modeled by latent variables coupled 
with variable selection and classification a one-step 
procedure. sPLS-DA is especially useful when analyzing 
correlated highly dimensional data or when there are more 
variables than observation. The sparsity extension of PLS-
DA is motivated by the need to separate the biological 
signal from non-useful noisy data. Dimension reduction 
was achieved by singular value decomposition (SVD) 
computation and by penalizing the sparse SVD. In this 
case, miRNAs selection was integrated with modeling as 
a one-step procedure and the aim is to model a reciprocal 
relationship between miRNA expression and Gail risk 
[13]. First, latent components were constructed using 

sPLS regression by converting categorical response to 
dummy coding {0, 1}. Hence the sPLS model is given by:

Y = TQT + F

X = TPT + E

T = XW

Where Y and X represent the response and the predictor 
matrices, respectively. Q and P are coefficients (loadings) 
and E and F are errors. T is the latent components 
underlying both Y and X. W are the K direction vectors 
which are solve along with the variable selection.

Variable selection was incorporated by solving the 
following optimization problem:

Where M = XTYYTX. This objective function can be 
interpreted as maximizing the covariance between X 
and Y and incorporate variable selection by imposing L1 
penalty onto a surrogate of direction vector c instead of the 
original direction vector w, while keeping w and c close 
to each other. The last step is applying linear discriminant 
analysis (LDA). Let β̂ LC  be the coefficient estimates of 
the latent components. Then, the original predictors can 
be obtained as ββ ββ==Wˆ ˆ LC because ββ ββ ββ= =T X W Xˆ ˆ ˆ.LC LC  
The class prediction were then determined based on largest 
predicted value. More detailed formulation of the sPLS-
DA model can be found in Chung and Keles [14].

Parameters tuning for sPLS-DA were done by 
evaluating the performance classification during 50 
iterations of 10-fold cross validation. During this 
procedure, the RM discovery study was randomly split 
into 10 equal subsets. Model estimation was conducted 
on nine tenths of the study, and tested on the remaining 
tenth of the study that were held out. This was repeated 
until each group of a tenth of the study played the role of 
test samples once and the whole process was repeated 50 
times. The cross validation results showed that the best 
model (the non-parsimonious, most stable model with an 
average error rate of 0.099) was one with 41 miRNAs and 
3 components. Supplementary Figure 3 shows plot of the 
classification error during cross validation. 41-miRNA 
model was identified based on the miRNAs which make 
up the first component as this component corresponds to 
91% variation explained (Supplementary Figure 4).

RM discovery and replication studies

Once the 41-miRNAs were identified, we used 
the same miRNAs to build sPLS-DA model in the RM 

cc ccλ λ( )( ) ( )− + − − − + +   w Mw c w M c w  k kmin 1T T
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discovery and applied it to the replication studies. 
Because of potential batch effects, we standardized the 
miRNA measurements within each study. Expressions 
were centered by subtracting the means and dividing 
the (centered) expressions by their standard deviations. 
Accuracy, sensitivity, and specificity of the prediction 
results were calculated. We referred to agreement to Gail 
risk as accuracy. To assess whether the classification error 
rates differ significantly from what chance alone could 
produce, a permutation test was applied. In a permutation 
test, outcome labels (high vs. low risk) were permuted 
and assigned randomly to each woman. The same model 
developed in the discovery study was then applied to 
these permuted samples and classification accuracy was 
calculated. This procedure was repeated 10,000 times 
to get the distribution of permuted accuracy as the null 
distribution. The P-value of the accuracy was calculated 
by summing the number of permuted accuracies > the 
accuracy obtained on the full study set divided by 10,000. 
Results are shown in Table 2.

Sensitivity analysis

Because race distribution in the two studies was 
different we performed a sensitivity analysis to test 
whether classification based on the 41-miRNA panel was 
significantly influenced by race. We performed a logistic 
regression with dichotomized Gail risk as the dependent 
variable and predicted Gail risks (using 41-miRNA 
panel) as independent variable, with and without race 
adjustment. The p-values for predicted Gail is 2.33×10-5  
(odd ratio [OR] = 21.92) and 2.24×10-5 (OR = 21.01) with 
and without race adjustment, respectively. Therefore we 
concluded that race is likely not a major confounding 
factor (P > 0.3) in the association between the miR model 
and dichotomized Gail risk.

miRNA signature as non-invasive markers 
(Sister study)

In order to assess the capability of the identified 
miRNA signature in predicting real breast cancer cases, 
we used public dataset (GSE44281) of miRNA profiles 
in serum from 410 women without breast cancer (205 
remained cancer-free and 205 developed breast cancers). 
miRNA expression profiled using Affymetrix® array 
were background corrected and normalized using robust 
multichip average (RMA) method [15]. R package 
‘GEOquery’ [16] was used to access the NCBI Gene 
Expression Omnibus (GEO) public repository. To avoid 
confusion due to changes in miRNA naming systems 
according to which miRbase was referenced, we matched 
Affymetrix probe set names and NanoString probe names 
based on their sequences. 34 out of the 41 miRNAs 
identified in discovery study were covered in Affymetrix 

array. Twenty out of 34 miRNAs were detected above 
background level in more than 50 women. P-value of less 
than 0.06 (Wilcoxon rank-sum test) was used to identify 
miRNAs above background level as recommended by 
the manufacturer. The same filter criteria were also 
used in the analysis of Sister Study [17]. We built a 
classification model based on these 20 miRNAs in the 
discovery study using sPLS-DA. Because Sister Study 
used a different platform to measure the miRNA profiles, 
we standardized the miRNA expression. We then used 
the 20-miRNA model to identify women who remain 
cancer-free and those who later develop cancer. To assess 
whether the classification error rates differ significantly 
from what chance alone could produce, a permutation 
test was applied. In a permutation test, outcome labels 
(develop cancer vs. remain cancer-free) were permuted 
and assigned randomly to each patient. The 20-miRNA 
model was used to classify women into cancer and cancer-
free groups in the permuted samples. This procedure 
was repeated 10,000 times to get the null distribution of 
accuracies which was then compared to accuracy obtained 
in the Sister Study. Results are shown in Table 2.

IPA analysis

Data were analyzed using Ingenuity Pathways 
Analysis (IPA; Ingenuity Systems, Redwood City, CA, 
www.ingenuity.com) and described below. Experimentally 
validated miRNA targets were identified using TarBase 
[18], miRecords [19] and Ingenuity® knowledge base. 
Predicted targets with high confidence were determined 
using TargetScan [20]. All miRNA targets were identified 
using the previously mentioned databases from within 
IPA.

Network generation, canonical pathway and 
functional analysis

A data set containing the top 10 miRNA identifiers 
(based on weights calculated by sPLS-DA) was uploaded 
into IPA. Each miRNA identifier was mapped to its 
corresponding miRNA object. Only 5 out of the top 
10 miRNAs have experimentally validated targets. 94 
experimentally validated gene targets of these 5 miRNAs 
were identified using TarBase [18] and miRecords [19]. 
Networks of these target genes were then algorithmically 
generated based on connectivity information contained 
in the IPA knowledge base. P-values were calculated 
using the right-tailed Fisher’s exact test determining 
the probability of getting the same network by chance 
when randomly picking 94 molecules that can be in the 
networks.

The functional analysis identified the biologic 
functions and/or diseases that were most significantly 
associated with the 94 experimentally validated target 
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genes of the top 10 miRNA in the model. The canonical 
pathway analysis identified the pathways from the IPA 
library of canonical pathways that were most significant 
to the data set. The significance of the association between 
the 94 validated target genes and the canonical pathway 
or the biologic functions were measured in two ways: 
(1) P-values were calculated using Fisher’s exact test 

determining the probability that the association between 
the target genes and the canonical pathway (or the biologic 
functions) is explained by chance alone and (2) a ratio of 
the number of target genes that map to the pathway to the 
total number of genes in the canonical pathway (or in the 
diseases and functions category). These are shown in the 
Supplementary Tables 3 and 4.
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Supplementary Figure 1: Sensitivity analysis on the number of selected miRNAs and the number of dimension chosen 
calculated using 50 iterations of 10-fold cross validation. Model with 41 miRNAs is the simplest model with the best performance 
(colored in cyan).
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Supplementary Figure 2: Plot of cumulative proportion of explained variance for the first 10 principal components. 
The first component can explain up to 91% of the variation. Thus, we decided to select the 41 miRNAs which make up the first component.
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Supplementary Figure 3: IPA functional analysis associated with the experimentally validated gene targets of the top 
10 miRNA in the 41-miRNA signature. Fisher’s exact test was used to calculate P-values. Values greater than the threshold (red 
vertical bar) implies that the association between miRNA gene targets and the functions is not likely due to random chance alone.
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Supplementary Figure 4: Network of predicted targets (shaded molecules) of top 10 miRNAs with no experimentally 
validated targets that are involved in breast cancer pathway. Pink molecules are important in breast cancer pathway. Network is 
enriched in cell cycle, cell death and survival, and post-translational modification (P = 10-50, right-tailed Fisher’s exact test).
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Supplementary Figure 5: Comparison of CV of miRNA expressions A. raw vs. two-step normalization and B. quantile 
normalization vs. two-step normalization. Each point represents miRNA(s). Colors represent number of miRNAs with the same 
CVs. These figures show that after two-step normalization, miRNA expressions of duplicates are more similar than after quantile or no 
normalization.
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Supplementary Figure 6: PCA plot of the first two components with the samples colored according to their normalization 
factor (left) and race (right). This plot indicated there are no technical variations due to the different normalization factor and that race 
is not a confounding factor in our miRNA expression.
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Supplementary Table 1: Univariate analysis of miRNA expression in low and high risk women

miRNA Mean miRNA
low-risk (log2)

Mean miRNA
high-risk (log2)

Fold-Change FDR P-value

hsa-miR-148a-3p 6.39 5.96 -1.34 4.72E-01 2.81E-03

hsa-miR-29c-3p 5.42 5.16 -1.20 7.65E-01 1.67E-02

hsa-miR-143-3p 7.71 6.95 -1.68 7.65E-01 2.65E-02

hsa-miR-204-5p 4.59 4.31 -1.21 7.65E-01 4.07E-02

hsa-miR-374b-5p 4.76 5.1 1.26 7.65E-01 4.29E-02
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Supplementary Table 2: List of 41-miRNA signature for predicting women with low- and high breast cancerrisk 
sorted by decreasing estimated loadings (weights) (Bolded miRNAs are the 20 miRNAs detectable in serum samples. 
Loadings shown was calculated in the discovery study for the first component in standardized unit.)

See Supplementary File S1.

Supplementary Table 3: IPA significant canonical pathways

See Supplementary File S1.

Supplementary Table 4: IPA significant biologic functions and/or diseases

See Supplementary File S1.


