A Palladium-Catalyzed Synthesis of (Hetero)Aryl-Substituted Imidazoles from Imines, Aryl Halides and Carbon Monoxide

Jevgenijs Tjutrins and Bruce A. Arndtsen*

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada

Supporting Information

Table of Contents

I.	General Considerations	S2
II.	Synthetic Procedures	S2
III.	Spectroscopic Data	S 6
IV.	References	S19
V.	NMR Spectra	S20

I. General Considerations

All reactions were carried out under an inert atmosphere in a glovebox or using standard Schlenk techniques, unless otherwise indicated. Research grade carbon monoxide (99.99%) was used as received. All solvents were dried using a solvent purification system and stored in glovebox over activated 4 Å molecular sieves. Deuterated solvents were dried over CaH₂, vacuum transferred and stored over 4 Å molecular sieves. N-alkyl, N-aryl imines, and N-tosyl imines were prepared according to literature procedures.¹⁻⁴ All other reagents were purchased from commercial suppliers and used as received. All ¹H and ¹³C NMR spectra were acquired on 400 and 500 MHz spectrometers. High resolution mass spectra were obtained using a quadrupole-time of flight and an Orbitrap detector by direct infusion in positive ESI mode.

II. Synthetic Procedures

Typical Procedure for Catalyst Screening (Table 1)

In a glovebox, 4-iodotoluene (109 mg, 0.50 mmol), PhC=NBn (20 mg, 0.10 mmol), PhC=NTs (31 mg, 0.12 mmol), EtN^iPr_2 (40 mg, 0.3 mmol), $[Pd(allyl)Cl]_2$ (2 mg, 0.005 mmol), P^tBu₃ (4 mg, 0.02 mmol), and benzyl benzoate internal standard were dissolved in CD₃CN (0.7 mL) and added to a J-Young NMR tube. The tube was removed from the glovebox, frozen in liquid nitrogen, the headspace evacuated, and 4 atm carbon monoxide was condensed into the NMR tube. The reaction was heated at 55 °C and monitored by ¹H NMR spectroscopy. The yield of **1a** (43%) was determined by ¹H NMR analysis relative to the internal standard. Also, monitoring the reaction during the course of catalysis by ¹H and ³¹P NMR shows the generation of the palladium complex (¹Bu₃P)Pd(CO*p*Tol)Cl (³¹P NMR: 73.1 ppm) as the major observable phosphine-containing intermediate, and the formation of (N-benzylbenzamido)(phenyl)methyl 4-methylbenzenesulfinate **5** in 48% yield at the end of catalysis. The results of screening of other ligands, reagents and additives to the reaction are shown in Table S1 below.

Entry	PR ₃	EWG	Yield, %	Entry	PR ₃	EWG	Additive	Yield, %
1	$Pd(P^{t}Bu_{3})_{2}$	Ts	4	10	$Pd(P^tBu_3)_2$	Ts	Bu ₄ NCl	43
2	PPh ₃	Ts	0	11	P^tBu_3	Ts		42
3	PCy ₃	Ts	0	12	$P^{t}Bu_{3}$	SO ₂ C ₆ H ₄ Cl		30
4	$P(o-Tol)_3$	Ts	5	13	P ^t Bu ₃	NS		12
5	DPPE	Ts	0	14	P ^t Bu ₃	Ms		0
6	t _{Bu2} P	Ts	7	15	P^tBu_3	Ts		0
7	Cy ₂ P	Ts	7	16	P^tBu_3	Ts	<i>n</i> -propyl-Br	0
8	PPh ₂ PPh ₂	Ts	0	17	P^tBu_3	Ts	TMSCl	32
9	^{iPr} ^{iPr} ^{iBu} 2P	Ts	8	18	P^tBu_3	Ts		77(75)

Table S1. Catalyst Development for Generation of Aryl-Imidazoles from Aryl Iodides

Typical Procedure for Catalyst Screening with Aryl Bromides (Table 1)

In a glovebox, 4-bromotoluene (68 mg, 0.40 mmol), PhC=NBn (40 mg, 0.20 mmol), PhC=NTs (26 mg, 0.12 mmol), EtN^iPr_2 (40 mg, 0.3 mmol), $Pd(P^tBu_3)_2$ (5 mg, 0.01 mmol), Bu_4NCl (28 mg, 0.1 mmol), P^tBu_3 (4 mg, 0.02 mmol), and benzyl benzoate internal standard were dissolved in MeCN (1 mL) in a vial with a loosely capped screw cap and added to a high pressure reactor. The reactor was removed from the glovebox, and was pressurized with 25 atm carbon monoxide. The reaction was heated at 95 °C for 24 h. The reaction was then cooled to room temperature, carbon monoxide was removed and all volatiles were evaporated in vacuo. The yield of **1a** (73%) was determined by ¹H NMR analysis relative to the internal standard. The results of screening other conditions and additives is provided in Table S2.

Table S2. Catalyst Development for Generation of Aryl-Imidazoles from Aryl Bromides

Me	$-Br + N^{Bn} + Ph^{H}$	Ph H CO (25 atm), 24 h	Ph N Ph N Ph N
Entry	Temp., °C	Additive	Yield, %
1^a	85	-	31%
2	75	$1.0 \text{ eq. } Bu_4NCl$	35%
3	85	1.0 eq. Bu ₄ NCl	36%
4	95	1.0 eq. Bu ₄ NCl	39%

5	95	0.1 eq. Bu ₄ NCl	31%
6	95	0.1 eq. Bu_4NCl 20 mol% P^tBu_3	40%
7^b	95	1.0 eq. Bu ₄ NCl, 20 mol% P ^t Bu ₃	72%
8 ^c	95	1.0 eq. Bu_4NCl , 20 mol% P^tBu_3	65%
9	95	1.0 eq. Bu_4NCl , 20 mol% P^tBu_3	73%

^{*a*} [Pd(allyl)Cl]₂/P^tBu₃ used as catalyst. ^{*b*} 10 eq. of *p*-bromotoluene. ^{*c*} CO pressure 4 atm.

Typical Synthesis of Imidazoles (Tables 2 and 3)

In a glovebox, 4-iodotoluene (327 mg, 1.50 mmol), PhC=NBn (98 mg, 1.00 mmol), Ph=NTs (130 mg, 0.50 mmol), NEt^{*i*}Pr₂ (194 mg, 1.50 mmol), [Pd(allyl)Cl]₂ (9 mg, 0.025 mmol), P'Bu₃ (20 mg, 0.10 mmol) were combined in acetonitrile (2 mL) and added to a 50 mL sealable pressure vessel. The vessel was closed, removed from the glovebox, and pressurized with 4 atm of carbon monoxide. The reaction was heated at 55 °C for 24 h. After the reaction was cooled to room temperature, all volatiles were removed in vacuo. The crude product was purified by column chromatography (silica gel, gradient hexane / ethyl acetate 4% to 20% with 1 % Et₃N additive) affording pure imidazole **1a** as a pale yellow solid in 75% yield (151 mg).

For the synthesis of **1aa**, the reaction was performed as above without the initial addition of the *N*-tosyl imine. After the reaction was complete, the CO was removed, the pressure vessel was brought back into glovebox and freshly synthesized (propyl)HC=NTs³ (225 mg, 1.00 mmol) was added to the reaction mixture. The reaction heated at 55 °C for 5 h, then cooled to room temperature, and all volatiles were removed in vacuo. The crude product was purified by column chromatography (silica gel, gradient hexane / ethyl acetate 4% to 20% with 1 % Et₃N additive) affording imidazole **1aa** as a colorless oil in 81% yield (155 mg).

Procedure for the Synthesis of Imidazoles from Aryl Bromides

In a glovebox, 4-bromotoluene (342 mg, 2.0 mmol), Ph=NBn (195 mg, 1.0 mmol), PhC=NTs (130 mg, 0.5 mmol), EtN^iPr_2 (193 mg, 1.5 mmol), $[Pd(P^tBu_3)_2$ (12 mg, 0.025 mmol), P^tBu_3 (10 mg, 0.1 mmol), and benzyl benzoate internal standard were combined in MeCN (5.0 mL) and

added to a high pressure reactor. The reactor was removed from the glovebox, and was pressurized with 25 atm carbon monoxide. The reaction was heated at 95 °C for 24 h. Afterwards the reaction was cooled to room temperature, carbon monoxide was removed and all volatiles were evaporated in vacuo. The crude product was purified by column chromatography (silica gel, gradient hexane / ethyl acetate 4% to 20% with 1 % Et₃N additive) affording pure imidazole **1a** as a pale yellow solid in 70% yield (140.0 mg).

Procedure for the Synthesis of 4-(5-(6-methoxynaphthalen-2-yl)-2-(4-(methylthio)phenyl)-1Himidazol-4-yl)pyridine **6**.

In a glovebox, 4-iodothioanisole (1000 mg, 4.0 mmol), N-benzyl-1-(6-methoxynaphthalen-2yl)methanimine (275 mg, 1.00 mmol), NEtⁱPr₂ (194 mg, 1.50 mmol), Pd(P^tBu₃) ₂ (12 mg, 0.05 mmol), and Bu₄NCl (278 mg, 1.0 mmol) were combined in acetonitrile (15 mL) and added to a 50 mL sealable pressure vessel. The vessel was closed, removed from the glovebox, and pressurized with 4 atm of carbon monoxide. The reaction was heated at 40°C for 24 h. After the reaction was cooled to room temperature, the CO was removed on a Schlenk line, and the vessel brought into glovebox. 4-Methyl-N-(pyridin-4pressure was а ylmethylene)benzenesulfonamide (260 mg, 1.00 mmol) was added to the crude mixture and stirred for 4 h at 40°C. Afterwards all the volatiles were removed in vacuo, and the crude mixture was purified by column chromatography (silica gel, gradient hexane / ethyl acetate 4% to 85% with 1 % Et₃N additive) affording the imidazole as a pale yellow solid in 80% yield (413 mg).

Based on literature procedure,⁵ this product, [4-(1-benzyl-5-(6-methoxynaphthalen-2-yl)-2-(4- (methylthio)phenyl)-1H-imidazol-4-yl)pyridine], (102 mg, 0.2 mmol), DMSO (156 mg, 2.0 mmol) and potassium tert-butoxide (1.4 mL, 1 mol/L in THF) were combined in a flame-dried

flask. The reaction was stirred and oxygen was bubbled through the solution for 1h. Upon completion, the reaction mixture was quenched with aqueous sodium carbonate solution. The THF was removed in vacuo, and the product was extracted three times with EtOAc. The organics were combined, dried and concentrated in vacuo. The crude mixture was purified by column chromatography (silica gel, gradient hexane / ethyl acetate 30% to 85%) affording the imidazole. An ethyl acetate solution of the product was washed with a saturated solution of Na_2CO_3 , and then dried in vacuo to yield **6** as a pale brown solid in 80% yield (67 mg).

Reaction of N-Acyliminium Salt with Sodium p-Toluenesulfinate

Ph(H)C=NBn (20 mg, 0.10 mmol), benzoyl chloride (21 mg, 0.15 mmol), and benzyl benzoate internal standard were dissolved in 0.7 mL of CD₃CN and stirred at room temperature for 10 min. To this solution was added sodium p-toluenesulfinate (27 mg, 0.15 mmol), and the obtained mixture was heated at 55 °C and reaction was monitored by in situ ¹H NMR. ¹H NMR shows generation of (N-benzylbenzamido)(phenyl)methyl 4-methylbenzenesulfinate in 52% yield after 18 h,⁶ and N-benzylbenzamide in 6% yield compared to internal standard.

III. Spectroscopic Data

1-Benzyl-4,5-diphenyl-2-(p-tolyl)-1H-imidazole 1a. Pale yellow solid, 151 mg, 75% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 7.2 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H), 7.34 (m, 3H), 7.27 – 7.21 (m, 9H), 7.17 (t, J = 7.3 Hz, 1H), 6.88 – 6.82 (m, 2H), 5.13 (s, 2H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.2, 138.8, 138.0, 137.7, 134.6, 131.15, 131.10, 129.9, 129.3, 129.0, 128.8*, 128.6,

128.08, 128.05, 127.3, 126.8, 126.3, 126.0, 48.3, 21.4. HRMS. Calculated for C₂₉H₂₅N₂ (M+H⁺): 401.2012, found: 401.1994.

*Selective HSQC NMR experiment indicates that signal at δ 128.8 ppm corresponds to two carbons.

1-Benzyl-5-(4-fluorophenyl)-4-phenyl-2-(p-tolyl)-1H-imidazole 1b. White solid, 159 mg, 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 8.2 Hz,

4H), 7.27 - 7.21 (m, 7H), 7.20 - 7.16 (m, 3H), 7.02 (t, J = 8.7 Hz, 2H), 6.84 (dd, J = 7.3, 1.9 Hz, 2H), 5.11 (s, 2H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.84 (d, J = 248.8 Hz), 148.4, 139.0, 138.3, 137.5, 134.4, 133.0 (d, J = 8.3 Hz), 129.3, 129.1 (d, J = 59.9 Hz), 128.9, 128.7, 128.1, 127.9, 127.5, 127.13 (d, J = 3.4 Hz), 126.8, 126.5, 126.0, 115.9 (d, J = 21.5 Hz), 48.3, 21.4. HRMS. Calculated for C₂₉H₂₄N₂F (M+H⁺): 419.1918, found: 419.1918.

5-(Benzo[d][1,3]dioxol-5-yl)-1-benzyl-4-phenyl-2-(p-tolyl)-1H-imidazole 1c. Pale yellow solid, 182 mg, 82% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 7.5 Hz, 2H), 7.57 (d, J = 7.8 Hz, 2H), 7.22 (m, 8H), 6.87 (d, J = 6.6 Hz, 2H), 6.78 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 6.67 (s, 1H), 5.99 (s, 2H), 5.13 (s, 2H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.0, 147.9, 147.9,

138.8, 138.0, 137.7, 134.5, 129.4, 129.3, 128.9, 128.6, 128.1, 128.0, 127.4, 126.7, 126.3, 126.0, 125.1, 124.4, 111.3, 108.7, 101.3, 48.2, 21.4. HRMS. Calculated for $C_{30}H_{25}N_2O_2$ (M+H⁺): 445.1911, found: 445.1913.

1-Benzyl-5-(4-(methylthio)phenyl)-4-phenyl-2-(p-tolyl)-1H-imidazole Colorless oil 165 mg, 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 7.2 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H), 7.27 – 7.21 (m, 7H), 7.20 – 7.17 (m, 3H), 7.12 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 7.8 Hz, 2H), 5.13 (s, 2H), 2.51 (s, 3H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.0, 139.7, 137.3, 131.9, 131.3, 129.4,

129.1, 128.7, 128.2, 128.2, 127.7, 127.5, 127.2, 127.1, 127.0, 126.7, 126.2, 126.0, 124.0, 48.4, 21.4, 15.2. HRMS. Calculated for $C_{30}H_{27}N_2S$ (M+H⁺): 447.1889, found: 447.1893.

1-(4-Methoxybenzyl)-4,5-diphenyl-2-(p-tolyl)-1H-imidazole 1e. Pale yellow solid, 170 mg, 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (t, J = 7.7 Hz, 4H), 7.40 – 7.32 (m, 3H), 7.30 – 7.21 (m, 6H), 7.17 (d, J = 7.3 Hz, 1H), 6.80 – 6.69 (m, 4H), 5.07 (s, 2H), 3.77 (s, 3H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.8, 148.1, 138.8, 137.9, 134.5, 131.2, 131.1, 129.9, 129.7, 129.3,

129.0, 128.8, 128.6, 128.1, 127.3, 126.8, 126.3, 113.9, 113.7, 55.2, 47.8, 21.4. HRMS. Calculated for $C_{30}H_{27}N_2O$ (M+H⁺): 431.2118, found: 431.2125.

5-(3-Bromophenyl)-1-ethyl-4-phenyl-2-(p-tolyl)-1H-imidazole 1f. Pale yellow solid, 159 mg, 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.89 – 7.57 (m, 4H), 7.54 (d, J = 7.2 Hz, 1H), 7.45 – 7.36 (m, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.25 (dd, J = 8.1, 6.8 Hz, 3H), 7.18 (t, J = 7.3 Hz, 0H), 7.05 (t, J = 7.9 Hz, 1H), 4.00 – 3.93 (m, 2H), 2.45 (s, 3H), 1.05 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz,

Chloroform-*d*) δ 148.1, 139.2, 136.7, 133.7, 133.6, 133.3, 132.1, 131.9, 130.7, 130.6, 129.9, 129.8, 129.7, 129.6, 129.4, 129.4, 129.4, 129.1, 129.0, 128.2, 128.1, 128.0, 127.5, 126.9, 126.6, 125.1, 123.0, 122.9, 122.5, 39.8, 21.4, 16.3. Calculated for C₂₄H₂₂N₂Br (M+H⁺): 417.0961, found: 417.0963.

5-(4-Methoxyphenyl)-4-phenyl-1-((tetrahydrofuran-2-yl)methyl)-2-(p-tolyl)- 1H-imidazole 1g. White solid, 168 mg, 79% yield. ¹H NMR (500 MHz, CDCl₃). δ 7.64 (d, J = 8.1 Hz, 2H), 7.57 (d, J = 7.0 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 7.32 -7.26 (m, 2H), 7.21 (dd, J = 8.4, 6.9 Hz, 2H), 7.13 (t, J = 7.2 Hz, 1H), 7.02 (d, J = 8.7 Hz, 2H), 4.02 (dd, J = 14.3, 7.5 Hz, 2H), 3.89 (s, 3H), 3.74 (dd, J = 7.4, 5.7 Hz, 1H), 3.60 – 3.35 (m, 2H), 2.43 (s, 3H), 1.80 – 1.47 (m, 2H), 1.26 – 1.14 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.7, 148.1, 138.5, 137.6, 134.9, 132.5, 129.4, 129.3, 129.2, 128.9, 127.9, 126.9, 126.0, 123.6, 114.5, 77.1, 67.7, 55.3, 48.5, 29.0, 25.1, 21.4. HRMS. Calculated for C₂₈H₂₉N₂O₂ (M+H⁺): 425.2224, found: 425.2229.

Ethyl 4-((5-(4-methoxyphenyl)-4-phenyl-2-(p-tolyl)-1H-imidazol-1-yl)methyl) benzoate **1h.** Pale yellow solid, 201 mg, 80% yield. ¹H NMR (500 MHz, CDCl₃). δ 7.93 (d, J = 8.2 Hz, 2H), 7.63 (d, J = 7.3 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.26 – 7.19 (m, 5H), 7.14 (d, J = 8.7 Hz, 2H), 6.93 (d, J = 8.2 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.14 (s, 2H), 4.38 (q, J = 7.2 Hz, 2H), 3.82 (s, 3H), 2.38 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 159.9,

148.0, 142.8, 138.9, 138.0, 134.5, 132.3, 129.9, 129.7, 129.6, 129.3, 128.8, 128.1, 127.9, 126.7, 126.3, 125.9, 122.9, 114.4, 61.0, 55.2, 48.0, 21.3, 14.3. HRMS. Calculated for $C_{33}H_{31}N_2O_3$ (M+H⁺): 503.2329, found: 503.2342.

1-(furan-2-ylmethyl)-4-phenyl-2,5-di-p-tolyl-1H-imidazole 1i. Yellow solid, 140 mg, 69% yield. ¹H NMR (500 MHz, CDCl₃). δ 7.64 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 7.2 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.26 – 7.19 (m, 6H), 7.15 (t, J = 7.3 Hz, 1H), 6.22 (dd, J = 3.2, 1.8 Hz, 1H), 5.71 (d, J = 2.9 Hz, 1H), 5.01 (s, 2H), 2.44 (s, 3H), 2.43 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 150.1, 147.9, 142.1, 138.6,

137.4, 131.0, 129.7, 129.6, 129.3, 129.2, 128.0, 127.9, 126.8, 126.3, 110.4, 108.0, 42.1, 21.4, 21.4. HRMS. Calculated for $C_{28}H_{25}N_2O$ (M+H⁺): 405.1963, found: 405.1973.

1-benzyl-5-(9H-fluoren-2-yl)-4-phenyl-2-(p-tolyl)-1H-imidazole 1j. Pale yellow solid, 185 mg, 76% yield. ¹H NMR (500 MHz, CDCl₃). δ 7.83 (d, J = 7.5 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 7.3 Hz, 2H), 7.64 (d, J = 8.1 Hz, 2H), 7.58 (d, J = 7.5 Hz, 1H), 7.43 (t, J = 7.3 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.30 – 7.20 (m, 8H), 7.17 (t, J = 7.2 Hz, 1H), 6.87 (dd, J = 6.5, 2.7 Hz, 2H), 5.17 (s, 2H), 3.83 (s, 2H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ

148.2, 143.6, 143.5, 142.0, 141.1, 138.8, 137.9, 137.8, 134.7, 130.3, 129.8, 129.4, 129.3, 129.0, 128.6, 128.1, 127.8, 127.3, 127.2, 127.0, 126.8, 126.3, 126.1, 125.2, 120.2, 48.4, 36.9, 21.4. HRMS. Calculated for $C_{36}H_{29}N_2$ (M+H⁺): 489.2325, found: 489.2329.

1-Hexyl-5-(4-methoxyphenyl)-4-phenyl-2-(p-tolyl)-1H-imidazole 1k. White solid, 161 mg, 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (m, 4H), 7.35 (d, J = 8.7 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 7.22 (t, J = 7.6 Hz, 2H), 7.14 (t, J = 7.3 Hz, 1H), 7.03 (d, J = 8.7 Hz, 2H), 3.90 (s, 3H), 3.89 – 3.85 (m, 2H), 2.44 (s, 3H), 1.43 – 1.34 (m, 2H), 1.10 (m, 2H), 0.99 (m, 4H), 0.78 (t, J = 7.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 159.8, 147.5, 138.7, 137.4, 134.7, 132.3, 129.9, 129.3, 129.3, 129.1, 128.6, 128.0, 126.8, 126.1, 123.6, 114.5, 55.3, 44.6, 30.8, 30.3, 25.9, 22.2, 21.4, 13.9. HRMS. Calculated for $C_{29}H_{33}N_2O$ (M+H⁺): 425.2587, found: 425.2591.

1,5-bis(4-methoxyphenyl)-4-phenyl-2-(p-tolyl)-1H-imidazole 1I. Yellow solid, 165 mg, 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 7.4 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 7.28 (dd, J = 10.6, 4.4 Hz, 2H), 7.20 (t, J = 7.3 Hz, 1H), 7.08 (d, J = 8.6 Hz, 4H), 6.99 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 7.7

Hz, 4H), 3.80 (s, 3H), 3.80 (s, 3H), 2.33 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 159.2, 159.0, 147.0, 137.9, 137.7, 134.8, 132.4, 130.8, 130.2, 129.5, 128.8, 128.7, 128.1, 127.9, 127.3, 126.3, 123.1, 114.2, 113.8, 55.4, 55.1, 21.3. HRMS. Calculated for C₃₀H₂₇N₂O₂ (M+H⁺): 447.2067, found: 447.2067.

1-benzyl-4-phenyl-5-(thiophen-3-yl)-2-(p-tolyl)-1H-imidazole 1m. White solid, 150 mg, 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 8.1 Hz, 2H), 7.56 (d, *J* = 8.1 Hz, 2H), 7.33 – 7.25 (m, 6H), 7.21 (dd, *J* = 10.4, 7.6 Hz, 3H), 7.11 (dd, *J* = 2.9, 1.2 Hz, 1H), 6.94 (d, *J* = 6.7 Hz, 2H), 6.88 (dd, *J* = 5.0, 1.2 Hz, 1H), 5.14 (s, 2H), 2.39 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 148.4, 138.9, 138.0, 134.6,

130.8, 129.5, 129.3, 128.8, 128.8, 128.1, 128.0, 127.4, 126.7, 126.4, 126.3, 126.0, 125.8, 124.6, 48.4, 21.4. HRMS. Calculated for C₂₇H₂₃N₂S (M+H⁺): 407.1576, found: 407.1595.

1-Ethyl-4-phenyl-2,5-di-p-tolyl-1H-imidazole **1n.** white solid, 134 mg, 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.1 Hz, 2H), 7.58 (d, *J* = 7.2 Hz, 2H), 7.39 – 7.29 (m, 8H), 7.22 (t, *J* = 7.6 Hz, 2H), 7.14 (t, *J* = 7.3 Hz, 1H), 3.95 (q, *J* = 7.2 Hz, 2H), 2.47 (s, 3H), 2.45 (s, 3H), 1.04 (t, *J* = 7.2 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 147.3, 138.7, 138.5, 137.5, 134.8, 130.9, 129.8, 129.29, 129.28,

129.0, 128.63, 128.59, 128.0, 126.7, 126.0, 39.5, 21.4, 21.4, 16.3. HRMS. Calculated for $C_{25}H_{25}N_2$ (M+H⁺): 353.2012, found: 353.2018.

1-Ethyl-2,4,5-tri-p-tolyl-1H-imidazole 10. Pale yellow solid, 143 mg, 78% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H), 7.32 (dt, J = 8.0, 6.4 Hz, 6H), 7.04 (d, J = 8.0 Hz, 2H), 3.94 (q, J = 7.2 Hz, 2H), 2.47 (s, 3H), 2.45 (s, 3H), 2.30 (s, 3H), 1.04 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.2, 138.6, 138.4, 137.6, 135.6, 132.0, 131.0, 129.7, 129.3,

129.1, 128.8, 128.72, 128.71, 128.68, 126.7, 39.5, 21.44, 21.39, 21.1, 16.3. HRMS. Calculated for $C_{26}H_{27}N_2$ (M+H⁺): 367.2169, found: 367.2162.

1-Ethyl-4-(4-methoxyphenyl)-2,5-di-p-tolyl-1H-imidazole 1p. Pale yellow solid, 153 mg, 80% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.9 Hz, 2H), 7.32 (m, 6H), 6.78 (d, J = 8.9 Hz, 2H), 3.94 (q, J = 7.1 Hz, 2H), 3.77 (s, 3H), 2.46 (s, 3H), 2.44 (s, 3H), 1.03 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.1, 147.1, 138.6, 138.3, 137.4, 131.0, 129.8,

129.3, 129.0, 128.8, 128.7, 128.3, 127.9, 127.7, 113.5, 55.1, 39.5, 21.43, 21.38, 16.3. HRMS. Calculated for $C_{26}H_{27}N_2O(M+H^+)$: 383.2118, found: 383.2120.

4-(4-bromophenyl)-1-ethyl-2,5-di-p-tolyl-1H-imidazole 1q. Pale yellow solid, 166 mg, 77% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 7.35 – 7.29 (m, 8H), 3.93 (q, J = 7.2 Hz, 2H), 2.47 (s, 3H), 2.45 (s, 3H), 1.03 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.5, 138.8, 138.8, 136.5, 133.9, 131.1, 130.8, 129.9, 129.6, 129.3, 129.0, 128.4, 128.3,

128.2, 119.9, 39.6, 21.44, 21.39, 16.3. HRMS. Calculated for C₂₅H₂₄N₂Br (M+H⁺): 431.1117, found: 431.1132.

4-(3-Bromophenyl)-1-ethyl-2,5-di-p-tolyl-1H-imidazole 1r. Pale yellow solid, 162 mg, 75% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (t, J = 1.8 Hz, 1H), 7.60 (d, J = 8.1 Hz, 2H), 7.35 – 7.30 (m, 7H), 7.25 (ddd, J = 7.9, 2.0, 1.0 Hz, 1H), 7.02 (t, J = 7.9 Hz, 1H), 3.93 (q, J = 7.2 Hz, 2H), 2.48 (s, 3H), 2.45 (s, 3H), 1.03 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.5, 138.9, 138.8, 137.0, 136.1, 130.8, 130.0, 129.9, 129.6, 129.4, 129.3, 129.0, 128.9, 128.3, 128.1, 125.0, 122.4, 39.6, 21.5,

21.4, 16.3. HRMS. Calculated for C₂₅H₂₄N₂Br (M+H⁺): 431.1117, found: 431.1107.

4-(Benzo[d][1,3]dioxol-5-yl)-1-benzyl-5-phenyl-2-(p-tolyl)-1H-imidazole **1s.** Pale vellow solid, 171 mg, 77% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 8.1 Hz, 2H), 7.38 - 7.30 (m, 3H), 7.21 (td, J = 5.3, 2.2 Hz, 8H), 7.11(dd, J = 8.1, 1.7 Hz, 1H), 7.08 (d, J = 1.5 Hz, 1H), 6.82 (dd, J = 7.2, 2.2 Hz, 1H)2H), 6.69 (d, J = 8.1 Hz, 1H), 5.90 (s, 2H), 5.10 (s, 2H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ δ 147.9, 147.3, 146.1, 138.8, 137.7, 131.1, 129.3, 129.1, 128.9, 128.8, 128.6, 128.5, 127.3, 126.0, 120.5, 108.1, 107.6, 100.7, 48.3, 21.3 HRMS. Calculated for $C_{30}H_{25}N_2O_2$ (M+H⁺): 445.1911, found: 445.1921.

1-Ethyl-4-(4-fluorophenyl)-2,5-di-p-tolyl-1H-imidazole 1t. Pale yellow solid, 141 mg, 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 8.1 Hz, 2H), 7.53 (dd, *J* = 9.0, 5.5 Hz, 2H), 7.36 – 7.30 (m, 6H), 6.90 (t, *J* = 8.9 Hz, 2H), 3.94 (q, *J* = 7.2 Hz, 2H), 2.47 (s, 3H), 2.45 (s, 3H), 1.03 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.51 (d, *J* = 244.6 Hz), 147.3, 138.8, 138.6, 136.7, 131.0 (d, *J* =

3.0 Hz), 130.9, 129.9, 129.3, 129.2, 129.0, 128.5, 128.4, 128.3 (d, J = 7.8 Hz), 114.8 (d, J = 21.2 Hz), 39.6, 21.43, 21.38, 16.3. HRMS. Calculated for C₂₅H₂₄N₂F (M+H⁺): 371.1918, found: 371.1923.

 \mathbf{J}

1-Ethyl-4-(naphthalen-1-yl)-2,5-di-p-tolyl-1H-imidazole 1u. Pale yellow solid, 163 mg, 81% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (s, 1H), 7.74 (dd, J = 8.5, 6.4 Hz, 2H), 7.69 – 7.64 (m, 3H), 7.60 (m, 1H), 7.43 – 7.31 (m, 8H), 3.98 (q, J = 7.1 Hz, 2H), 2.49 (s, 3H), 2.47 (s, 3H), 1.06 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.5, 138.8, 138.6, 137.5, 133.6, 132.3, 132.2,

133.0, 129.8, 129.8, 129.3, 129.1, 129.0, 128.6, 128.2, 127.5, 127.3, 125.6, 125.4, 125.1, 125.1, 39.6, 21.5, 21.4, 16.3. HRMS. Calculated for $C_{29}H_{27}N_2$ (M+H⁺): 403.2169, found: 403.2177.

1-Ethyl-4-(thiophen-2-yl)-2,5-di-p-tolyl-1H-imidazole 1v. White solid, 147 mg, 82% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 2H), 7.37 (q, J = 8.0 Hz, 4H), 7.31 (d, J = 7.9 Hz, 2H), 7.07 (d, J = 5.0 Hz, 1H), 6.95 (d, J = 2.7 Hz, 1H), 6.88 (dd, J = 4.9, 3.7 Hz, 1H), 3.91 (q, J = 7.1 Hz, 2H), 2.49 (s, 3H), 2.44 (s, 3H), 1.05 (t, J = 7.2 Hz, 3H). ¹¹³C NMR (126 MHz, CDCl₃) δ 147.2, 139.0, 138.8,

138.5, 133.5, 131.1, 129.8, 129.3, 129.1, 128.3, 128.3, 127.7, 127.0, 122.9, 122.3, 39.7, 21.5, 21.4, 16.3. HRMS. Calculated for $C_{23}H_{23}N_2S$ (M+H⁺): 359.1576, found: 359.1581.

(m, 7H), 6.27 (dd, J = 3.3, 1.8 Hz, 1H), 6.09 (dd, J = 3.3, 0.7 Hz, 1H), 3.92 (q, J = 7.2 Hz, 2H), 2.44 (s, 3H), 2.41 (s, 3H), 0.99 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃). HRMS. Calculated for C₂₃H₂₃N₂O (M+H⁺): 343.1805, found: 343.1814.

4-(1-benzyl-2,5-di-p-tolyl-1H-imidazol-4-yl)pyridine 1x. Pale yellow solid, 122 mg, 59% yield. ¹H NMR (500 MHz, CDCl₃ δ 8.41 (d, *J* = 6.3 Hz, 2H), 7.53 (d, *J* = 8.1 Hz, 2H), 7.47 (d, *J* = 6.3 Hz, 2H), 7.24 – 7.21 (m, 5H), 7.18 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 6.84 – 6.78 (m, 2H), 5.09 (s, 2H), 2.40 (s, 3H), 2.38 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 148.7, 142.2, 139.2, 139.2, 137.3,

135.1, 132.6, 130.6, 129.8, 129.4, 128.9, 128.6, 127.6, 127.4, 127.1, 126.0, 120.6, 48.2, 21.4, 21.4. HRMS. Calculated for $C_{29}H_{26}N_3$ (M+H⁺): 416.2121, found: 416.2131.

3-(1-benzyl-2,5-di-p-tolyl-1H-imidazol-4-yl)pyridine 1y. Pale yellow solid, 96 mg, 46% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.71 (d, *J* = 1.5 Hz, 1H), 8.38 (dd, *J* = 4.7, 1.7 Hz, 1H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 7.3 Hz, 5H), 7.19 – 7.07 (m, 5H), 6.87 – 6.83 (m, 2H), 5.12 (s, 2H), 2.39 (s, 3H), 2.38 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 148.6, 148.0, 147.2, 139.0,

138.9, 137.5, 135.1, 133.7, 131.0, 130.7, 130.7, 129.8, 129.3, 128.9, 128.6, 127.8, 127.4, 127.2, 126.0, 123.1, 48.2, 21.4. HRMS. Calculated for $C_{29}H_{26}N_3$ (M+H⁺): 416.2121, found: 416.2123.

(E)-1-Ethyl-4-styryl-2,5-di-p-tolyl-1H-imidazole 1z. Pale yellow solid, 141 mg, 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 2H), 7.46 (m, 3H), 7.36 (m, 4H), 7.34 – 7.25 (m, 4H), 7.18 (t, J = 7.3 Hz, 1H), 6.92 (d, J = 16.0 Hz, 1H), 4.01 (q, J = 7.1 Hz, 2H), 2.49 (s, 3H), 2.45 (s, 3H), 0.99 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.4, 138.9, 138.3, 138.3, 136.9, 131.7, 130.4, 129.6, 129.3, 129.1, 128.4, 127.2, 126.84, 126.82, 126.7, 126.2, 119.6, 39.8, 21.41, 21.40, 16.1. HRMS. Calculated for C₂₇H₂₇N₂ (M+H⁺): 379.2169, found: 379.2180.

1-benzyl-4-propyl-2,5-di-p-tolyl-1H-imidazole 1aa. Colorless oil, 155 mg, 81% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8.1 Hz, 2H), 7.24 – 7.16 (m, 5H), 7.14 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 8.2 Hz, 2H), 6.79 (d, *J* = 6.3 Hz, 2H), 5.12 (s,

2H), 2.57 (dd, J = 8.4, 7.0 Hz, 2H), 2.36 (s, 6H), 1.74 (h, J = 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.4, 140.0, 138.3, 138.2, 137.6, 130.5, 129.9, 129.13, 129.08, 128.8, 128.5, 128.4, 127.7, 127.1, 125.9, 48.3, 29.6, 23.6, 21.3, 21.3, 14.1 Calculated for $C_{27}H_{29}N_2$ (M+H⁺): 381.2325, found: 381.2333.

1-Ethyl-2-(2-methoxyphenyl)-4-phenyl-5-(p-tolyl)-1H-imidazole 2a. White solid, 112 mg, 61% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 7.5 Hz, 2H), 7.49 - 7.41 (m, 1H), 7.36 (d, J = 7.9 Hz, 2H), 7.32 - 7.25 (m, 3H), 7.20 (t, J = 7.6Hz, 2H), 7.11 (dt, J = 11.1, 7.4 Hz, 2H), 7.02 (d, J = 8.3 Hz, 1H), 3.86 (s, 3H), 3.77 (q, J = 7.2 Hz, 2H), 2.47 (s, 3H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.6, 144.6, 138.3, 137.4, 134.8, 132.7, 130.9, 130.8, 129.7, 128.8, 128.7, 127.9, 126.7, 125.9, 120.9, 120.7, 111.0, 55.6, 39.5, 21.4, 15.9. HRMS. Calculated for C₂₅H₂₅N₂O (M+H⁺): 369.1961, found: 369.1966.

1-Ethyl-2-(3-methoxyphenyl)-4-phenyl-5-(p-tolyl)-1H-imidazole **2b.** Pale yellow solid, 151 mg, 82% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 7.2 Hz, 2H), 7.41 (t, J = 7.9 Hz, 1H), 7.35 – 7.27 (m, 6H), 7.22 (t, J = 7.5 Hz, 2H), 7.14 (t, J = 7.3 Hz, 1H), 7.02 (dd, J = 8.2, 2.5 Hz, 1H), 3.96 (q, J = 7.2 Hz, 2H), 3.90 (s, 3H), 2.47 (s, 3H), 1.05 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ

159.7, 147.0, 138.6, 137.6, 134.3, 132.8, 130.0, 129.1, 129.6, 129.5, 128.5, 128.0, 126.7, 126.1, 121.4, 114.9, 114.5, 55.4, 39.6, 21.5, 16.3. HRMS. Calculated for C₂₅H₂₅N₂O (M+H⁺): 369.1961, found: 369.1961.

1-Ethyl-2-(4-methoxyphenyl)-4-phenyl-5-(p-tolyl)-1H-imidazole 2c. Pale brown solid, 158 mg, 86% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 7.1 Hz, 2H), 7.36 – 7.29 (m, 4H), 7.22 (t, J = 7.5 Hz, 2H), 7.17 – 7.11 (m, 1H), 7.03 (d, J = 8.8 Hz, 2H), 3.93 (q, J = 7.2 Hz, 2H), 3.88 (s, 3H), 2.47 (s, 3H), 1.04 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.0, 147.1, 138.5, 137.4, 134.8, 130.9, 130.5, 129.8, 129.2, 128.6, 128.0, 126.7, 126.0, 124.0, 114.0, 55.4, 39.5, 21.4, 16.3. HRMS. Calculated for C₂₅H₂₅N₂O (M+H⁺): 369.1961, found: 369.1962.

1-Ethyl-2-(4-fluorophenyl)-4-phenyl-5-(p-tolyl)-1H-imidazole 2d. Pale yellow solid, 132 mg, 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, J = 8.8, 5.4 Hz, 2H), 7.57 (d, J = 7.2 Hz, 2H), 7.35 – 7.30 (m, 4H), 7.21 (dt, J = 10.7, 8.1 Hz, 4H), 7.15 (t, *J* = 7.3 Hz, 1H), 3.92 (q, *J* = 7.2 Hz, 2H), 2.47 (s, 3H), 1.04 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.1 (d, J = 248.7 Hz), 146.2, 138.6, 137.7,

134.7, 131.0 (d, J = 8.4 Hz), 130.9, 129.9, 129.5, 128.4, 128.0, 127.7 (d, J = 3.3 Hz), 126.7, 126.2, 115.7 (d, J = 21.7 Hz), 39.6, 21.5, 16.3. HRMS. Calculated for $C_{24}H_{22}N_2F$ (M+H⁺): 357.1762, found: 357.1767.

2-(4-Chlorophenyl)-1-ethyl-4-phenyl-5-(p-tolyl)-1H-imidazole 2e. White solid, 145 mg, 78% vield. ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 7.3 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H), 7.35 – 7.31 (m, 4H), 7.22 (t, J = 7.5 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 3.94 (q, J = 7.2 Hz, 2H), 2.48 (s, 3H), 1.05 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.9, 138.7, 137.8, 134.9, 134.5,

130.9, 130.4, 129.9, 129.9, 129.8, 128.9, 128.2, 128.1, 126.7, 126.3, 39.6, 21.5, 16.3. HRMS. Calculated for $C_{24}H_{22}N_2Cl$ (M+H⁺): 373.1466, found: 373.1469.

2-(4-Bromophenyl)-1-ethyl-4-phenyl-5-(p-tolyl)-1H-imidazole 2f. Pale yellow solid, 164 mg, 79% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (g, J = 8.7 Hz, 4H), 7.54 (d, J = 7.2 Hz, 2H), 7.32 (s, 4H), 7.22 (t, J = 7.5 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 3.94 (q, J = 7.2 Hz, 2H), 2.47 (s, 3H), 1.05 (t, J = 7.2 Hz, 3H). ¹³C NMR (126) MHz, CDCl₃) δ 145.9, 138.7, 137.9, 134.5, 131.8, 130.9, 130.6, 130.4, 129.8, 128.2, 128.1, 126.7, 126.2, 123.1, 39.6, 21.4, 16.3. HRMS. Calculated for C₂₄H₂₂N₂Br (M+H⁺):

417.0961, found: 417.0972.

1-Ethyl-2-(3-fluorophenyl)-4-phenyl-5-(p-tolyl)-1H-imidazole 2g. White solid, 128 mg, 72% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.50 (m, 3H), 7.47 (dd, J = 7.9, 2.0 Hz, 2H), 7.32 (s, 4H), 7.23 (d, J = 7.3 Hz, 2H), 7.16 (d, J = 7.4 Hz, 2H), 3.97 (d, J = 7.2 Hz, 2H), 2.48 (s, 3H), 1.06 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.8 (d, J = 246.6 Hz), 145.7 (d, J = 2.6 Hz), 138.7, 137.9, 134.5, 133.5 (d, J = 8.2 Hz), 130.9, 130.2 (d, J = 8.4 Hz), 129.8, 128.2, 128.0, 126.7, 126.2, 124.70, 124.67, 116.2 (d, J = 22.7 Hz), 115.7 (d, J = 21.1 Hz), 39.6, 21.4, 16.3. HRMS. Calculated for $C_{24}H_{22}N_2F$ (M+H⁺): 357.1762, found: 357.1769.

2-(3-Chlorophenyl)-1-ethyl-4-phenyl-5-(p-tolyl)-1H-imidazole 2h. White solid, 142 mg, 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 1.0 Hz, 1H), 7.64 – 7.61 (m, 1H), 7.55 (d, *J* = 7.2 Hz, 2H), 7.46 – 7.44 (m, 2H), 7.32 (s, 4H), 7.23 (t, *J* = 7.5 Hz, 2H), 7.16 (t, *J* = 7.3 Hz, 1H), 3.96 (q, *J* = 7.2 Hz, 2H), 2.48 (s, 3H), 1.06 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.6, 138.8, 137.8, 134.6,

134.2, 133.0, 130.9, 130.9, 129.9, 129.8, 129.3, 129.0, 128.8, 128.1, 127.1, 126.7, 126.3, 39.7, 21.4, 16.3. Calculated for $C_{24}H_{22}N_2Cl$ (M+H⁺): 373.1466, found: 373.1468.

2-(3-Bromophenyl)-1-ethyl-4-phenyl-5-(p-tolyl)-1H-imidazole 2i. White solid, 161 mg, 77% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (t, *J* = 1.7 Hz, 1H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.60 (d, *J* = 7.1 Hz, 1H), 7.55 (d, *J* = 7.2 Hz, 2H), 7.38 (t, *J* = 7.9 Hz, 1H), 7.32 (s, 4H), 7.22 (t, *J* = 7.5 Hz, 2H), 7.16 (t, *J* = 7.3 Hz, 1H), 3.96 (q, *J* = 7.2 Hz, 2H), 2.48 (s, 3H), 1.06 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz,

CDCl₃) δ 145.5, 138.8, 137.9, 134.3, 133.3, 132.2, 131.9, 130.9, 130.1, 129.9, 129.87, 128.09, 128.07, 127.5, 126.7, 126.3, 122.7, 39.7, 21.5, 16.3. HRMS. Calculated for C₂₄H₂₂N₂Br (M+H⁺): 417.0961, found: 417.0969.

Methyl 3-(1-ethyl-4-phenyl-5-(p-tolyl)-1H-imidazol-2-yl)benzoate 2j. Pale yellow solid, 131 mg, 66% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.41 (s, 1H), 8.15 (d, *J* = 7.9 Hz, 1H), 7.99 (d, *J* = 7.7 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 1H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.35 – 7.31 (m, 4H), 7.23 (t, *J* = 7.5 Hz, 2H), 7.16 (t, *J* = 7.3 Hz, 1H), 4.00 – 3.95 (m, 5H), 2.47 (s, 3H), 1.06 (t, *J* = 7.2 Hz, 3H). ¹³C NMR

 $(126 \text{ MHz}, \text{CDCl}_3) \delta 166.6, 145.9, 138.8, 137.6, 134.1, 133.7, 131.4, 130.9, 130.6, 130.0, 129.9, 129.86, 128.9, 128.1, 128.0, 126.8, 126.4, 52.3, 39.8, 21.5, 16.2. HRMS. Calculated for <math>C_{26}H_{25}N_2O_2$ (M+H⁺): 397.1911, found: 397.1920.

1-Ethyl-4-phenyl-2-(m-tolyl)-5-(p-tolyl)-1H-imidazole 2k. Pale yellow solid, 134 mg, 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.55 (m, 3H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.33 (q, *J* = 8.1 Hz, 4H), 7.28 (d, *J* = 5.6 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 2H), 7.15 (t, *J* = 7.3 Hz, 1H), 3.96 (q, *J* = 7.1 Hz, 2H), 2.47 (s, 3H), 2.46 (s, 3H), 1.04 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.4, 138.5, 138.4, 137.6, 134.8, 131.4, 130.9, 130.1, 129.8, 129.6, 129.4, 128.6, 128.4, 128.0, 126.7, 126.1, 126.0, 39.6, 21.5, 21.4, 16.3. HRMS. Calculated for C₂₅H₂₅N₂ (M+H⁺): 353.2012, found: 353.2018.

Ethyl 4-(1-ethyl-4-phenyl-5-(p-tolyl)-1H-imidazol-2-yl)benzoate 2l. White solid, 142 mg, 69% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, J = 8.5 Hz, 2H), 7.84 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 7.2 Hz, 2H), 7.33 (s, 4H), 7.23 (t, J = 7.5 Hz, 2H), 7.16 (t, J = 7.3 Hz, 1H), 4.44 (q, J = 7.2 Hz, 2H), 3.99 (q, J = 7.2 Hz, 2H), 2.48 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 146.0, 138.7, 138.2, 135.7, 134.5, 130.8, 130.4, 130.3, 129.8, 128.8, 128.1, 128.1, 126.7, 126.3, 61.2, 39.7, 21.4, 16.3, 14.4. HRMS. Calculated for C₂₇H₂₇N₂O₂ (M+H⁺): 411.2067, found: 411.2067.

1-Ethyl-4-phenyl-5-(p-tolyl)-2-(4-(trifluoromethyl)phenyl)-1H-imidazole 2m. White solid, 130 mg, 64% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 8.1 Hz, 2H), 7.78 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 7.1 Hz, 2H), 7.33 (m, 4H), 7.23 (t, J = 7.4 Hz, 2H), 7.17 (t, J = 7.3 Hz, 1H), 3.99 (q, J = 7.2 Hz, 2H), 2.48 (s, 3H), 1.07 (t, J = 7.2 Hz, 3H). ¹³C{¹⁹F} NMR (126 MHz, CDCl₃) δ 145.3, 139.0, 137.8, 134.4, 133.9, 130.8, 130.2, 129.9, 129.4, 128.1, 126.8, 126.5, 125.6, 125.1, 122.9, 39.8, 21.4, 16.3. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.7. HRMS. Calculated for C₂₅H₂₂N₂F₃ (M+H⁺): 407.1730, found: 407.1727.

2-(3,5-Dimethylphenyl)-1-ethyl-4-phenyl-5-(p-tolyl)-1H-imidazole 20. Yellow solid, 152 mg, 83% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 7.2 Hz, 2H), 7.36 – 7.29 (m, 6H), 7.21 (t, *J* = 7.5 Hz, 2H), 7.14 (t, *J* = 7.3 Hz, 1H), 7.10 (s, 1H), 3.95 (q, *J* = 7.2 Hz, 2H), 2.47 (s, 3H), 2.41 (s, 6H), 1.04 (t, *J* = 7.2 Hz, 3H). ¹³C

NMR (126 MHz, CDCl₃) δ 147.6, 138.4, 138.1, 137.5, 134.8, 131.3, 130.9, 130.5, 129.8, 129.2, 128.6, 128.0, 127.0, 126.8, 126.0, 39.6, 21.43, 21.37, 16.3. HRMS. Calculated for C₂₆H₂₇N₂ (M+H⁺): 367.2169, found: 367.2174.

1-Ethyl-4-phenyl-2-(thiophen-3-yl)-5-(p-tolyl)-1H-imidazole 2p. Pale red solid, 136 mg, 79% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.67 (dd, J = 2.9, 1.2 Hz, 1H), 7.57 – 7.53 (m, 3H), 7.45 (dd, J = 5.0, 3.0 Hz, 1H), 7.31 (m, 4H), 7.22 (t, J = 7.5Hz, 2H), 7.16 – 7.12 (m, 1H), 3.98 (q, J = 7.2 Hz, 2H), 2.47 (s, 3H), 1.14 (t, J =7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.69, 138.59, 137.51, 134.69, 132.07, 130.95, 129.79, 129.33, 128.73, 128.35, 128.20, 128.00, 126.66, 126.57, 126.11, 125.85, 124.30, 39.42, 21.44, 16.29. HRMS. Calculated for C₂₂H₂₁N₂S (M+H⁺): 345.1420, found: 345.1427.

3-(1-Ethyl-4-phenyl-5-(p-tolyl)-1H-imidazol-2-yl)-1-tosyl-1H-indole 2q. White solid, 234 mg, 88% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 8.6 Hz, 1H), 7.87 (d, J = 1.2 Hz, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.67 (dd, J = 8.6, 1.6 Hz, 1H), 7.64 (d, J = 3.7 Hz, 1H), 7.57 (d, J = 7.2 Hz, 2H), 7.33 (q, J = 8.1 Hz, 4H), 7.24 (d, J = 8.1 Hz, 2H), 7.21 (t, J = 7.5 Hz, 2H), 7.13 (t, J = 7.3 Hz, 1H), 6.74 (dd, J = 3.6, 1.6 Hz, 1H), 7.57 (dd, J = 7.5 Hz, 2H), 7.13 (t, J = 7.3 Hz, 1H), 6.74 (dd, J = 3.6, 1.6 Hz, 1H), 7.57 (dd, J = 7.5 Hz, 2H), 7.13 (t, J = 7.3 Hz, 1H), 7.57 (dd, J = 3.6, 1.6 Hz, 1H), 7.57 (dd, J = 7.5 Hz, 2H), 7.13 (t, J = 7.3 Hz, 1H), 7.57 (dd, J = 3.6, 1.6 Hz, 1H), 7.57 (dd, J = 7.5 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 7.57 (dd, J = 3.6, 1.6 Hz, 1H), 7.57 (dd, J = 7.5 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 7.57 (dd, J = 3.6, 1.6 Hz, 1H), 7.57 (dd, J = 3.6, 1.6 Hz, 1H), 7.57 (dd, J = 3.6, 1.6 Hz, 1H), 7.57 (dd, J = 7.5 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 7.57 (dd, J = 3.6, 1.6 Hz, 1H), 7.57 (dd, J = 7.5 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 7.57 (dd, J = 3.6, 1.6 Hz, 1H), 7.57 (dd, J = 3.6

0.4 Hz, 1H), 3.95 (q, J = 7.1 Hz, 2H), 2.47 (s, 3H), 2.36 (s, 3H), 1.01 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.2, 145.2, 138.6, 137.6, 135.1, 135.0, 134.8, 131.0, 130.9, 130.0, 129.8, 129.4, 128.5, 128.0, 127.3, 126.9, 126.8, 126.7, 126.1, 125.8, 122.3, 113.8, 109.4, 39.6, 21.6, 21.5, 16.3. HRMS. Calculated for C₃₃H₃₀N₃OS (M+H⁺): 532.2053, found: 532.2065.

4-(1-benzyl-5-(6-methoxynaphthalen-2-yl)-2-(4-(methylthio) phenyl)-1Himidazol-4-yl)pyridine Pale yellow solid in 80% yield (413 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.38 (d, *J* = 6.3 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.64 – 7.58 (m, 4H), 7.46 (d, *J* = 6.4 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 7.26 – 7.22 (m, 4H), 7.19 (d, *J* = 8.7 Hz, 2H), 6.83 (dd, *J* = 6.5, 3.0 Hz, 2H), 5.14 (s, 2H), 3.97 (s, 3H), 2.52 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.6, 149.7, 148.3,

141.9, 140.3, 137.3, 135.6, 134.6, 132.8, 130.2, 129.7, 129.2, 128.7, 128.7, 128.4, 127.7, 127.6, 127.0, 126.2, 126.0, 125.0, 120.6, 119.6, 105.6, 55.4, 48.4, 15.4. HRMS. Calculated for $C_{33}H_{28}N_3OS (M+H^+)$: 514.1948, found: 514.1964.

Procedure for the Synthesis of 4-(5-(6-methoxynaphthalen-2-yl)-2-(4-(methylthio)phenyl)-1H-imidazol-4-yl)pyridine 6.

Pale brown solid, 80% yield (67 mg). ¹H NMR (500 MHz, DMSO- d_6) δ 13.02 (s, 1H), 8.45 (d, J = 5.8 Hz, 2H), 8.08 (d, J = 8.7 Hz, 3H), 7.88 (t, J = 8.9 Hz, 2H), 7.56 (dd, J = 8.5, 1.6 Hz, 1H), 7.52 (d, J = 6.3 Hz, 2H), 7.38 (d, J = 8.7 Hz, 3H), 7.22 (dd, J = 8.9, 2.4 Hz, 1H), 3.91 (s, 3H), 2.54 (s, 3H). ¹³C NMR

(126 MHz, DMSO- d_6) δ 158.2, 150.1, 139.2, 134.3, 132.1, 131.9, 130.0, 129.1, 128.85, 127.79, 127.78, 127.56, 127.53, 127.26, 127.25, 126.29, 126.25, 121.3, 119.6, 106.5, 55.7, 14.9. HRMS. Calculated for C₂₆H₂₂N₃OS (M+H⁺): 424.1478, found: 424.1483.

IV. References

- 1. Layer W. R. Chem. Rev. 1963, 63, 489.
- 2. Vishwakarma, L. C.; Stringer, O. D.; Davis F. A. Organic Syntheses, 1988, 66, 203.
- 3. Chemla, F.; Hebbe, V.; Normant, J-F. Synthesis, 2000, 1, 75.
- 4. Boultwood, T.; Bull, J. A. Org. Lett. 2014, 16, 2740.
- 5. Haddach, A.A.; Kelleman, A.; Deaton-Rewolinski, M.V. Tetrahedron Lett. 2002, 43, 399.
- 6. Siamaki, A. R.; Arndtsen, B. A. J. Am. Chem. Soc. 2006, 128, 6050.

V. NMR Spectra

¹H and ¹³C NMR spectra of 1a

80 . 70 60 50 40 30 20

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

0

0 -10

10

¹H and ¹³C NMR spectra of 1b

¹H and ¹³C NMR spectra of 1c

¹H and ¹³C NMR spectra of 1d

¹H and ¹³C NMR spectra of 1e

¹H and ¹³C NMR spectra of 1f

¹H and ¹³C NMR spectra of 1g

¹H and ¹³C NMR spectra of 1h

¹H and ¹³C NMR spectra of 1i

¹H and ¹³C NMR spectra of 1j

¹H and ¹³C NMR spectra of 1k

¹H and ¹³C NMR spectra of 11

S31

¹H and ¹³C NMR spectra of 11

¹H and ¹³C NMR spectra of 1n

¹H and ¹³C NMR spectra of 10

¹H and ¹³C NMR spectra of 1p

¹H and ¹³C NMR spectra of 1q

S36

¹H and ¹³C NMR spectra of 1r

¹H and ¹³C NMR spectra of 1s

¹H and ¹³C NMR spectra of 1t

¹H and ¹³C NMR spectra of 1u

S40

¹H and ¹³C NMR spectra of 1v

¹H and ¹³C NMR spectra of 1w

¹H and ¹³C NMR spectra of 1x

¹H and ¹³C NMR spectra of 1y

S44

¹H and ¹³C NMR spectra of 1z

¹H and ¹³C NMR spectra of 1aa

¹H and ¹³C NMR spectra of 2a

¹H and ¹³C NMR spectra of 2b

¹H and ¹³C NMR spectra of 2c

¹H and ¹³C NMR spectra of 2d

S50

¹H and ¹³C NMR spectra of 2e

¹H and ¹³C NMR spectra of 2f

¹H and ¹³C NMR spectra of 2g

¹H and ¹³C NMR spectra of 2h

¹H and ¹³C NMR spectra of 2i

¹H and ¹³C NMR spectra of 2j

¹H and ¹³C NMR spectra of 2k

S57

¹H and ¹³C NMR spectra of 2l

¹H and ¹³C NMR spectra of 2m

¹H and ¹³C NMR spectra of 2n

¹H and ¹³C NMR spectra of 20

¹H and ¹³C NMR spectra of 2p

S62

¹H and ¹³C NMR spectra of 2q

¹H and ¹³C NMR spectra of 4-(1-benzyl-5-(6-methoxynaphthalen-2-yl)-2-(4-(methylthio) phenyl)-1H-imidazol-4-yl)pyridine

¹H and ¹³C NMR spectra of 4-(1-benzyl-5-(6-methoxynaphthalen-2-yl)-2-(4-(methylthio) phenyl)-1H-imidazol-4-yl)pyridine 6

