Supplemental material

Nechemia-Arbely et al., https://doi.org/10.1083/jcb.201608083

Figure S1. **CENP-A^{TAP} maintains long-term centromere function and viability in the absence of endogenous CENP-A.** (A) Schematic of cell line construction and of the experiments in B–D. (B) PCR analysis on the DNA extracted from surviving colonies after >100 generations of growth after adeno-Cre treatment to inactivate the remaining CENP-A allele in CENP-A^{-/Flox} RPE-1 cells expressing ^{EYFP}CENP-A or CENP-A^{TAP}. (C) Immunoblot to visualize levels of each CENP-A-tagged rescue construct or endogenous (endo') CENP-A. α-Tubulin was used as a loading control. (D) Images of representative crystal violet-stained colonies from a colony formation assay for measuring long-term viability. (E) Micronuclei (MN) quantification in CENP-A^{-/Flox} RPE-1 and after adeno-Cre treatment to inactivate the remaining CENP-A allele in CENP-A^{-/Flox} RPE-1 cells expressing CENP-A^{TAP}.

BIOLOG

CELL

ш О

Figure S2. Characterization of CENP-A^{TAP} cells and synchronization efficiency for producing CENP-A chromatin at multiple cell cycle points. (A) Immunoblot for CENP-A in whole-cell extracts of a parental HeLa cell line and a CENP-A^{TAP}-expressing cell line. (B) Serial 1:2 dilutions of whole-cell extracts of CENP-A in whole-cell extracts of a parental HeLa cell line and a CENP-A^{TAP}-expressing cell line. (B) Serial 1:2 dilutions of whole-cell extracts of CENP-A retained on the first membrane (compared with the total signal from all three membranes) shown in B. (D) Quantification of CENP-A expression levels (tagged and endogenous) shown in A after correcting for the fraction of CENP-A that passes through the immunoblot membrane (as shown in B and C). n = 4 from four independent loadings in the gel shown in A. Error bars represent SEM. (E) Calculation of the expected ratios of homotypic chromatin particles containing two molecules of CENP-A in a cell expressing CENP-A^{TAP} and endogenous CENP-A at a ratio of 11:1, respectively. (F) Synchronization efficiency of CENP-A^{TAP} and CENP-A^{TAP} and CelNP-A^{TAP} and endogenous CENP-A at a ratio of 11:1, respectively. (F) Synchronization efficiency of CENP-A^{TAP} and CENP-A^{TAP} and cells with condensed DNA at different time points after the release of CENP-A^{TAP} cells from a second thymidine block (G1/S point). n = 6 from six independent experiments. Error bars represent SEM. (H) Affinity purification of H3.1^{TAP} results in coimmunoprecipitation of endogenous H3, H4, H2A, and H2B. CENP-A is not present within the H3.1^{TAP} mononucleosomes.

Figure S3. **Transfer efficiency of untagged endogenous CENP-A and endogenously tagged CENP-A^{IAP}.** (A) Serial 1:2 dilutions of whole-cell extracts of CENP-A^{IAP}-expressing cells, immunoblotted for CENP-A, after protein transfer onto a stack of three membranes. (B) Quantification of the fraction of CENP-A, retained on the first membrane (compared with the total signal from all three membranes) shown in A. (C) Calculation of the expected ratios of homotypic chromatin particles containing two molecules of CENP-A in the cell line CENP-A^{+/LAP}, expressing CENP-A^{LAP} and nontagged CENP-A at a ratio of 1:1 as shown in Fig. 4 (D and E).

Figure S4. Sedimentation of CENP-A is inconsistent with a hemisome/tetrasome structure as the major form of CENP-A chromatin. (A) Ethidium bromide-stained 5% native PAGE of in vitro-reconstituted octameric H3 and CENP-A nucleosome wrapped with 145 bp of template DNA or (CENP-A/H4)₂ or (H3/H4)₂ tetrasomes wrapped with 101 bp of template DNA. (B) Sedimentation velocity of chromatin in random cycling H3.1^{TAP} cells. (top) DNA length in the different fractions. (bottom) Immunoblotting for CENP-A and H3. (C, top) Ethidium bromide-stained agarose gel of DNA extracted from the slower-migrating chromatin fractions from randomly cycling or G2 CENP-A^{TAP} cells. (bottom) Immunoblot for CENP-A. (D) Real-time quantitative PCR with primers for α -satellite DNA.

Table S1. Read statistics for ChIP-sequencing experiments

Experiment	Replicate number	Total number of merged paired-end reads (100 bp × 2)	Total number of merged reads ≥100 bp	Number of merged reads mapping to α-satellites	
			%	%	
CENP-ATAP G1	1	30,632,549	29,112,562 (95%)	12,716,461 (43.6%)	
	2	25,982,533	22,232,953 (85.5%)	9,836,077 (44.2%)	
CENP-A ^{TAP} G2	1	24,210,941	21,834,136 (90.2%)	11,929,448 (54.6%)	
	2	29,836,502	26,273,103 (88.1%)	15,450,060 (58.9%)	
H3.1 ^{TAP} RC	1	31,819,170	30,928,233 (97.2%)	668,075 (2.1%)	
	2	42,069,089	40,218,049 (95.6%)	911,027 (2.2%)	
CENP-ATAP RC input	1	61,557,119	61,434,004 (99.8%)	1,374,644 (2.2%)	

Total number of merged paired-end reads (one read per merged two paired ends) generated for each sample, the number (and percentage) of those that were \geq 100 bp in length, and the number (and percentage) of reads mapping to α -satellites. RC, random cycling.

Table S2. ChIP sequencing combined replicate statistics

Experiment	Total number of merged paired-end reads (100 bp × 2)	Total number of merged reads ≥100 bp	Number of merged reads mapping to α-satellites	
		%	%	
CENP-ATAP G1	56,615,082	51,345,515 (90.7%)	22,552,538 (43.9%)	
CENP-A ^{TAP} G2	54,047,443	48,107,239 (89%)	27,379,508 (56.8%)	
H3.1 ^{TAP} RC	73,888,259	71,146,282 (96.3%)	1,579,102 (2.15%)	

Read statistics is given for the combined replicates in each condition. This table was used in Fig. 2 D.

Table S3. Human α -satellite arrays in centromeric reference models

hg38 chromosome number	Chromosome coordinates		GenBank accession number	HuRef reference model length	Total array length	Total array length
	Start	End	_			
				bp	bp	Mb
chr1	122,026,459	122,224,535	GJ211836.1	198,076	I	
chr1	122,224,635	122,503,147	GJ211837.1	278,512		
chr1°	122,503,247	124,785,432	GJ212202.1	2,282,185		
chr1	124,785,532	124,849,129	GJ211855.1	63,597		
chr1	124,849,229	124,932,724	GJ211857.1	83,495		
chr1					2,905,865	2.9
chr2	92,188,145	94,090,557	GJ211860 .1	1,902,412	1,902,412	1.9
chr3	90,772,458	91,233,586	GJ211866.1	461.128		
chr3	91,233,686	91,247,622	GJ211867.1	13,936		
chr3	91.553.419	93.655.574	GI211871.1	2.102.155		
chr3	,,	,		_/ · · _/ · · ·	2.577.219	2.6
chr4	49.712.061	51,743,951	GI211881. 1	2.031.890	2.031.890	2.0
chr5	46.485.900	46.569.062	GI211882.1	83.162	_,	
chr.5	46,569,162	46 796 725	GI211883 1	227.563		
chr5	46 796 825	47 061 288	GI211884 1	264 463		
chr5	47 106 994	47 153 339	GI211886 1	46 345		
chr5	47 153 139	47,100,007	GI211887 1	1/2 630		
chr5g	47 300 184	40 501 360	GI212203-1	2 282 185		
chr5 ^b	47,507,104	47,371,307	GI211004.2	53 672		
chr5	47,007,001	50 050 907	CI211006.2	229 504		
chr5	49,721,303	50,057,607	GJ211900.2	556,504	2 120 521	2.4
chr5	50 552 000	50 920 024	CI211007 1	1 274 044	3,430,324	J.4 1 2
cnro	50,553,000	37,027,734	GJZ11907.1	1,2/0,040	1,270,040	1.3
	21,107,000	41 528 020	GJ211906.1	150 220		
	01,377,700	01,328,020	GJZ1Z194.1	130,232	2 000 012	2.0
cnr/	44.000 744	45 077 0/5	C12110001	1 0 40 501	2,808,813	2.8
chr8	44,033,744	43,877,203	GJZ11909.1	1,843,321	1,843,521	1.8
chr9	43,389,035	45,518,558	GJZ11929.1	2,128,923	2,128,923	Z. I
chr10	39,080,082	39,935,900	GJ211930.1	249,218		
chrIU	39,936,000	41,497,440	GJ211932.1	1,561,440		
chr10	41,497,540	41,545,/20	GJ211933.1	48,180		
chrIU	41,545,820	41,593,521	GJ211936.1	4/,/01		
chrIU	51 070 0 10	51 000 017	010110001	11.0/0	1,906,539	1.9
chrll	51,078,348	51,090,317	GJ211938.1	11,969		
chrll	51,090,417	54,342,399	GJ211943.1	3,251,982		
chrll	54,342,499	54,425,074	GJ211948.1	82,575	3,346,526	3.3
chr11					3,346,526	3.3
chr12	34,769,407	34,816,611	GJ211949.1	47,204		
chr12	34,835,295	37,185,252	GJ211954.1	2,349,957		
chr12					2,397,161	2.4
chr13°	16,000,000	16,022,537	GJ211955.2	22,537		
chr13°	16,022,637	16,110,659	GJ211961.2	88,022		
chr13°	16,110,759	16,164,892	GJ211962.2	54,133		
chr13°	16,164,992	16,228,527	GJ211963.2	63,535		
chr13 ^c	16,228,627	16,249,297	GJ211965.2	20,670		
chr13°	16,249,397	16,256,067	GJ211967.2	6,670		
chr13°	16,256,167	16,259,412	GJ211968.2	3,245		
chr13°	16,259,512	16,282,073	GJ211969.2	22,561		
chr13°	16,282,173	17,416,384	GJ211972.2	1,134,211		
chr13°	17,416,484	17,416,824	GJ212205.1	340		
chr13°	17,416,924	17,417,264	GJ212206.1	340		
chr13°	17,417,364	17,418,562	GJ211986.2	1,198		
chr13°	17,418,662	18,051,248	GJ211991.2	632,586		
chr13					2,050,048	2.1
chr14 ^c	16,000,000	16,022,537	GJ211992.2	22,537		
chr14 ^c	16,140,627	16,228,649	GJ211998.2	88,022		
chr14 ^c	16,228,749	16,282,882	GJ211999.2	54,133		
chr14°	16,282,982	16,346,517	GJ212000.2	63,535		
chr14°	16,346,617	16,367,287	GJ212002.2	20,670		

Table S3. Human α -satellite arrays in centromeric reference models (Continued)

hg38 chromosome number	Chromosome coordinates		GenBank accession number	HuRef reference model length	Total array length	Total array length
	Start	End	_			
chr14°	16.367.387	16.374.057	GI212004.2	6.670		
chr14 ^c	16,374,157	16,377,402	GJ212005.2	3,245		
chr14 ^c	16,377,502	16,400,063	GJ212006.2	22,561		
chr14°	16,404,448	17,538,659	GJ212009.2	1,134,211		
chr14°	17,538,759	17,539,099	GJ212210.1	340		
chr]4°	17.539.199	17,539,539	GI212211.1	340		
chr]4 ^c	17.539.639	17,540,837	GI212023.2	1,198		
chr14 ^c	17,540,937	18,173,523	GJ212028.2	632,586		
chr14				,	2,050,048	2.1
chr15	17,083,673	17,498,951	GJ212036.1	415,278		
chr15	17,499,051	18,355,008	GJ212042.1	855,957		
chr15	18,355,108	19,725,254	GJ212045.1	1,370,146		
chr15					2,641,381	2.6
chr16	36,311,158	36,334,460	GJ212046.1	23,302		
chr16	36,337,666	38,265,669	GJ212051.1	1,928,003		
chr16					1,951,305	2.0
chr17	22.813.679	23,194,918	GI212053.1	381,239	,,	
chr17	23,195,018	26,566,633	GI212054.1	3.371.615		
chr17	26,566,733	26,616,164	GI212055.1	49,431		
chr17				,	3.802.285	3.8
chr18	1.5 460 899	15 780 377	GI212060 1	319 478	-,,	
chr18	15 797 855	20,561,439	GI2120621	4 763 584		
chr18	20 603 247	20,696,289	GI212066 1	93 042		
chr18	20,696,389	20 736 025	GI212067 1	39.636		
chr18	20,736,125	20,813,083	GI212069 1	76 958		
chr18	20,839,797	20,861,206	GI2120711	21 409		
chr18	20,007,777	20,001,200	0,2120,111	21,407	5 314 107	53
chr19 ^b	24 498 980	24 552 652	GI212072 2	53 672	0,014,107	0.0
chr19	24,552,752	24 891 256	GI212077 2	338,504		
chr19ª	24,002,702	27 190 874	GI212201 1	2 282 185		
chr19	2 .,, 00,00,	2, , , , , , , , , ,	0,21220111	2/202/:00	2 674 361	27
chr20	26 436 232	26,586,955	GI212091 1	1.50 723	_,	
chr20	26 608 145	28,494,539	GI212093 1	1 886 394		
chr20	28,508,997	28,556,953	GI2120951	47 956		
chr20	28 648 108	28 728 874	GI212105 1	80 766		
chr20	20,040,100	29,204,668	GI212107.1	78 875		
chr20	29,917,404	30 038 348	GI212107.1	120.944		
chr20	27,717,404	00,000,040	0,212117.1	120,744	2 365 658	24
chr21°	10 864 560	10 887 097	GI212118.2	22 537	2,003,030	2.4
chr21c	10,887,107	10,007,077	GI212170.2	88 022		
chr21c	10,007,310	11 020 452	GI212124.2	54 133		
chr21c	11 020 552	11,027,452	GI212125.2	63 535		
chr21°	11,027,332	11,073,007	GI212128.2	20.670		
chr21c	11 113 057	11,110,007	GI212120.2	6 670		
chr21°	11 120 727	11,123,027	GI212130.2	3 2/15		
chr21c	11 124 072	11,120,772	GI21213132.2	22 561		
chr21c	11,124,072	12 280 944	GI212132.2	1 13/ 211		
chr21c	12 281 044	12,200,744	GI212204 1	340		
chr21c	12,201,044	12 281 821	GI212204.1	340		
chr21c	12,201,404	12,201,024	GI212207.1	1 102		
chr21c	12,201,724	12,203,122	CI0101540	620 504		
chr21	12,203,222	12,713,000	GJZ1Z1J4.Z	032,300	2 050 049	2 1
chr22c	12 051 700	10 077 005	CI212155 2	22 222	2,030,040	2.1
chr22c	12,704,/00	12,7//,323	GJZ1Z100.Z	22,001		
chr22c	13,021,422	10,109,444		00,UZZ		
chfZZ ^c	13,109,344	13,103,0//	GJZ1Z10Z.Z	34,133		
	13,103,///	13,227,312	GJ212163.2	03,335		
cnr22	13,22/,412	13,248,082	GJ212165.2	20,6/0		
cnr22	13,248,182	13,254,852	GJ21216/.2	0,6/0		
cnr∠∠c	13,254,952	13,258,197	GJ212168.2	3,245		

Table S3. Human α-satellite arrays in centromeric reference models (Continued)

hg38 chromosome number	Chromosome coordinates		GenBank accession number	HuRef reference model length	Total array length	Total array length
	Start	End				
chr22 ^c	13,258,297	13,280,858	GJ212169.2	22,561		
chr22°	13,285,243	14,419,454	GJ212172.2	1,134,211		
chr22°	14,419,554	14,419,894	GJ212208.1	340		
chr22°	14,419,994	14,420,334	GJ212209.1	340		
chr22°	14,420,434	14,421,632	GJ212186.2	1,198		
chr22°	14,421,732	15,054,318	GJ212191.2	632,586		
chr22					2,050,048	2.1
chrX	58,605,579	62,412,542	GJ212192 .1	3,806,963	3,806,963	3.8

Centromere reference models (unpublished data) were generated with methods as previously described (Miga et al., 2014). Length estimates are expected to be averaged across arrays from homologous chromosomes. Column 1, chromosome information; column 2, chromosome start position; column 3, chromosome end position; column 4, GenBank accession number; column 5, length of each reference model as represented in the human assembly; column 6, total array length (in base pairs); column 7, total array length (in megabases). Sequence coordinates refer to the human Genome Reference Consortium human genome (build 38) assembly.

^aThree near-identical arrays on chromosomes 1, 5, and 19. ^bTwo near-identical arrays on chromosomes 5 and 19.

^cAcrocentric near-identical arrays on chromosomes 13, 14, 21, and 22.

Provided online is Table S4 as a PDF. It shows CENP- A^{TAP} and H3.1^{TAP} sequence mapping onto α -satellite DNA in human centromere reference models for each autosome and the X chromosome.

Reference

Miga, K.H., Y. Newton, M. Jain, N. Altemose, H.F. Willard, and W.J. Kent. 2014. Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res. 24:697–707. http://dx.doi.org/10.1101/gr.159624.113