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Supplemental Fig. 1: Comparison of ChIP sequencing and ChIP-qPCR. A, B, C) ChIP-qPCR for H4K20me3, H3K9-
me2 and H3K9me3 was performed at stage 9 and 30. Primers were designed for inter- and intragenic loci wich had
high, low, or no coverage in ChIP-seq for H4K20me3 and/or H3K9me3 (as indicated on x-axis). Recovery from input
(%) was plotted. D, E) Dynamics of H4K20me3 and H3K9me3 between stage 9 and 30 were compared between
ChIP-seq and ChIP-gPCR. Locus ‘@’ to ‘s’ (panel A, C) were grouped by up- or downregulation according to the
ChlP-seq data, after which boxplots were generated. Enrichment over input track was plotted for ChIP-seq and
recovery of input was plotted for ChIP-qPCR.
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Supplemental Fig. 2: Distribution of heterochromatic histone modifications over scaffold 6. Each scaffold was divided
each bin. Enrichment of
H4K20me3, H3K9me2, H3K9me3 and H3K27me3 (left to right) at stage(8,) 9, 10.5, 12.5, 16 and 30 (top to bottom) over
the input track was visualized for each bin.

in bins of 100 kb. RPKM of the heterochromatic histone modification was calculated for
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Supplemental Fig. 3: Relatively low transcript levels for transposon clusters with most abundant
heterochromatin marking. For each TE subfamily the medium transcript abundance (RPKM) was
calculated for embryosin A, B) stage 8 and C, D) stage 10. A, C) Retro- and B, D) DNA transposons were
grouped according to clusters as determined in Fig. 2A, B. Average transcript levels for the subfamilies
were plotted for each clusters: the left and right hinges correspond to the cluster’s 25" and 75%
percentiles and the vertical line in between represents the cluster’s median RPKM.
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Supplemental Fig. 4: Correlation plot of histone modifications at retrotransposons. The median
enrichments of each heterochromatic histone modification for each retrotransposon subfamily were
used to calculate spearman correlation, as indicated by color and values.
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Supplemental Fig. 5: Correlation plot of histone modifications at DNA transposons. The median
enrichments of each heterochromatic histone modification for each DNA transposon subfamily were
used to calculate spearman correlation, as indicated by color and values.
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Supplemental Fig. 6: H4K20me3 and H3K9me3 acquired in stage 9. ChIP against A) H4K20me3, B)
H3K9me2 and C) H3K9me3 were performed in stage 8 (dark bars) and in stage 9 (light bars). Recovery
of input was analyzed by qPCR for various transposon types, as indicated on the x-axis. Transposons
written bold+italic are the individual transposons enriched for at least one heterochromatic mark in
the stage 9 ChIP-seq data. n=2, average +SEM.
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Supplemental Fig. 7: H3K27me3, P300 and H3K4me3 at transposons do not anti-correlate with gene
density. For each TE subfamily the median gene density was calculated 500.000 bp up- and
downstream of the center of each TE. All TE subfamilies were ranked by gene density and median
H4K27me3 (left), P300 (middle) and H3K4me3 (right) enrichments during stage A) 9 and B) 30 were
plotted for retro- (blue) and DNA transposon (red) subfamilies. Loess was used as smoothing method,

with a 0.95 confidence interval.
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Supplemental Fig. 8: Transposons are hypermethylated during blastula stage. Median methylation
fraction (=meCG/(meCG+CG)) during stage 9 was calculated for each subfamily. meCG fraction was
plotted for A) retro- and B) DNA transposon subfamilies grouped according to clusters determined in
Fig. 2A, B. The left and right hinges correspond to the 25" and 75" percentiles and the vertical line in
between represents the median.
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Supplemental Fig. 9: The majority of small RNA mapping to transposons is 28 nucleotides long.
Small RNA reads (stage 8, 10 and 18) that aligned to A) retro- and B) DNA transposons were split based
on nucleotide length (x-axis) and counted (y-axis).
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Supplemental Fig.10: The transposons subfamily ranking for small RNA is largely stable during
development. Median small RNA levels (RPKM) at stage 8, 10 and 18 were calculated for each TE
subfamily. All TE subfamilies were ranked by amount of small RNA at stage 8 and small RNA levels for
all three stages were plotted in this order. Loess was used as smoothing method, with a 0.95
confidence interval (line shade).
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Supplemental Fig. 11: Small RNA does not correlate with heterochromatic histone modifications at
DNA transposon subfamilies. All TE subfamilies were ranked by amount of small RNA and in this
order median A) H4K20me3, B) H3K9me2, C) H3K9me3 and D) H3K27me3 enrichments were
visualized for DNA transposons. Histone marks were plotted for stage 9, 10.5, 12.5, 16 and 30 (left to
right). The line was plotted using Loess smoothing method, with a 0.95 confidence interval (line
shade).
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Supplemental Fig. 12: Small RNA does not correlate with H3K9me2 at retrotransposons. All TE
subfamilies were ranked by amount of small RNA and in this order median H3K9me2 enrichment for
each retrotransposon subfamily was visualized. Histone marks were plotted for stage 9, 10.5, 12.5, 16
and 30 (left to right). The line was plotted using Loess smoothing method, with a 0.95 confidence
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Supplemental Fig. 13: Library sizes and fragment lengths of retro- and DNA transposon clusters. The
individual sequences per TE subfamily were counted. These library sizes were plotted for the A) retro-
and B) DNA transposon clusters as determined in Fig. 2A, B. The median length of the sequences
belonging to each TE subfamily was determined and these median fragment lengths were also plotted
for the C) retro- and D) DNA transposon clusters as determined in Fig. 2A, B. The left and right hinges
correspond to the 25™ and 75 percentiles and the vertical line in between represents the median.



