

Supplemental Figure 1. Susceptibility of Col-0 seedlings grown in the dark to toxic concentrations of ammonium and methylammonium (MeA).

Seeds were sown on filter papers soaked with water containing ammonium or methylammonium in the indicated concentration. After breaking dormancy in 4°C for two days, seedlings were exposed to light for 6 hours and subsequently incubated in the dark for 6 days. Growth was assayed by the computer program *ImageJ*. Values are means \pm SE. n \geq 60. Upper and lower letters were used for comparison of different experiments, different letters indicate significant differences at the level of p-value \leq 0.05.

Supplemental Figure 2. Test for homozygousity of cipk23 and CIPK23 expression in cipk23.

(A) *CIPK23* expression in *cipk23* plants was tested by qPCR relative to wild type (WT). The experiment was reproducible (4 times repeated) and representative data is shown ± SD; 1g of 14 day old seedlings was pooled to gain one sample; n=4.

(B) Test for zygousity of *cipk23* T-DNA insertion plant line. Left: T-DNA insertion band with RP (right primer) and BP (left T-DNA border primer). Right wild type band with RP (right primer) and LP (left primer).

(C) Cartoon showing the binding sites for the T-DNA and gene specific primers and the expected genotyping result for a homozygous insertion line.

Supplemental Figure 3. Root phenotypes of the *cipk23* and *qko* mutants.

Number of the first order lateral roots relative to the primary root length in wild type, *cipk23* and *qko* plants grown on 20 mM MeA. Plants were precultured on HL medium containing 2 mM potassium nitrate as sole nitrogen source for 4 days and then transferred on agar plates containing 0, 20, or 30 mM MeA in the presence of 2 mM KNO₃ for 14 days. Values are means ± SD; n≥27. A/B/C ANOVA test p-value \leq 0.001.

Supplemental Figure 4. Influence of potassium on hypocotyl elongation.

Seeds were sown on filter papers soaked with water containing potassium in the indicated concentration. After breaking dormancy in 4°C for two days, seedlings were exposed to light for 6 hours and subsequently incubated in the dark for 6 days. Growth was assayed by the computer program *ImageJ* and normalized on the 5 mM mean. Values are means \pm SE. n \geq 60. A/B t-test p-value \leq 0.05.

Supplemental Figure 5. Comparative growth under normal (1 mM) and elevated potassium conditions (5 mM potassium).

(A) Rosette size of wild type (top) and *cipk23* (bottom) plants cultivated for 6 weeks in HL with 1 mM KNO₃ and 1 mM NH₄NO₃ hydroponically. Relative fresh weight (FW) shoot (B), fresh weight root (C) and dry weight (DW) root (D). Data shown are means \pm SD; n=24. A/B students T-test p-value \leq 0.001.

(E) Plant (wild type and *cipk23*) growth after 4 weeks under elevated potassium nutrition (5 mM potassium) wild type (top) and *cipk23* (bottom). (F) Root and (G) shoot dry weight of 6 week old plants, data is shown as means \pm SD; n≥60. Significance tested with T-test and indicated by A/B, p ≤ 0.001. WT, wild type plants.

Supplemental Figure 6. Nutrient concentrations in 6-week-old wild type and *cipk23* plants grown under normal (1 mM) and elevated potassium conditions (5 mM potassium).

(A) Nitrogen (n=24) and (B) Carbon (n=24) concentration in the shoot and root of wild type (WT) and *cipk23* plants grown under normal potassium nutrition and elevated potassium nutrition (C) and (D) respectively ($n \ge 60$).

(E) Potassium concentration in the shoots of wild type and *cipk23* plants (n=15) under elevated potassium nutrition. Plants were grown hydroponically in HL solution for 6 weeks. Three independent experiments were performed, and values are means \pm SD. Concentrations are given in % of dry weight (DW). A/B students T-test p-value \leq 0.05; ns, not significant.

Supplemental Figure 7. Complementation of the cipk23 line.

(A) *CIPK23* expression in wild type, *cipk23*, and two complementation lines *CIPK23*_{pro}:*CIPK23-1*, *CIPK23*_{pro}:*CIPK23-3*. Using quantitative PCR, *CIPK23* gene expression in complementation plant lines was tested relative to the expression in wild type. Data is shown as means ±SD; 1g of 14 day old seedlings was pooled in one sample; n=4; experiment was repeated 3 times. (B) Root and (C) shoot dry weight of wild type, *cipk23*, and two complementation lines *CIPK23*_{pro}:*CIPK23-1* and *CIPK23*_{pro}:*CIPK23-3*. Plants were grown hydroponically (5 mM potassium in HL) and harvested after 6 weeks. The experiment was repeated twice, values are means ± SD; n≥60. Significance was tested using student T-test and indicated by stars; *, p ≤ 0.05; *** p ≤ 0.001; ns, not significant. WT, wild type plants. *CIPK23*_{pro}:*CIPK23-1*, *CIPK23#1*; *CIPK23#1*; *CIPK23-3*, *CIPK23#3*.

Supplemental Figure 8. Relative normalized expression of ammonium transporter genes in wild type and *cipk23* plants after nitrogen starvation and after subsequent ammonium shock.

Plants were grown hydroponically in HL solution for 6 weeks and then transferred in HL solution without nitrogen. After 4 days of nitrogen starvation (WT-N; *cipk23*-N) some of the plants were subjected to HL with 1mM (NH₄)₂SO₄ for 30 min – ammonium shock (WT+NH₄⁺; *cipk23*+ NH₄⁺;). The experiment was repeated 3 times values are means ±SD; n=3; always 10 plants were pooled in one sample. WT, wild type plants; *cipk23*, *cipk23* plants.

Supplemental Figure 9. AMT localization in the Arabidopsis thaliana Col-0 (upper panel) and cipk23 (lower panel) backgrounds.

AMTs are expressed under their endogenous promoter and fused to the green fluorescent protein. AMT1;1 (left; A/D) and AMT2;1 (right; C/F) are expressed in root cortex and epidermis, while AMT1;2 (middle; B/E) is found in the endodermal and cortical cells regardless of the background. Scale bar size = 50µM.

Supplemental Figure 10. Relative normalized expression of *CBL1* and *CBL9* in 6-week-old *cipk23* plants after 4 days of nitrogen starvation (-N) and after 30 min of 2 mM NH_4^+ (as 1 mM (NH_4)₂SO₄) shock.

Significance was tested using students T-test, p≤0.001. Data is shown as means ±SD. Always 5 plants were pooled in sample, three biological replicates (each from a separate experiment) were used and for each replicate two technical replications were performed.

Supplemental Figure 11. CBL1 and CBL9 expression in cbl1 and cbl9 T-DNA insertion lines.

Using quantitative RT-PCR, two different T-DNA insertion lines (*cbl1* and *cbl9*) were tested for their expression of the respective gene relative to wild type (WT). The experiment was reproduced 3 times and data is shown as means ± SD. 1g of 14 day old seedlings was pooled in one sample, two biological replicates were used and for each replicate two technical replications were performed.

Supplemental Table 1. T-DNA insertion lines used in the hypocotyl screen.

NASC: Line number given by the *European Arabidopsis Stock Centre*, T-DNA Line: Line number given by the producing institute, AGI-Code and Gene Name of the kinases used are given.

NASC	T-DNA Line	AGI-Code	Gene Name	
N669412	Salk_014699C	At1g01140	AtSnRK3.12/AtPKS6/AtCIPK9	
N663934	Salk_127158C	At1g08720	AtEDR1	
N901418	WiscDsLoxHs015_10B	444-44000		
N659985	Salk_076543C	At1g11280		
N655245	Salk_007756C	At1g18040		
N662100	Salk_036154C	A14 00070		
N667044	Salk_112091C	At1g30270	AtSnRK3.23/AtPKS17/AtCIPK23	
N661978	Salk_029403C			
N665133	Salk_003412C	At1g48260	AtSnRK3.21/AtPKS20/AtCIPK1/	
N677316	Salk_146186C	At1g50030	AtTOR	
N669165	Salk_142042C			
N671393	Salk_018804C	At1g51660	ΑτΙΜΚΚ4/ΑΤΙΜΑΡΚΚ4	
N872509	SAIL_251_B02	At1g54960	AtANP2	
N661330	Salk_004748C			
N858701	WiscDsLox497_10B	At1g67520		
N657698				
N661575		At1g72180		
N661655	 Salk 017378C	At1q73500	AtMKK9/AtMAPKK9	
N657637	Salk 059205C			
N669306		At1g73660		
N668518	Salk 077975C			
N829571	SAIL 675 F09	At1g79670	AtWAKL22	
N654919	Salk 137779C			
N672732	Salk 074944C	At2g26980	AtSnRK3.17/AtPKS12/AtCIPK3	
N669693	Salk 051317C	At2a28990		
N667130	Salk 118231C	At2g30360	AtSnRK3.22/AtPKS5/AtCIPK11	
N656985	Salk 131251C	Jazgeeeee		
N659911	Salk 058928C	At2g41890		
N657979	Salk 081990C	At3q06030	AtANP3	
N668209	Salk 047797C	At3a21220	AtMKK5/AtMAPKK5	
N911333	WiscDsLoxHs119_01F	At3a23000	AtSnRK3 10/AtPKS7/AtCIPK7/AtSR2	
N660127	Salk 116983C	At4a00340		
N664674	Salk 069473C	At4q08500	AtMEKK1	
N658593	Salk 029496C			
N658925	Salk 135277C	At4g14780		
N852223	WiscDsL 0x345-348N24	At4a18700	AtSnRK3 9/AtPKS8/AtCIPK12	
N664463	Salk 018985C	At4a24400	AtSnRK3 13/AtPKS11/AtCIPK8	
N656005	Salk 140054C	At4a26070	AtMKK1/AtMEK1/AtMAPKK1	
N852195	WiscDsL 0x345-348H12	At4a30960	AtSnRK3 14/AtPKS4/AtCIPK6	
N663562	Salk 105027C	At4a32300		
N661249	Salk 000367C	At5g01820	AtSnRK3 15/AtPKS24/AtCIPK14/AtSR1	
N672594	Salk 066741C	At5a03730		
N913020	WiscDsL oxHs136_08D	At5a07070	AtSnRK3 2/AtPKS16/AtCIPK2	
N664585	Salk 046150C	At5a11850		
N673571	Salk 000085C	At5a21326	nutative SnRK3-type protein kinase	
N655063	Salk 0474250	,	padare on the type protein kindse	
N664607	Salk 0761810	At5g50000		
N660005	Salk 0843320	At5a56580		
N667034	Salk 1113200	กเอิญอิบอิบิบ		
N318666	GK_1/0A04 02	At5g58380	AtSnRK3.8/AtPKS2/AtCIPK10	
N655352	Salk 0227110			
N848612	SAL 1297 H07	At5g59650		

Supplemental Table 2. Combined ¹⁵N ammonium uptake rates from Figure 2.

Uptake values are given after starvation and after shock for the respective ¹⁵N concentration, uptake duration and genotype. Uptake is given as the complete quantity of ¹⁵N taken up during the short term uptake experiment by the plants per g DW. Values are means ± SD. Reduction gives the reduction of the uptake due to the ammonium shock in % of the uptake before the shock.

¹⁵ N Uptake		Genotype	NH₄ [⁺] uptake µM g⁻¹ DW		Reduction
concentration	duration				(%)
			4d starvation	30 min shock	
0.5 mM ¹⁵ N	6 min	WT	21.8 ± 0.67	13.2 ± 1.52	31
		CIPK23#1	21.3 ± 3.02	11.7 ± 1.93	44
		CIPK23#3	18.5 ± 3.13	10.0 ± 2.89	41
		cipk23	24.1 ± 2.77	15.0 ± 2.86	35
	30 min	WT	54.2 ± 7.63	33.1 ± 0.80	27
		CIPK23#1	48.0 ± 5.13	36.9 ± 16.70	27
		CIPK23#3	56.8 ± 5.96	32.3 ± 11.57	27
		cipk23	65.5 ± 5.55	53.9 ± 4.73	13
5 mM ¹⁵ N	6 min	WT	32.0 ± 0.73	22.5 ± 3.9	17
		CIPK23#1	32.0 ± 6.3	18.6 ± 4.70	40
		CIPK23#3	31.3 ± 4.46	17.3 ± 5.69	39
		cipk23	31.8 ± 2.07	28.7 ± 3.36	11
	30 min	WT	68.2 ± 4.76	53.4 ± 10.84	20
		CIPK23#1	75.6 ± 5.23	57.9 ± 2.78	24
		CIPK23#3	74.8 ± 5.05	45.7 ±10.10	39
		cipk23	73.1 ± 16.81	72.9 ± 12.33	0.07

Supplemental Table 3. Modified Hoagland medium used for plant growth. pH adjusted to 6.0.

Salt	Concentration, µM
KH ₂ PO ₄	1000
MgSO ₄	500
CaCl ₂	1000
MnCl ₂	9
ZnSO ₄	0.765
CuSO ₄	0.32
H ₃ BO ₃	46
Na ₂ MoO ₄	0.016
FeNaEDTA	50

Gene	Locus	Forward Primer $(5' \rightarrow 3')$	Reverse Primer $(5' \rightarrow 3')$
AMT 1;1	AT4G13510	CGCGGCGCTGACAACCCTAT	GAGGACTAGGGCCGCCACGA
AMT 1;2	AT1G64780	GGCCGGTCCGTGGCTTTACG	GACCGCGGTGCGACCTACAG
AMT 1;3	AT3G24300	CGGCCACTCTGCCTCGCTAG	CCGCACACAATCGCTGCCCA
AMT 1;5	AT3G24290	TTCAACCCTGGTTCCTTCAC	ACGTTTTCCGAAGAGTGTGG
AMT 2;1	AT2G38290	GGTGCTCCTTACGCGGCCAA	CGGGAGTGACGCCGGCTAAG
CIPK23	AT1G30270	CGTTTTGGAATTCGTCACTG	TGTTGGAAATACTTCCTCGC
CBL1	AT4G17615	CATTGAACGACAAGAGGTCA	CTTGATTCACGTCTGCATCT
CBL9	AT5G47100	ATTGAGCGCCAAGAGGTGAA	CCATCCCGATCCACATCTGC
PDF	AT1G13320	TAACGTGGCCAAAATGATGC	GTTCTCCACAACCGCTTGGT
SAND	AT2G28390	CAGACAAGGCGATGGCGATA	GCTTTCTCTCAAGGGTTTCTGGGT

Supplemental Table 4. Primers used in qRT PCR.

Supplemental Table 5. Newly generated plant lines in this study. The combination of plasmids used for the transformation and the corresponding resistance are shown.

Plant line	Plasmids used for plant transformation	Resistance
cipk23-AMT1;1:GFP	pTbar pAtAMT1;1:AMT1;1-GFP	MSX
cipk23-AMT1;2:GFP	pTbar pAtAMT1;2:AMT1;2-GFP	MSX
cipk23-AMT2;1:GFP	pTbar pAtAMT2;1:AMT2;1-GFP	MSX
AMT1;1:NY/AMT1;1:CY	pTkan+pAtAMT1;1:AMT1;1-NY/	Kanamycin
	pTbar pAtAMT1;1:AMT1;1-CY	MSX
AMT1;2:NY/ AMT1;2:CY	pTkan+pAtAMT1;2:AMT1;2-NY/	Kanamycin
	pTbar pAtAMT1;2:AMT1;2-CY	MSX
AMT1;1:NY/CIPK23:CY	pTkan+pAtAMT1;1:AMT1;1-NY/	Kanamycin
	pTbar pAtCipk23:Cipk23-CY	MSX
CIPK23:NY/AMT1;1:CY	pTkan+pAtCIPK23:CIPK23-NY/	Kanamycin
	pTbar pAtAMT1;1:AMT1;1-CY	MSX
AMT1;2:NY/CIPK23:CY	pTkan+pAtAMT1;2:AMT1;2-NY/	Kanamycin
	pTbar pAtCIPK23:CIPK23-CY	MSX
Cipk23:NY/AMT1;2:CY	pTkan+pAtCipk23:Cipk23-NY/	Kanamycin
	pTbar pAtAMT1;2:AMT1;2-CY	MSX
AMT2;1:NY/ CIPK23:CY	pTkan+pAtAMT2;1:AMT2;1-NY/	Kanamycin
	pTbar pAtCIPK23:CIPK23-CY	MSX
AMT1;1:NY/PromCIPK23:CY	pTkan+pAtAMT1;1:AMT1;1-NY/	Kanamycin
	pTbar pAtCipk23-CY	MSX
AMT1;2:NY/PromCIPK23:CY	pTkan+pAtAMT1;2:AMT1;2-NY/	Kanamycin
	pTbar pAtCipk23-CY	MSX
AMT2;1:NY/PromCIPK23:CY	pTkan+pAtAMT2;1:AMT2;1-NY/	Kanamycin
	pTbar pAtCipk23-CY	MSX
cipk2- amiRNA 8-2-1	pUTbar amiRNA	MSX
k1-K1(1)	pTbar pAtCIPK23:CIPK23	MSX
<i>k1</i> -K1(3)	pTbar pAtCIPK23:CIPK23	MSX