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1. Supplementary Figures

Figure 1:
All heat maps located at: 

https://app.box.com/s/r2wxxfj89obz47q4qxrcdpf9lj4czu26/SuppFig1.heats.pdf

Figure 2:
All string networks located at: 

https://app.box.com/s/r2wxxfj89obz47q4qxrcdpf9lj4czu26/SuppFig2.stringnetworks.pdf
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Figure 3:
The rank biased overlap can be used to identify equivalent groups from different runs (to 

within some tolerance) Run results can be aggregated by declaring groups equal if their 

RBO exceeds some threshold and then retaining only the group with highest TC from among 

a set of equivalent groups. Reproducibility between runs was measured using the rank-

biased overlap (after excluding very large groups). The Venn diagrams show how utilizing a 

Bayes shrinkage prior as a smoothing technique increases the fraction of groups that are 

identified as equivalent according to the RBO measure. In both cases, groups with higher TC 

or more likely to appear relatively unchanged across runs.
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Figure 4:
Randomization test of algorithm. The plot shows typical CorEx group Total Correlation 

values for the TCGA gene expression matrix and the same matrix with values randomly 

permuted.
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Figure 5: Supplementary survival curves
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Figure 6: Supplementary combination survival curves

Figure 7:
Comparison of significance of stratifying patients to predict survival. While the PCA and 

CorEx factors can yield comparable survival associations, the CorEx factors are more 

enriched for protein-protein interactions. The first PCA component accounts for only 1.6 

percent of the total sample variance, while the 13 principal components for which p<.1 

account for a total of 5% together.
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Figure 8:
Heat maps for factors highlighted in Figure 9 in the main text. Expression values are 

intrasample percentile values for each gene. Factors were learned using the same structure 

as for the tumors alone.

2. Supplementary Text
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(1)

Given the variability between runs of CorEx in such a high dimensional space, some way 

to compare and reconcile the results of multiple runs is needed. We have found that 

comparison of the gene groupings using the rank-biased overlap (RBO) of [1]  can be 

used to draw intuitively satisfying correspondences. The RBO is calculated as a single 

number that describes the similarity between two ranked lists. It is very flexible and has 

appealing asymptotic properties. It is possible to usefully aggregate results from various 

runs by declaring any two groups that exceed a threshold RBO to be equivalent. When 

this is the case, the group with greater TC is retained.

3. Supplementary Methods
3.1. Estimation of parameters
3.1.1. Bayesian shrinkage estimates for the marginals

The remaining details of the learning scheme concern the estimation of parameters in 

terms of our samples of data x, and the current estimate of probabilistic labels, p(Y  = 

y |X = x). First of all, as we mentioned, p(X  = x |Y  = c) is estimated as a normal with 

mean μ  and variance, σ . Let x  denote the l-th sample of data. Then an empirical 

estimate for μ, would be the following.

      

We could simply use this estimate and the corresponding one for variance. However, if 

there are a small number of samples with label Y  = c, this could become quite noisy. 

Instead, we consider a Bayesian estimate based on James-Stein type shrinkage 

estimators [2,3]  . We take as our Bayesian prior the hypothesis that the mean is μ  = 

1/N∑ x .

j

j i i j

i, j, c i, j, c
l

j

i
0

i i
l

8



(2)

(3)

(4)

(5)

A Bayesian estimate for the mean of a normal distribution has a simple form.

      

The main question is how to set the value of the ``shrinkage parameter'', λ. The idea 

behind shrinkage estimators is to analytically estimate the value for λ to be the one with 

the minimum risk. We derive our estimate here since the setting differs slightly from 

previous attempts [2,3]  .

For simplicity, we drop the subscripts and assume the true distribution has mean, μ, the 

prior is μ , and the empirical estimate is , and that the standard deviation is fixed and 

known σ. Let p(x; μ, σ) be a normal distribution parametrized by μ, σ. The risk, R is 

defined as the KL divergence between the true distribution and the estimated one.

      

We set λ to be the one that minimizes the risk by taking the derivative and solving as 

usual. It turns out that this leads to the following expression.

      

We have z  = σ /N and we recognize this is just the standard error of the mean. Rather 

than estimate that, we use a shuffle test to estimate how far we expect  to be from μ  

under the null hypothesis, and we call this . For some random permutation of the 

samples, π, we have the following.
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Then we take an expectation over several shuffles,  . For 

``agressive'' shrinkage, instead of shuffle x , we sample with replacement from the 

empirical distribution.

3.1.2. Setting the weights

The form of the weights, α  are directly determined by the optimization which requires 

that α  = I(X ; Y |Y , …, Y )/I(X ; Y ), for some ordering of the Y . We use a more 

tractable estimate for this weight [4]  .

For each sample, x , we first calculate the most likely label for each latent factor, 

 . We define the prediction of Y  based on X  for 

sample l as  . We define, C  = 1 if 

 and 0 otherwise. C  shows whether X  correctly predicts Y  for sample l. 

Next, for each i, we sort j's in decreasing order of C  ≡ ∑ C . Then we set α  to be the 

fraction of samples for which C  = 1 and C  = 0, ∀k < j. In other words, it is the 

fraction of times that X  correctly and uniquely predicted Y .

3.1.3. Training higher layers of the hierarchy
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(6)

At the first layer of the hierarchy, the input variables are continuous and are latent 

factors are discrete. The corresponding training procedure was described in the main 

text. Now for each patient, l, and for each latent factor,  , we have a distribution 

. We construct a new data matrix consisting of the most probable value for 

each latent factor and each patient as  This data matrix 

will now be treated as the input data, X, and used to train a new CorEx representation 

at the next layer. Note, however, that at this next layer, both the inputs and the latent 

factors are discrete. This leads to a simplification of the update equations presented in 

the main text. In particular, the marginal distribution, , was previously 

parametrized as a normal distribution. Now, however, we can directly estimate this 

marginal from the contingency table of counts of different discrete events.

      

The symbol, , represents the discrete delta function and is 1 if its subscripts match and 

0 otherwise. The update equation for  and the other details of the 

optimization are unchanged.

3.1.4. PCA Survival Analysis

Principal component coordinates were used analogously to Corex continuous factor 

labels. The sample population was stratified approximately into thirds relative to the 

coordinate values for each principal component. All survival analyses (e.g. for 

Supplementary Figure 7) then proceeded as was done for the CorEx factors.
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