Supporting Information

Photon Reabsorption in Mixed CsPbCl₃:CsPbI₃ Perovskite Nanocrystal Films for Light-Emitting Diodes

Nathaniel J. L. K. Davis^a, Francisco J. de la Peña^b, Maxim Tabachnyk^a, Johannes M. Richter^a, Robin D. Lamboll^a, Edward P. Booker^a, Florencia Wisnivesky Rocca Rivarola^b, James T. Griffiths^b, Caterina Ducati^b, S. Matthew Menke^a, Felix Deschler^a and Neil C. Greenham^{a*}

^a Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK

^b Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK

* Email: ncg11@cam.ac.uk

Phone: +44 (0)1223 766301

Figure S1: Measured absorbance and modelled absorbance spectrum of the mixed 1:1 solutions.

Figure S2: Photoluminescence quantum efficiency of different CsPbCl₃:CsPbl₃ blend ratios in PMMA.

Figure S3: Powder X-ray diffraction pattern of different CsPbCl3:CsPbI3 blend ratios in PMMA. Highlighted region denote peaks associated with CsPbI3 nanocrystals (red) and CsPbCl3 nanocrystals (blue).

Figure S4: Two different ((a) and (b)) HAADF and EELS TEM scans of different regions. Both samples show CsPbCl₃ and CsPbl₃ nanocrystals are not homogenously mixed. Lines indicated atom absorption edges.

Figure S5: Transient decays for different nanocrystal polymer films excited at 405 nm and measured at 450 nm (a) and 670 nm (b).

Figure S6: Solution absorbance (solid) and emission (dashed) of CsPbCl₃:ClPbl₃ blends in hexane. While the concertation of CsPbl₃ remained constant at 0.021 mg mL⁻¹, the concretion of CsPbCl₃ was 0.021 mg mL⁻¹, 0.21 mg mL⁻¹ and 0.42 mg mL⁻¹ for the 1:1, 1:10, 1:20 blends respectively.

Figure S7: Monte Carlo simulations of emission spectra from different nanocrystal solutions with different CsPbCl₃:CsPbl₃ ratios ((a)-(d)). The results of these simulations show that we expect there to only be a red peak visible from the 1:1 PbCsCl₃:PbCsl₃ mixture, but that a blue peak should grow as the PbCsCl₃ fraction increases, becoming larger than the red peak when we have a 50:1 ratio. This is qualitatively consistent with the measured behaviour.

Figure S8: (a) External quantum efficiencies of LED devices. (b) Current density/voltage characteristic of LED devices.