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Text 29 

Drought determination by SPI/SRI/SSI. SPI1, SRI2, and SSI3 are three 30 
standardized measurements for precipitation, runoff, and soil moisture deficit. For 31 
simplification and spatial comparability, SPI, SRI, and SSI are widely used to 32 
characterize droughts in India as well as world wide4-7. For example, SPI 33 
quantifies observed precipitation as a standardized departure from a selected 34 
probability distribution function that models the raw precipitation data. The raw 35 
precipitation data are typically fitted to a gamma distribution, and then 36 
transformed to a normal distribution. The SPI values can be interpreted as the 37 
number of standard deviations by which the observed anomaly deviates from the 38 
long-term mean. In the calculation of SRI and SSI, the standardization procedure 39 
has been rigorously tested by the Kolmogorov–Smirnov test, assuming normal, 40 
log–normal, poisson, exponential, rayleigh, and gamma distribution for runoff and 41 
soil moisture at the alpha level of 0.05. Total 62 grids were included in the test 42 
and the sample size for each grid is 396. It was found that about 73% runoff raw 43 
data was suitable to be represented by the gamma distribution, while none of grid 44 
was suitable to be represented by normal or log-normal distribution. Therefore, 45 
we adopted the gamma function to compute SRI. McKee at al.1 suggested that 46 
the gamma distribution can also be applied to other variables relevant to drought, 47 
e.g., streamflow or reservoir contents. Shukla and Wood2 also found gamma 48 
distribution may perform better for low runoff values. In terms of the SSI, the 49 
current practice is to adopt a normal8 or non-parametric empirical distribution 50 
approach9. However, no soil moisture grid was suitable to be represented by any 51 
of the above functions in this study area. This result is probably likely due to the 52 
extensive soil moisture management in the study area (i.e., irrigation). Due to the 53 
highly correlated relationship with runoff, we also adopted the gamma distribution 54 
here in calculating SSI. However, we believe additional research is needed to 55 
find a more appropriate distribution to fit the soil moisture values in this 56 
intensively irrigated area. 57 

Index values with corresponding severities are shown in Supplementary 58 
Table S9. Categories D1-D4 were judged as drought events. These thresholds 59 
were adopted from the United States Drought Monitor (USDM) described in 60 
Svoboda et al.10. This drought category uses a percentile approach to classify the 61 
severity, as shown in the Table S9. This approach also enables the user to easily 62 
interpret the probability of one drought event in terms of the number of events per 63 
100 years. For example, D0 (abnormally dry) conditions indicate a 21% to 31% 64 
chance of occurring in any given year at a given location, while D1 (moderate 65 
drought) events occur 11% to 20% of the time10. It is noted that this classification 66 
system is slightly different from the World Meteorological Organization (WMO) 67 
recommended system by McKee et al.1. Both systems use the probability of 68 
occurrence to determine drought severity. But the adopted system can provide 69 
five finer drought categories, compared with the three categories in McKee et al.1 70 
In addition, the threshold of 0.35 in VCI also accords with the original study by 71 
Kogan11. 72 
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Computation of VCI. VCI is a pixel-wise normalization of NDVI that is useful for 73 
making relative assessment of changes in the NDVI signal by filtering out the 74 
contribution of local geographic features to the spatial variability of NDVI11. The 75 
VCI is computed as equation (1). 76 

                                                      min

max min

i
i

NDVI NDVI
VCI

NDVI NDVI





                                                  (1) 77 

where iNDVI   is the smoothed weekly NDVI at each pixel, and maxNDVI  and 78 

minNDVI are the absolute maximum and minimum NDVI of each pixel, 79 

respectively. The VCI smoothes out non-uniformity in the AVHRR data and it is 80 
an indicator of how weather conditions have influenced the relative vigor of the 81 
vegetation with respect to the ecologically defined limits12. The VCI has been 82 
widely evaluated and applied, and was found to be suitable for agricultural 83 
drought13-15.  84 

The sensitivity analysis used here is similar to that of Anderson et al.16: the 85 

absolute sensitivity ( VS ) of any of the output variable (VCI) to ±X uncertainty in 86 

NDVI was assigned as equation (2). 87 

                                                        = ( ) /V X X xrS V V V                                                         (2) 88 

Where XV   and XV   are the estimated VCI variables when the value NDVI are 89 

increased or decreased by X, and xrV  is the value of the estimated VCI variable 90 

at actual NDVI. Based on this sensitivity analysis, it was found the uncertainty of 91 
NDVI has no impact on the VCI value. Therefore, VCI was relatively immune to 92 
the uncertainty of absolute NDVI values. 93 

Drought Evolution Mechanism. Generally speaking, the meteorological drought 94 
is often the first kind of drought to occur. A deficit of precipitation during a certain 95 
period of time leads to the shortage of water on the land surface. Along with the 96 
high temperature and wind, potential evapotranspiration increases to consume 97 
more water. When the water balance in the soil disrupts, water on the surface or 98 
subsurface (i.e., streamflow, reservoir, and groundwater) can be transferred into 99 
the soil by irrigation system. Therefore, although the soil moisture deficit occurred 100 
earlier than hydrological water deficit from the theoretical perspective17,18, their 101 
occurrence order is usually reversed in irrigation agriculture. This study selected 102 
one of the main wheat production regions in India. The irrigation in this area is 103 
pervasive after the Green Revolution took place in the 1960s. Therefore, in this 104 
study, the soil moisture drought is believed to occur after hydrological drought. 105 
After the soil moisture drought, vegetation is under water-stress. Though it has 106 
limited adaptive functions to decrease the water consumption (i.e., stoma 107 
closure), plant can have permanent damages after a period of water-stress 108 
wilting, which can then result in yield loss. This is the final drought to occur: a 109 
vegetation drought. The above analysis is the theoretical support of this study to 110 
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investigate these four kinds of droughts at the same time, which is also shown in 111 
Supplementary Fig. S7. We acknowledge that the above drought evolution 112 
sequence and time interval are varied in different locations. This also 113 
demonstrates the necessity to conduct a comprehensive and local-scale drought 114 
study as a system to gain knowledge to support drought mitigation. 115 

Cross-correlation for drought evolution. Cross-correlation (or lagged 116 
correlation) refers to the correlation between two time series shifted in time 117 

relative to one another. For two time series, data of 1 2{ , ,..., }nx x x  and 1 2{ , ,..., }ny y y , 118 

the cross-correlation coefficient ( )xyr k  at lag k is estimated by: 119 
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It is obvious that if the time lag k is equal to 0, the cross-correlation became 123 
the commonly used Pearson correlation. When the value of k changes, the 124 

correlation coefficient ( )xyr k  changes accordingly. When the correlation 125 

coefficient reached the maximum value, the time lag k is regarded as the 126 
statistical time lag that existed between two variables over time. Shorter time lags 127 
indicate faster drought evolution processes between two kinds of drought, while 128 
longer time lags represent long-term evolution processes. When responding to 129 
drought, it is often useful to know how fast the meteorological drought will evolve 130 
into a hydrological or vegetation drought. The sample of correlation uses the total 131 
396 monthly drought data. 132 

Mann-Kendall test with Sen’s slope for drought trend analysis. The Mann-133 
Kendall test is based on the correlation between the ranks of a time series and 134 

their time order. For a time series 1 2{ , ,..., }nX x x x , the test statistic S is given by 135 

                                                       
1

1 1

n n

ij

i j i

S a


  

                                                                           (6) 136 

where 137 
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                                         (7) 138 

where iR  and jR  are the ranks of observations ix  and jx  of the time series, 139 

respectively. As can be seen from equation (6), the test statistic depends only on 140 
the rank of the observations, rather than their actual values, resulting in a 141 
distribution-free test statistic. Therefore, the Mann–Kendall trend test is not 142 
affected by the actual distribution of the data and is less sensitive to outliers. On 143 
the other hand, parametric trend tests, although more powerful, require the data 144 
to be normally distributed and are more sensitive to outliers. Therefore, the 145 
Mann–Kendall test, as well as other non-parametric trend tests, prove more 146 
suitable for detecting trends in a hydrological time series which are usually 147 
skewed and may be contaminated with outliers.  148 

Under the assumption that the data are independent and identically 149 
distributed, the mean and variance of the S statistic in equation (6) are given by19 150 
                                                               ( ) 0E S                                                                           (8) 151 

                                               0 ( ) ( 1)(2 5) /18V S n n n                                                             (9) 152 

where n is the number of observations. The existence of tied ranks (equal 153 
observations) in the data results in a reduction of the variance of S to become 154 
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where m is the number of groups of tied ranks, each with jt  tied observations. 156 

Kendall19 also showed that the distribution of S tended to normality as the 157 
number of observations becomes larger. The significance of trends can be tested 158 
by comparing the standardized variable Zs in equation (11) with the standard 159 
normal variate at the desired significance level α, where the subtraction or 160 
addition of unity in equation (11) is a continuity correction. 161 
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                                                        (11) 162 

Positive values of Zs indicate increasing trends while negative Zs values 163 
show decreasing trends. In this study, trends were estimated on the different 164 
drought indices (SPI, SRI, SSI, and VCI) to identify statistically significant 165 
changes in different drought forms. If a significant trend is found, the rate of 166 
change can further be calculated using the Sen’s slope estimator20. The Sen’s 167 
method uses a linear model to estimate the slope of the trend, and the variance 168 
of the residuals should be constant in time calculated as: 169 
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
                                                              (12) 170 

where jX  and kX  are data values at times j and k (j >k), respectively. If there is 171 

only one datum in each time period, then N=n(n-1)/2, where n is the number of 172 
time periods. The n values of Qi are ranked from smallest to largest, and the 173 
median of slope or Sen’s slope estimator is computed as: 174 
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+
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n

med n n
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
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

                                                  (13) 175 

The medQ  sign reflects data trend, while its value indicates the steepness of the 176 

trend. This estimator can be computed efficiently, and is insensitive to outliers. It 177 
can be significantly more accurate than non-robust simple linear regression for 178 
skewed and heteroskedastic data, and competes well against non-robust least 179 
squares even for normally distributed data in terms of statistical power. 180 

Yield Anomalies Index (YAI) calculation. The Yield Anomalies Index (YAI) for 181 
every year was calculated using the following formula: 182 

                                                            ( ) /YAI Y                                                             (14) 183 

where Y is the crop yield in one certain year, μ is the average yield during a long 184 
term, and σ is the standard deviation of long-term yield. 185 
 186 
 187 
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Figure S1. Mean (a) SPI-1, (b) SRI-1, (c) SSI-1, and (d) VCI in the study area for 188 
every month from 1981 to 2013 to determine meteorological, hydrological, soil 189 
moisture, and vegetation drought, respectively. 190 

 191 
 192 
 193 
 194 
 195 
 196 
 197 
 198 
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Figure S2. Linear regression of mean areal extent percentage of (a) 199 
meteorological drought, (b) hydrological drought, (c) soil moisture drought, and (d) 200 
vegetation drought from 1981-2013.  201 

 202 
 203 
 204 
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 206 
 207 
 208 
 209 
 210 
 211 
 212 
 213 
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 216 
 217 
 218 
 219 
 220 
 221 
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Figure S3. Latitudinal variations for the temporal extent of droughts in each 222 
triennium for the seven wheat growth months during 1981–2013. For the middle 223 
panel, x and y axis values are the same for the left and right panels. The 224 
latitudinal variations data was calculated and color rendered by Matlab R2014b 225 
(Version 8.4, URL: http://www.mathworks.com) [Software] with the method 226 
described in the next section. Finally all these maps were organized and labeled 227 
in the Microsoft Visio Professional 2013 (Version 15.0.4569.1506, URL: 228 
https://products.office.com/en-us/visio) [Software]. 229 

 230 
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Figure S4. Scattering plot between YAI and the final PADI value for September 231 
2012 in twelve states of the Midwest. Based on the Kolmogorov–Smirnov test 232 
(K–S test) at an alpha level of 0.05, YAI is not normally distributed. Therefore, 233 
Spearman’s rank correlation value (r) and linear regression line are given. 234 
Correlation coefficient (r) with spark (*) indicates p < 0.05 in the significance test. 235 
From (a) to (f), these p values are 0.03, 0.00, 0.01, 0.01, 0.00, and 0.00. 236 

 237 
 238 
 239 
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Figure S5. Study area with monthly mean precipitation, temperature, land cover, 240 
and relative location in India. It was generated by ArcGIS Desktop (Version 241 
10.2.3348, URL: http://www.esri.com) [Software]. Two map layers were used in 242 
this figure, including administrative boundary layer and land cover layer.  243 
Administrative boundary and land cover data were obtained from DIVA-GIS (URL: 244 
http://www.diva-gis.org/Data). DIVA-GIS provides free spatial data for 245 
geographical information system. Precipitation and temperature data were 246 
retrieved from Yr, which is a joint service by the Norwegian Meteorological 247 
Institute and the Norwegian Broadcasting Corporation (URL: 248 
https://www.yr.no/place/India/). These data and products are licensed under 249 
Norwegian license for public data (NLOD; http://data.norge.no/nlod/en/1.0) and 250 
Creative Commons Attribution 3.0 Norway 251 
(https://creativecommons.org/licenses/by/3.0/no/), and they are freely available to 252 
the public for use, distribution and processing. 253 

 254 
 255 
 256 
 257 
 258 
 259 
 260 
 261 
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Figure S6. Total wheat production, area, and mean yield in the study area from 262 
1980 to 2014. The red line is the linear fitting trend of wheat yield. 263 
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Figure S7. Flowchart of drought evolution mechanism from meteorological, to 296 
hydrological, to soil moisture, and to vegetation drought.  297 
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Table S1. Occurrence of meteorological droughts with moderate or higher 311 
severities estimated using domain-averaged drought indices for every month in 312 
the crop periods. Years when at least three types of droughts occurred are 313 
marked in bold. 314 

Stage Emergence Heading Anthesis Maturity 

Year October November December January February March April 

1985     D1   

1990    D1    

1997     D1   

1998        

2004     D1 D1  

2006    D1 D1   

2007    D1    

2009    D1    

2010    D1    

2011    D1    

 315 
 316 
 317 
 318 
 319 
 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
 330 
 331 
 332 
 333 
 334 
 335 
 336 
 337 
 338 
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Table S2. Occurrence of hydrological droughts with moderate or higher 339 
severities estimated using domain-averaged drought indices for every month in 340 
the crop periods. Years when at least three types of droughts occurred are 341 
marked in bold. 342 

Stage Emergence Heading Anthesis Maturity 

Year October November December January February March April 

1981 D1       

1983  D3      

1984      D1  

1985  D1   D1 D1  

1987  D1      

1989       D1 

1990    D4    

1991 D2    D1  D1 

1992   D1    D1 

1993 D1  D3     

1994   D1   D1  

1996  D2 D1     

1997        

1998   D3     

1999      D1 D2 

2000 D3       

2001   D1  D1   

2004     D1 D1  

2006    D3 D4   

2007    D3    

2010       D1 

 343 
 344 
 345 
 346 
 347 
 348 
 349 
 350 
 351 
 352 
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Table S3. Occurrence of soil moisture droughts with moderate or higher 353 
severities estimated using domain-averaged drought indices for every month in 354 
the crop periods. Years when at least three types of droughts occurred are 355 
marked in bold. 356 

Stage Emergence Heading Anthesis Maturity 

Year October November December January February March April 

1985     D1 D1  

1986 D1 D1      

1989 D1 D1 D1     

1990    D1    

1991     D1   

1992        

1993    D1 D1   

1997     D1   

1999       D1 

2000  D1 D1 D1    

2001     D1 D1  

2006     D1   

 357 
 358 
 359 
 360 
 361 
 362 
 363 
 364 
 365 
 366 
 367 
 368 
 369 
 370 
 371 
 372 
 373 
 374 
 375 
 376 
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Table S4. Occurrence of vegetation droughts with moderate or higher severities 377 
estimated using domain-averaged drought indices for every month in the crop 378 
periods. Years when at least three types of droughts occurred are marked in bold. 379 

Stage Emergence Heading  Anthesis Maturity 

Year October November December January February March April 

1982 D1    D1   

1983   D1 D3 D1 D1  

1984 D2 D1   D1   

1985     D2 D3 D1 

1987      D1  

1988     D1 D1 D1 

1993 D1 D2 D2  D1 D1  

1994    D2    

1999   D1     

2000 D2       

2001 D1       

2004       D1 

2006       D1 

2009      D1 D1 

2010       D2 

2011  D2 D1     

 380 
 381 
 382 
 383 
 384 
 385 
 386 
 387 
 388 
 389 
 390 
 391 
 392 
 393 
 394 
 395 
 396 
 397 
 398 
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Table S5. Concurrent meteorological, hydrological, soil moisture, and vegetation 399 
droughts with moderate or higher severities estimated using domain-averaged 400 
drought indices for every month in the crop periods. They are represented by M, 401 
H, S, and V, respectively. The symbol of “+” represents the concurrent situation. 402 

Stage Emergence Heading  Anthesis Maturity 

Year October November December January February March April 

1985     M+H+S+V H+S+V  

1990    M+H+S    

1991     H+S   

1993 H+V  H+V  S+V   

1997     M+S   

1999       H+S 

2000 H+V       

2001     H+S   

2004     M+H M+H  

2006    M+H M+H+S   

2007    M+H    

2010       H+V 

 403 
 404 
 405 
 406 
 407 
 408 
 409 
 410 
 411 
 412 
 413 
 414 
 415 
 416 
 417 
 418 
 419 
 420 
 421 
 422 
 423 
 424 
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Table S6. Mean duration of meteorological, hydrological, soil moisture, and 425 
vegetation drought time determined by domain-averaged SPI, SRI, SSI, and VCI 426 
during 1981-1989, 1990-1999, and 2000-2013, respectively. Ave. is short for 427 
average duration. Ran. is short for duration range. Std. is short for standard 428 
deviation. Sample size of each decade is 9, 10, and 10, respectively. Sample 429 
size (n) for meteorological drought in each decade is 2, 5, and 6. Sample size (n) 430 
for hydrological drought in each decade is 8, 9, and 7. Sample size (n) for soil 431 
moisture drought in each decade is 5, 5, and 6. Sample size (n) for vegetation 432 
drought in each decade is 6, 3, and 7. Units are in months. 433 

Decade 

Meteorological 
Drought 

Hydrological 
Drought 

Soil Moisture 
Drought 

Vegetation Drought 

Ave. Ran. Std. Ave. Ran. Std. Ave. Ran. Std. Ave. Ran. Std. 

1981-
1989 

1 1-1 0 1.2 1-2 0.4 2.8 1-6 1.9 1.9 1-3 0.7 

1990-
1999 

1 1-1 0 1.2 1-2 0.4 1.3 1-2 0.4 1.7 1-3 1.2 

2000-
2009 

1.2 1-1.5 0.3 1.1 1-1.5 0.2 1.4 1-2 0.5 1.3 1-3 0.8 

 434 
 435 
 436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 
 455 
 456 
 457 
 458 
 459 
 460 
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Table S7. Frequency of meteorological, hydrological, soil moisture, and 461 
vegetation drought time determined by domain-averaged SPI, SRI, SSI, and VCI 462 
during 1981-1989, 1990-1999, and 2000-2013, respectively. Units are the 463 
number of droughts per decade. 464 

Decades 
Meteorological 

Drought 

Hydrological 

Drought 

Soil Moisture 

Drought 

Vegetation 

Drought 

1981-1989 2 13 5 20 

1990-1999 5 21 10 8 

2000-2009 11 11 10 9 

 465 
 466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 
 485 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
 497 
 498 
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Table S8.  Mean areal extent of meteorological, hydrological, soil moisture, and 499 
vegetation drought time determined by pixel level of SPI, SRI, SSI, and VCI 500 
during 1981-1989, 1990-1999, and 2000-2013, respectively. Ave. is short for 501 
average areal extent. Ran. is short for areal extent range. Std. is short for 502 
standard deviation. Sample size (n) in each decade is 9, 10, and 10, respectively. 503 
Unit is percentage (%). 504 

Decades 

Meteorological 
Drought 

Hydrological 
Drought 

Soil Moisture 
Drought 

Vegetation 
Drought 

Ave. Ran. Std. Ave. Ran. Std. Ave. Ran. Std. Ave. Ran. 
Std

. 

1981-
1989 

12.7 
9.0-
19.8 

3.5 21.4 
7.4-
32.2 

9.7 24.3 
3.4-
45.0 

13.0 32.9 
19.3-
41.2 

8.5 

1990-
1999 

13.9 
7.8-
18.4 

3.6 24.3 
14.0-
39.5 

9.5 20.7 
5.8-
33.8 

10.9 18.7 
6.1-
39.7 

9.4 

2000-
2009 

18.0 
9.9-
26.8 

5.6 18.9 
9.6-
30.0 

6.9 19.9 
6.5-
36.6 

9.7 23.2 
17.9-
32.1 

3.8 

 505 
 506 
 507 
 508 
 509 
 510 
 511 
 512 
 513 
 514 
 515 
 516 
 517 
 518 
 519 
 520 
 521 
 522 
 523 
 524 
 525 
 526 
 527 
 528 
 529 
 530 
 531 
 532 
 533 
 534 
 535 
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Table S9. Ranges of drought indices (SPI, SRI, SSI, and VCI) for various 536 
drought severities and categories as described in Svoboda et al.10. 537 

Drought Severity 
SPI, SRI,  

and SSI 
VCI Category 

Percentile 
Chance 

Abnormally dry -0.50 to -0.79 0.45 to 0.36 D0 20 to 30 

Moderate drought -0.80 to -1.29 0.26 to 0.35 D1 10 to 20 

Severe drought -1.30 to -1.59 0.25 to 0.16 D2 5 to 10 

Extreme drought -1.60 to -1.99 0.15 to 0.06 D3 2 to 5 

Exceptional drought -2.00 or less 0.00 to 0.05 D4 0 to 2 

 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 
 547 
 548 
 549 
 550 
 551 
 552 
 553 
 554 
 555 
 556 
 557 
 558 
 559 
 560 
 561 
 562 
 563 
 564 
 565 
 566 
 567 
 568 
 569 
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Table S10. Phenological stages for winter wheat crops (source: Steduto et al.21; 570 
Water Development and Management Unit22).  571 

Stage Description Date 
Yield response 
factor 

Emergence Germination to emergence October to November 0.2 

Heading 
From emergence to double 
ridge 

December to January 0.6 

Anthesis From double ridge to anthesis February to March 0.5 

Maturity 
Includes the grainfilling period, 
from anthesis to maturity 

April - 

 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 
 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
 606 
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