
Non-convex Statistical Optimization for Sparse Tensor
Graphical Model (Supplementary Material)

In this supplementary note, we provide the proofs of our main theorems in §A, prove the key lemmas
in §B, list the auxiliary lemmas in §C, and illustrate additional simulation results in §D.

A Proof of main theorems

Proof of Theorem 3.1: To ease the presentation, we show that Theorem 3.1 holds when K = 3. The
proof can be easily generalized to the case with K > 3.

We first simplify the population log-likelihood function. Note that when T ∼ TN(0;Σ∗1,Σ
∗
2,Σ

∗
3),

Lemma 1 of [9] implies that vec(T ) ∼ N(vec(0);Σ∗3 ⊗Σ∗2 ⊗Σ∗1). Therefore,

E
{

tr
[
vec(T )vec(T )>(Ω3 ⊗Ω2 ⊗Ω1)

]}
= tr

[
(Σ∗3 ⊗Σ∗2 ⊗Σ∗1)(Ω3 ⊗Ω2 ⊗Ω1)

]
= tr(Σ∗3Ω3)tr(Σ∗2Ω2)tr(Σ∗1Ω1),

where the second equality is due to the properties of kronecker product that (A ⊗B)(C ⊗D) =
(AC)⊗ (BD) and tr(A⊗B) = tr(A)tr(B). Therefore, the population log-likelihood function can
be rewritten as

q(Ω1,Ω2,Ω3) =
tr(Σ∗3Ω3)tr(Σ∗2Ω2)tr(Σ∗1Ω1)

m1m2m3
− 1

m1
log |Ω1| −

1

m2
log |Ω2| −

1

m3
log |Ω3|.

Taking derivative of q(Ω1,Ω2,Ω3) with respect to Ω1 while fixing Ω2 and Ω3, we have

∇1q(Ω1,Ω2,Ω3) =
tr(Σ∗3Ω3)tr(Σ∗2Ω2)

m1m2m3
Σ∗1 −

1

m1
Ω−11 .

Setting it as zero leads to Ω1 = m2m3[tr(Σ∗3Ω3)tr(Σ∗2Ω2)]
−1Ω∗1. This is indeed a minimizer of

q(Ω1,Ω2,Ω3) when fixing Ω2 and Ω3, since the second derivative∇2
1q(Ω1,Ω2,Ω3) = m−11 Ω−11 ⊗

Ω−11 is positive definite. Therefore, we have

M1(Ω2,Ω3) =
m2m3

tr(Σ∗3Ω3)tr(Σ∗2Ω2)
Ω∗1. (A.1)

Therefore, M1(Ω2,Ω3) equals to the true parameter Ω∗1 up to a constant. The computations of
M2(Ω1,Ω3) andM3(Ω1,Ω2) follow from the same argument. This ends the proof of Theorem 3.1. �

Proof of Theorem 3.4: To ease the presentation, we show that (3.5) holds when K = 3. The proof
of the case when K > 3 is similar. We focus on the proof of the statistical error for the sample
minimization function M̂1(Ω2,Ω3).

By definition, M̂1(Ω2,Ω3) = argminΩ1
qn(Ω1,Ω2,Ω3) = argminΩ1

L(Ω1), where

L(Ω1) =
1

m1
tr(S1Ω1)−

1

m1
log |Ω1|+ λ1‖Ω1‖1,off,

with the sample covariance matrix

S1 =
1

m2m3n

n∑
i=1

ViV
>
i with Vi =

[
Ti ×

{
1m1 ,Ω

1/2
2 ,Ω

1/2
3

}]
(1)
.

For some constant H > 0, we define the set of convergence

A :=

{
∆ ∈ Rm1×m1 : ∆ = ∆>, ‖∆‖F = H

√
(m1 + s1) logm1

nm2m3

}
.

The key idea is to show that

inf
∆∈A

{
L
(
M1(Ω2,Ω3) + ∆

)
− L

(
M1(Ω2,Ω3)

)}
> 0, (A.2)
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with high probability. To understand it, note that the functionL
(
M1(Ω2,Ω3)+∆

)
−L
(
M1(Ω2,Ω3)

)
is convex in ∆. In addition, since M̂1(Ω2,Ω3) minimizes L(Ω1), we have

L
(
M̂1(Ω2,Ω3)

)
− L

(
M1(Ω2,Ω3)

)
≤ L

(
M1(Ω2,Ω3)

)
− L

(
M1(Ω2,Ω3)

)
= 0.

If we can show (A.2), then the minimizer ∆̂ = M̂1(Ω2,Ω3) −M1(Ω2,Ω3) must be within the
interior of the ball defined by A, and hence ‖∆̂‖F ≤ H

√
(m1 + s1) logm1/(nm2m3). Similar

technique is applied in vector-valued graphical model literature [25].

To show (A.2), we first decompose L
(
M1(Ω2,Ω3)+∆

)
−L

(
M1(Ω2,Ω3)

)
= I1 + I2 + I3, where

I1 :=
1

m1
tr(∆S1)−

1

m1

{
log |M1(Ω2,Ω3) + ∆| − log |M1(Ω2,Ω3)|

}
,

I2 := λ1
{
‖[M1(Ω2,Ω3) + ∆]S1‖1 − ‖[M1(Ω2,Ω3)]S1‖1

}
,

I3 := λ1
{
‖[M1(Ω2,Ω3) + ∆]Sc1‖1 − ‖[M1(Ω2,Ω3)]Sc1‖1

}
.

It is sufficient to show I1 + I2 + I3 > 0 with high probability. To simplify the term I1, we employ
the Taylor expansion of f(t) = log |M1(Ω2,Ω3) + t∆| at t = 0 to obtain

log |M1(Ω2,Ω3) + ∆| − log |M1(Ω2,Ω3)|

= tr
{
[M1(Ω2,Ω3)]

−1∆
}
− [vec(∆)]>

[∫ 1

0

(1− ν)M−1
ν ⊗M−1

ν dν

]
vec(∆),

where Mν :=M1(Ω2,Ω3) + ν∆ ∈ Rm1×m1 . This leads to

I1 =
1

m1
tr
(
{S1 − [M1(Ω2,Ω3)]

−1}∆
)

︸ ︷︷ ︸
I11

+
1

m1
[vec(∆)]>

[∫ 1

0

(1− ν)M−1
ν ⊗M−1

ν dν

]
vec(∆)︸ ︷︷ ︸

I12

.

For two symmetric matrices A,B, it is easy to see that |tr(AB)| = |
∑
i,j Ai,jBi,j |. Based on this

observation, we decompose I11 into two parts: those in the set S1 = {(i, j) : [Ω∗1]i,j 6= 0} and those
not in S1. That is, |I11| ≤ I111 + I112, where

I111 :=
1

m1

∣∣∣ ∑
(i,j)∈S1

{
S1 − [M1(Ω2,Ω3)]

−1}
i,j

∆i,j

∣∣∣,
I112 :=

1

m1

∣∣∣ ∑
(i,j)/∈S1

{
S1 − [M1(Ω2,Ω3)]

−1}
i,j

∆i,j

∣∣∣.
Bound I111: For two matrices A,B and a set S, we have∣∣∣ ∑

(i,j)∈S

Ai,jBi,j

∣∣∣ ≤ max
i,j
|Ai,j |

∣∣∣ ∑
(i,j)∈S

Bi,j

∣∣∣ ≤√|S|max
i,j
|Ai,j |‖B‖F ,

where the second inequality is due to the Cauchy-Schwarz inequality and the fact that
∑

(i,j)∈S B2
i,j ≤

‖B‖2F . Therefore, we have

I111 ≤
√
s1 +m1

m1
·max
i,j

∣∣∣{S1 − [M1(Ω2,Ω3)]
−1}

ij

∣∣∣ ‖∆‖F
≤ C

√
(m1 + s1) logm1

nm2
1m2m3

‖∆‖F =
CH · (m1 + s1) logm1

nm1m2m3
, (A.3)

where (A.3) is from Lemma B.2, the definition of M1(Ω2,Ω3) in (A.1), and the fact that ∆ ∈ A.

Bound I12: For any vector v ∈ Rp and any matrix A ∈ Rp×p, the variational form of Rayleigh
quotients implies λmin(A) = min‖x‖=1 x>Ax and hence λmin(A)‖v‖2 ≤ v>Av. Setting v =

vec(∆) and A =
∫ 1

0
(1− ν)M−1

ν ⊗M−1
ν dν leads to

I12 ≥
1

m1
‖vec(∆)‖22

∫ 1

0

(1− ν)λmin

(
M−1

ν ⊗M−1
ν

)
dν.
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Moreover, by the property of kronecker product, we have

λmin

(
M−1

ν ⊗M−1
ν

)
= [λmin(M

−1
ν )]2 = [λmax(Mν)]

−2.

In addition, by definition, Mν =M1(Ω2,Ω3) + ν∆, and hence we have

λmax[M1(Ω2,Ω3) + ν∆] ≤ λmax[M1(Ω2,Ω3)] + λmax(ν∆).

Therefore, we can bound I12 from below, that is,

I12 ≥ ‖vec(∆)‖22
2m1

min
0≤ν≤1

[
λmax[M1(Ω2,Ω3)] + λmax(ν∆)

]−2
≥ ‖vec(∆)‖22

2m1

[
‖M1(Ω2,Ω3)‖2 + ‖∆‖2

]−2
.

On the boundary of A, it holds that ‖∆‖2 ≤ ‖∆‖F = o(1). Moreover, according to (A.1), we have

‖M1(Ω2,Ω3)‖2 =

∣∣∣∣ m2m3

tr(Σ∗3Ω3)tr(Σ∗2Ω2)

∣∣∣∣ ‖Ω∗1‖2 ≤ 100

81
‖Σ∗1‖2 ≤

1.5

C1
, (A.4)

where the first inequality is due to

tr(Σ∗3Ω3) = tr[Σ∗3(Ω3 −Ω∗3) + 1m3 ] ≥ m3 − |tr[Σ∗3(Ω3 −Ω∗3)]|
≥ m3 − ‖Σ∗3‖F ‖Ω3 −Ω∗3‖F ≥ m3(1− α‖Σ∗3‖2/

√
m3) ≥ 0.9m3,

for sufficiently large m3. Similarly, it holds that tr(Σ∗2Ω2) ≥ 0.9m2. The second inequality in (A.4)
is due to Condition 3.2. This together with the fact that ‖vec(∆)‖2 = ‖∆‖F = o(1) ≤ 0.5/C1 for
sufficiently large n imply that

I12 ≥
‖vec(∆)‖22

2m1

(
C1

2

)2

=
C2

1H
2

8
· (m1 + s1) logm1

nm1m2m3
, (A.5)

which dominates the term I111 for sufficiently large H .

Bound I2: To bound I2, we apply the triangle inequality and then connect the `1 matrix norm with
its Frobenius norm to obtain the final bound. Specifically, we have

|I2| ≤ λ1 ‖[∆]S1‖1 = λ1
∑

(i,j)∈S1

|∆i,j | ≤ λ1
√
(s1 +m1)

∑
(i,j)∈S1

∆2
i,j ≤ λ1

√
s1 +m1‖∆‖F ,

where the first inequality is from triangle inequality, the second inequality is due to the Cauchy-
Schwarz inequality by noting that s1 = |S1| −m1, and the last inequality is due to the definition of
Frobenius norm. By Condition 3.3, λ1 ≤ C2

√
logm1/(nm2

1m2m3). Therefore,

|I2| ≤ C2H ·
(m1 + s1) logm1

nm1m2m3
,

which is dominated by I12 for sufficiently large H according to (A.5).

Bound I3 − |I112|: We show I3 − |I112| > 0. According to (A.1), we have that M1(Ω2,Ω3) equals
Ω∗1 up to a non-zero coefficient. Therefore, for any entry (i, j) ∈ Sc1, we have [M1(Ω2,Ω3)]i,j = 0.
This implies that

I3 = λ1
∑

(i,j)∈Sc1

{
|[M1(Ω2,Ω3)]i,j + ∆i,j | − |[M1(Ω2,Ω3)]i,j |

}
= λ1

∑
(i,j)∈Sc1

|∆i,j |.

This together with the expression of I112 and the bound in Lemma B.2 leads to

I3 − I112 =
∑

(i,j)∈Sc1

{
λ1 −m−11

{
S1 − [M1(Ω2,Ω3)]

−1}
i,j

}
|∆i,j |

≥

(
λ1 − C

√
logm1

nm2
1m2m3

) ∑
(i,j)∈Sc1

|∆i,j | > 0,
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as long as 1/C2 > C for some constant C, which is valid for sufficient small C2 in Condition 3.3.

Combining all these bounds together, we have, for any ∆ ∈ A, with high probability,

L
(
M1(Ω2,Ω3) + ∆

)
− L

(
M1(Ω2,Ω3)

)
≥ I12 − I111 − |I2|+ I3 − I112 > 0,

which ends the proof Theorem 3.4. �

Proof of Theorem 3.5: We show it by connecting the one-step convergence result in Theorem 3.1
and the statistical error result in Theorem 3.4. We show the case when K = 3. The proof of the
K > 3 case is similar. We focus on the proof of the estimation error

∥∥Ω̂1 −Ω∗1
∥∥
F

.

To ease the presentation, in the following derivation we remove the superscript in the initializations
Ω

(0)
2 and Ω

(0)
3 and use Ω2 and Ω3 instead. According to the procedure in Algorithm 1, we have

∥∥Ω̂1 − Ω∗1
∥∥
F

=

∥∥∥∥∥ M̂1(Ω2,Ω3)∥∥M̂1(Ω2,Ω3)
∥∥
F

− M̂1(Ω2,Ω3)∥∥M̂1(Ω2,Ω3)
∥∥
F

∥∥∥∥∥
F

≤

∥∥∥∥∥ M̂1(Ω2,Ω3)∥∥M̂1(Ω2,Ω3)
∥∥
F

− M1(Ω2,Ω3)∥∥M̂1(Ω2,Ω3)
∥∥
F

∥∥∥∥∥
F

+

∥∥∥∥∥ M1(Ω2,Ω3)∥∥M̂1(Ω2,Ω3)
∥∥
F

− M1(Ω2,Ω3)∥∥M1(Ω2,Ω3)
∥∥
F

∥∥∥∥∥
F

≤ 2∥∥M̂1(Ω2,Ω3)
∥∥
F

∥∥M̂1(Ω2,Ω3)−M1(Ω2,Ω3)
∥∥
F
,

where the last inequality is due to the triangle inequality ||a| − |b|| ≤ |a− b| and the summation of
two parts. We next bound

∥∥M̂1(Ω2,Ω3)
∥∥
F

. By triangle inequality,∥∥M̂1(Ω2,Ω3)
∥∥
F
≥ ‖M1(Ω2,Ω3)‖F −

∥∥M1(Ω2,Ω3)− M̂1(Ω2,Ω3)
∥∥
F
≥ 2−1‖M1(Ω2,Ω3)‖F ,

since
∥∥M1(Ω2,Ω3)−M̂1(Ω2,Ω3)

∥∥
F
= oP (1) as shown in Theorem 3.4. Moreover, by the Cauchy-

Schwarz inequality, we have

tr(Σ∗2Ω2) ≤ ‖Σ∗2‖F ‖Ω2‖F ≤ m2‖Σ∗2‖2‖Ω2‖2 ≤ 2m2/C1,

due to Condition 3.2 and the fact that Ω2 ∈ B(Ω∗2). Similarly, we have tr(Σ∗3Ω3) ≤ 2m3/C1. This
together with the expression ofM1(Ω2,Ω3) in (A.1) imply that

∥∥M̂1(Ω2,Ω3)
∥∥
F
≥ C2

1/4 and hence

‖Ω̂1 −Ω∗1‖F ≤
8

C2
1

∥∥M̂1(Ω2,Ω3)−M1(Ω2,Ω3)
∥∥
F
= OP

(√
m1(m1 + s1) logm1

nm1m2m3

)
,

according to Theorem 3.4. This ends the proof Theorem 3.5. �

Proof of Theorem 3.9: We prove it by transferring the optimization problem to an equivalent
primal-dual problem and then applying the convergence results of [27] to obtain the desirable rate of
convergence.

Given the sample covariance matrix Ŝk defined in Lemma B.3, according to (2.3), for each k =

1, . . . ,K, the optimization problem has a unique solution Ω̂k which satisfies the following Karush-
Kuhn-Tucker (KKT) conditions

Ŝk − Ω̂k +mkλkẐk = 0, (A.6)

where Ẑk ∈ Rmk×mk belongs to the sub-differential of ‖Ωk‖1,off evaluated at Ω̂k, that is,

[Ẑk]i,j :=


0, if i = j

sign([Ω̂k]i,j) if i 6= j and [Ω̂k]i,j 6= 0

∈ [−1,+1] if i 6= j and [Ω̂k]i,j = 0.

Following [27], we construct the primary-dual witness solution (Ω̃k, Z̃k) such that

Ω̃k := argmin
Ωk�0,Ωk=Ω>k ,[Ωk]Sc

k
=0

{
tr
(
ŜkΩk

)
− log |Ωk|+mkλk‖Ωk‖1,off

}
,
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where the set Sk refers to the set of true non-zero edges of Ω∗k. Therefore, by construction, the
support of the dual estimator Ω̃k is a subset of the true support, i.e., supp(Ω̃k) ⊆ supp(Ω∗k). We
then construct Z̃k as the sub-differential Ẑk and then for each (i, j) ∈ Sck, we replace [Z̃k]i,j with
([Ω̃−1k ]i,j − [Ŝk]i,j)/(mkλk) to ensure that (Ω̃k, Z̃k) satisfies the optimality condition (A.6).

Denote ∆ := Ω̃k −Ω∗k and R(∆) := Ω̃−1k −Ω∗−1k +Ω∗−1k ∆Ω̃−1k . According to Lemma 4 of [27],
in order to show the strict dual feasibility Ω̃k = Ω̂k, it is sufficient to prove

max
{∥∥Ŝk −Σ∗k

∥∥
∞, ‖R(∆)‖∞

}
≤ αkmkλk

8
,

with αk defined in Condition 3.7. As assumed in Condition 3.3, the tuning parameter satisfies
1/C2

√
logmk/(nmmk) ≤ λk ≤ C2

√
logmk/(nmmk) for some constant C2 > 0 and hence

αkmkλk/8 ≥ C3

√
mk logmk/(nm) for some constant C3 > 0.

In addition, according to Lemma B.3, we have∥∥Ŝk −Σ∗k
∥∥
∞ = OP

(
max

j=1,...,K

√
(mj + sj) logmj

nm

)
.

Under the assumption that sj = O(mj) for j = 1, . . . ,K and m1 � m2 � · · · � mK , we have

∥∥Ŝk −Σ∗k
∥∥
∞ = OP

(√
mk logmk

nm

)
.

Therefore, there exists a sufficiently small constant C2 such that
∥∥Ŝk −Σ∗k

∥∥
∞ ≤ αkmkλk/8.

Moreover, according to Lemma 5 of [27], ‖R(∆)‖∞ ≤ 1.5dk‖∆‖2∞κ3Σ∗k as long as ‖∆‖∞ ≤
(3κΣ∗k

dk)
−1. According to Lemma 6 of [27], if we can show

r := 2κΓ∗k

(∥∥Ŝk −Σ∗k
∥∥
∞ +mkλk

)
≤ min

{
1

3κΣ∗k
dk
,

1

κ3Σ∗k
κΓ∗k

dk

}
,

then we have ‖∆‖∞ ≤ r. By Condition 3.8, κΓ∗k
and κΣ∗k

are bounded. Therefore,
∥∥Ŝk −Σ∗k

∥∥
∞ +

mkλk is in the same order of
√
mk logmk/(nm), which is in a smaller order of d−1k by the assump-

tion of dk in Condition 3.8. Therefore, we have shown that ‖R(∆)‖∞ ≤ mkλk for a sufficiently
small constant C2.

Combining above two bounds, we achieve the strict dual feasibility Ω̃k = Ω̂k. Therefore, we have
supp

(
Ω̂k

)
⊆ supp(Ω∗k) and moreover,

∥∥Ω̂k −Ω∗k
∥∥
∞ = ‖∆‖∞ = OP

(√
mk logmk

nm

)
.

This ends the proof of Theorem 3.9. �

B Proof of key lemmas

The first key lemma establishes the rate of convergence of the difference between a sample-based
quadratic form and its expectation. This new concentration result is also of independent interest.
Lemma B.1. Assume i.i.d. data X,X1, . . . ,Xn ∈ Rp×q follows the matrix-variate normal distribu-
tion such that vec(Xi) ∼ N(0;Ψ∗ ⊗Σ∗) with Ψ∗ ∈ Rq×q and Σ∗ ∈ Rp×p. Assume that 0 < C1 ≤
λmin(Σ

∗) ≤ λmax(Σ
∗) ≤ 1/C1 < ∞ and 0 < C2 ≤ λmin(Ψ

∗) ≤ λmax(Ψ
∗) ≤ 1/C2 < ∞ for

some positive constants C1, C2. For any symmetric and positive definite matrix Ω ∈ Rp×p, we have

max
i,j

{
1

np

n∑
i=1

X>i ΩXi −
1

p
E(X>ΩX)

}
i,j

= OP

(√
log q

np

)
.
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Proof of Lemma B.1: Consider a random matrix X following the matrix normal distribution such
that vec(X) ∼ N(0;Ψ∗ ⊗ Σ∗). Let Λ∗ = Ψ∗−1 and Ω∗ = Σ∗−1. Let Y := (Ω∗)1/2X(Λ∗)1/2.
According to the properties of matrix normal distribution [30], Y follows a matrix normal distribution
such that vec(Y) ∼ N(0;1q ⊗1p), that is, all the entries of Y are i.i.d. standard Gaussian random
variables. Next we rewrite the term X>ΩX by Y and then simplify it. Simple algebra implies that

X>ΩX = (Λ∗)−1/2Y>(Ω∗)−1/2Ω(Ω∗)−1/2Y(Λ∗)−1/2.

When Ω is symmetric and positive definite, the matrix M := (Ω∗)−1/2Ω(Ω∗)−1/2 ∈ Rp×p is also
symmetric and positive definite with Cholesky decomposition U>U, where U ∈ Rp×p. Therefore,

X>ΩX = (Λ∗)−1/2Y>U>UY(Λ∗)−1/2.

Moreover, denote the column of the matrix (Λ∗)−1/2 as (Λ∗)−1/2(j) and denote its row as (Λ∗)−1/2i

for i, j = 1, . . . , q. Define the standard basis ei ∈ Rq as the vector with 1 in its i-th entry and 0 in all
the rest entries. The (s, t)-th entry of matrix X>ΩX can be written as{

X>ΩX
}
s,t

= e>s X>ΩXet = (Λ∗)−1/2s Y>U>UY(Λ∗)
−1/2
(t) .

For the sample matrices X1, . . . ,Xn, we apply similar transformation that Yi = (Ω∗)1/2Xi(Λ
∗)1/2.

We apply the above derivation to the sample-based quadratic term X>i ΩXi. Let A = (a1, . . . ,an) ∈
Rp×n with ai = UYi(Λ

∗)
−1/2
s ∈ Rp and B = (b1, . . . ,bn) ∈ Rp×n with bi = UYi(Λ

∗)
−1/2
t ∈

Rp. Then we have{ 1

np

n∑
i=1

X>i ΩXi

}
s,t

=
1

np

n∑
i=1

a>i bi =
1

np

n∑
i=1

p∑
j=1

Ai,jBi,j

=
1

4np

n∑
i=1

p∑
j=1

{
(Ai,j + Bi,j)

2 − (Ai,j −Bi,j)
2
}

=
1

4np

{
‖vec(A) + vec(B)‖22 + ‖vec(A)− vec(B)‖22

}
. (B.1)

Next we derive the explicit form of vec(A) and vec(B) in (B.1). Remind that (Λ∗)−1/2s is a vector
of length q. By the property of matrix products, we can rewrite ai = [(Λ∗)

−1/2
s ⊗U]vec(Yi), where

⊗ is the Kronecker product. Therefore, we have

vec(A) =
[
1n⊗(Λ∗)−1/2s ⊗U

]
t := Q1t,

vec(B) =
[
1n⊗(Λ∗)−1/2t ⊗U

]
t := Q2t,

where t =
{
[vec(Y1)]

>, . . . , [vec(Yn)]
>}> ∈ Rnpq is a vector with npq i.i.d. standard normal

entries. Here Q1 := 1n⊗(Λ∗)−1/2s ⊗U and Q2 := 1n⊗(Λ∗)−1/2t ⊗U with Q1,Q2 ∈ Rnp×npq.
By the property of multivariate normal distribution, we have

vec(A) + vec(B) ∼ N
(
0; (Q1 + Q2)(Q1 + Q2)

>) := N(0;H1),

vec(A)− vec(B) ∼ N
(
0; (Q1 −Q2)(Q1 −Q2)

>) := N(0;H2).

Next, we bound the spectral norm of two matrices H1 and H2. By the property of matrix norm and
the fact that one matrix and its transpose matrix have the same spectral norm, we have

‖H1‖2 ≤ ‖Q1Q
>
1 ‖2 + 2‖Q1Q

>
2 ‖2 + ‖Q2Q

>
2 ‖2,

then we bound each of these three terms individually. According to the definition of Q1 and the
property of matrix Kronecker products, we have

Q1Q
>
1 =

[
1n⊗(Λ∗)−1/2s ⊗U

][
1n⊗(Λ∗)−1/2s ⊗U

]>
= 1n⊗(Λ∗)−1/2s [(Λ∗)−1/2s ]> ⊗M,

where the last equality is due to the fact that (C1⊗C2)
> = C>1 ⊗C>2 and (C1⊗C2)(C3⊗C4) =

(C1C3) ⊗ (C2C4) for any matrices C1, . . . ,C4 such that the matrix multiplications C1C3 and
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C2C4 are valid. Moreover, we also use the Cholesky decomposition of M, i.e., M = U>U. Remind
that (Λ∗)−1/2s [(Λ∗)

−1/2
s ]> ∈ R, therefore, the spectral norm Q1Q

>
1 can be written as

‖Q1Q
>
1 ‖2 =

∣∣(Λ∗)−1/2s [(Λ∗)−1/2s ]>
∣∣ · ‖1n ‖2‖M‖2

≤ ‖Ψ∗‖2‖M‖2 ≤ (1 + α/C1) /C2.

Here the first inequality is because ‖1n ‖2 = 1 and∣∣(Λ∗)−1/2s [(Λ∗)−1/2s ]>
∣∣ =

∥∥[(Λ∗)−1/2s ]>(Λ∗)−1/2s

∥∥
2
≤ max

j

∥∥[(Ψ∗)1/2j ]>(Ψ∗)
1/2
j

∥∥
2

≤
∥∥∥ q∑
j=1

[(Ψ∗)
1/2
j ]>(Ψ∗)

1/2
j

∥∥∥
2
= ‖Ψ∗‖2,

and the second inequality is because ‖Ψ∗‖2 ≤ 1/C2 and

‖M‖2 =
∥∥∥(Ω∗)−1/2Ω(Ω∗)−1/2

∥∥∥
2
= ‖(Ω∗)−1/2(Ω−Ω∗)(Ω∗)−1/2 + 1p ‖2

≤ ‖(Ω∗)−1/2‖22‖Ω−Ω∗‖2 + 1 ≤ ‖Σ∗‖2‖Ω−Ω∗‖F + 1 ≤ 1 + α/C1.

Similarly, we have ‖Q2Q
>
2 ‖2 ≤ (1 + α/C1) /C2. For ‖Q1Q

>
2 ‖2, similar arguments imply that

Q1Q
>
2 = 1n⊗(Λ∗)−1/2s [(Λ∗)

−1/2
t ]> ⊗M,

and hence its spectral norm is bounded as

‖Q1Q
>
2 ‖2 = |(Λ∗)−1/2s [(Λ∗)

−1/2
t ]>| · ‖1n ‖2‖M‖2

≤ ‖Ψ∗‖2‖M‖2 ≤ (1 + α/C1) /C2,

where the first inequality is because the above derivation and the Cauchy-Schwarz inequality. Specifi-
cally, let Ψ∗ = (Ψ∗i,j), we have

|(Λ∗)−1/2s [(Λ∗)
−1/2
t ]>| =

√
(Ψ∗)s[(Ψ∗)t]> =

[ q∑
j=1

Ψ∗s,jΨ
∗
t,j

]1/2
≤

{
(

q∑
j=1

Ψ∗2s,j)(

q∑
j=1

Ψ∗2t,j)
}1/4

≤
√
‖Ψ∗‖2‖Ψ∗‖2 ≤ C−12 .

Applying the same techniques to ‖H2‖2, we have
‖H1‖2 ≤ 4 (1 + α/C1) /C2, (B.2)
‖H2‖2 ≤ 4 (1 + α/C1) /C2. (B.3)

Next, we apply Lemma C.3 to bound the (s, t)-th entry of the differential matrix between the sample-
based term and its expectation. Denote ρs,t := [p−1E(X>ΩX)]s,t. According to the derivation in
(B.1), we have{

1

np

n∑
i=1

X>i ΩXi −
1

p
E(X>ΩX)

}
s,t

=

[
1

4np

∑
i,j

(aij + bij)
2 − ∆s,t + ρs,t

2

]
−
[

1

4np

∑
i,j

(aij − bij)2 −
∆s,t − ρs,t

2

]
, (B.4)

where ∆s,t is defined as

∆s,t := E
{
(4np)−1

∑
i,j

[(aij + bij)
2 + (aij − bij)2]

}
.

Moreover, according to the definition of ρs,t and the fact in (B.1), we have
E{(4np)−1

∑n
i=1

∑p
j=1[(aij + bij)

2 − (aij − bij)2]} = ρs,t. Therefore, we have

E
{
(4np)−1

∑
i,j

(aij + bij)
2
}

=
∆s,t + ρs,t

2
, (B.5)

E
{
(4np)−1

∑
i,j

(aij − bij)2
}

=
∆s,t − ρs,t

2
. (B.6)
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Therefore, (B.4) implies that, for any δ > 0,

P
[∣∣∣{ 1

np

n∑
i=1

X>i ΩXi −
1

p
E(X>ΩX)

}
s,t

∣∣∣ ≥ δ
]
≤

P
[∣∣∣ 1
np

∑
i,j

(aij + bij)
2 − 2(∆s,t + ρs,t)

∣∣∣ > 2δ
]

︸ ︷︷ ︸
I1

+P
[∣∣∣ 1
np

∑
i,j

(aij − bij)
2 − 2(∆s,t − ρs,t)

∣∣∣ > 2δ
]

︸ ︷︷ ︸
I2

.

Remind that
∑n
i=1

∑p
j=1(aij + bij)

2 = vec(A) + vec(B) ∼ N(0;H1) and
∑n
i=1

∑p
j=1(aij −

bij)
2 = vec(A)−vec(B) ∼ N(0;H2). According to (B.5) and (B.6), we apply Lemma C.3 to obtain

I1 ≤ 2 exp

{
− np

2

(
δ

2‖H1‖2
− 2
√
np

)2}
+ 2 exp(−np/2),

I2 ≤ 2 exp

{
− np

2

(
δ

2‖H2‖2
− 2
√
np

)2}
+ 2 exp(−np/2).

Finally, in order to derive the convergence rate of the maximal difference over all index (s, t), we
employ the max sum inequality. That is, for random variables x1, . . . , xn, we have P(maxi xi ≥
t) ≤

∑n
i=1 P(xi ≥ t) ≤ nmaxi P(xi ≥ t). This together with (B.2) and (B.3) imply that

P
[
max
(s,t)

{
1

np

n∑
i=1

X>i ΩXi −
1

p
E(X>ΩX)

}
s,t

≥ δ
]

≤ 4q2 exp

{
− np

2

[
δC1C2

8(C1 + α)
− 2
√
np

]2}
+ 4q2 exp(−np/2). (B.7)

Let δ = 8(C1 + α)(C1C2)
−1[4

√
log q/(np) + 3(np)−1/2] in (B.7) which satisfies the condition in

Lemma C.3 since δ > 2(np)−1/2 when q is sufficiently large. Therefore, we obtain the desirable
conclusion that, with high probability,

max
(s,t)

{
1

np

n∑
i=1

X>i ΩXi −
1

p
E(X>ΩX)

}
s,t

= OP

(√
log q

np

)
.

This ends the proof of Lemma B.1. �

Lemma B.2. Assume i.i.d. tensor data T , T1, . . . , Tn ∈ Rm1×m2×···×mK follows the tensor normal
distribution TN(0;Σ∗1, . . . ,Σ

∗
K). Assume Condition 3.2 holds. For any symmetric and positive

definite matrices Ωj ∈ Rmj×mj , j 6= k, we have

E[Sk] =
mk[

∏
j 6=k tr(Σ∗jΩj)]

m
Σ∗k,

for Sk = mk

nm

∑n
i=1 ViV

>
i with Vi =

[
Ti × {Ω1/2

1 , . . . ,Ω
1/2
k−1,1mk

,Ω
1/2
k+1, . . . ,Ω

1/2
K }

]
(k)

and

m =
∏K
k=1mk. Moreover, we have

max
s,t

{
Sk −

mk[
∏
j 6=k tr(Σ∗jΩj)]

m
Σ∗k

}
s,t

= OP

(√
mk logmk

nm

)
. (B.8)

Proof of Lemma B.2: The proof follows by carefully examining the distribution of Vi and then
applying Lemma B.1. We only show the case with K = 3 and k = 1. The extension to a general K
follows similarly.

According to the property of mode-k tensor multiplication, we have Vi = [Ti](1) (Ω
1/2
3 ⊗Ω

1/2
2 ),

and hence

S1 =
1

nm2m3

n∑
i=1

[Ti](1) (Ω
1/2
3 ⊗Ω

1/2
2 )(Ω

1/2
3 ⊗Ω

1/2
2 ) [Ti]>(1)

=
1

nm2m3

n∑
i=1

[Ti](1) (Ω3 ⊗Ω2) [Ti]>(1) .
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When tensor Ti ∼ TN(0;Σ∗1,Σ
∗
2,Σ

∗
3), the property of mode-k tensor multiplication shown in

Proposition 2.1 in [31] implies that

[Ti](1) ∈ Rm1×(m2m3) ∼ MN(0;Σ∗1,Σ
∗
3 ⊗Σ∗2),

where MN(0;Σ∗1,Σ
∗
3 ⊗Σ∗2) is the matrix-variate normal [32] such that the row covariance matrix of

[Ti](1) is Σ∗1 and the column covariance matrix of [Ti](1) is Σ∗3 ⊗Σ∗2. Therefore, in order to show
(B.8), according to Lemma B.1, it is sufficient to show

E[S1] =
tr(Σ∗3Ω3)tr(Σ∗2Ω2)

m2m3
Σ∗1. (B.9)

According to the distribution of [Ti](1), we have

Vi ∼ MN
(
0;Σ∗1, (Ω

1/2
3 ⊗Ω

1/2
2 )(Σ∗3 ⊗Σ∗2)(Ω

1/2
3 ⊗Ω

1/2
2 )

)
,

and hence
V>i ∼ MN

(
0; (Ω

1/2
3 ⊗Ω

1/2
2 )(Σ∗3 ⊗Σ∗2)(Ω

1/2
3 ⊗Ω

1/2
2 ),Σ∗1

)
.

Therefore, according to Lemma C.1, we have

E[ViV
>
i ] = Σ∗1tr [(Ω3 ⊗Ω2)(Σ

∗
3 ⊗Σ∗2)] = Σ∗1tr(Σ∗3Ω3)tr(Σ∗2Ω2),

which implies (B.9) according to the definition of S1. Finally, applying Lemma B.1 to S1 leads to the
desirable result. This ends the proof of Lemma B.2. �

The following lemma establishes the rate of convergence of the sample covariance matrix in max
norm.
Lemma B.3. Assume i.i.d. tensor data T , T1, . . . , Tn ∈ Rm1×m2×···×mK follows the tensor normal
distribution TN(0;Σ∗1, · · · ,Σ∗K), and assume Condition 3.2 holds. Let Ω̂j ∈ Rmj×mj , j 6= k, be the
estimated precision matrix from Algorithm 1 with iteration number T = 1. Denote the k-th sample
covariance matrix as

Ŝk =
mk

nm

n∑
i=1

V̂iV̂
>
i ,

with m =
∏K
k=1mk and V̂i :=

[
Ti ×

{
Ω̂

1/2
1 , . . . , Ω̂

1/2
k−1,1mk

, Ω̂
1/2
k+1, . . . , Ω̂

1/2
K

}]
(k)

. We have

max
s,t

[
Ŝk −Σ∗k

]
s,t

= OP

(
max

j=1,...,K

√
(mj + sj) logmj

nm

)
. (B.10)

Proof of Lemma B.3: The proof follows by decomposing the Ŝk − Σ∗k into two parts and then
applying Lemma B.2 and Theorem 3.5 for each part to bound the final error.

Note that the triangle inequality implies that∥∥Ŝk −Σ∗k
∥∥
∞ ≤

∥∥∥∥Ŝk − mk[
∏
j 6=k tr(Σ∗j Ω̂j)]

m
Σ∗k

∥∥∥∥
∞︸ ︷︷ ︸

I1

+

∥∥∥∥mk[
∏
j 6=k tr(Σ∗j Ω̂j)]

m
Σ∗k −Σ∗k

∥∥∥∥
∞︸ ︷︷ ︸

I2

.

Note that here the covariance matrix Ŝk is constructed based on the estimators Ω̂j , j 6= k. According
to (B.8) in Lemma B.2, we have

I1 = OP

(√
mk logmk

nm

)
.

The remainder part is to bound the error I2. Note that tr(Σ∗jΩ
∗
j ) = tr(1mj

) = mj . Therefore,

I2 =
∣∣∣mk

m

[∏
j 6=k

tr(Σ∗j Ω̂j)−
∏
j 6=k

tr(Σ∗jΩ
∗
j )
]∣∣∣︸ ︷︷ ︸

I3

‖Σ∗k‖∞.
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Given that ‖Σ∗k‖∞ = OP (1), it is sufficient to bound the coefficient I3. We only demonstrate the
proofs with K = 3 and k = 1. The extension to a general K follows similarly. In this case, we have

I3 =
m1

m

∣∣∣tr(Σ∗2Ω̂2)tr(Σ∗3Ω̂3)− tr(Σ∗2Ω
∗
2)tr(Σ

∗
3Ω
∗
3)
∣∣∣

≤
∣∣∣∣ tr(Σ∗2Ω̂2)tr[Σ∗3(Ω̂3 −Ω∗3)]

m2m3

∣∣∣∣+ ∣∣∣∣ tr[Σ∗2(Ω̂2 −Ω∗2)]tr(Σ
∗
3Ω
∗
3)

m2m3

∣∣∣∣.
According to the proof of Theorem 3.5, we have C1 ≤ tr(Σ∗jΩj)/mj ≤ 1/C1 for any j = 1, . . . ,K
and some constant C1 > 0. Moreover, we have tr(Σ∗3Ω

∗
3) = m3. Therefore, we have

I3 ≤
∣∣∣∣ tr[Σ∗3(Ω̂3 −Ω∗3)]

m3

∣∣∣∣+ ∣∣∣∣ tr[Σ∗2(Ω̂2 −Ω∗2)]

m2

∣∣∣∣.
Here tr[Σ∗j (Ω̂j−Ω∗j )] ≤ ‖Σ∗j‖F

∥∥Ω̂j−Ω∗j
∥∥
F
≤ √mj‖Σ∗j‖2

∥∥Ω̂j−Ω∗j
∥∥
F

. According to Condition
3.2, ‖Σ∗j‖2 = OP (1). This together with Theorem 3.5 implies that

I3 = OP

(√
(m3 + s3) logm3

nm
+

√
(m2 + s2) logm2

nm

)
.

By generalizing it to a general K and k, we have that

I3 = OP

(
max
j 6=k

√
(mj + sj) logmj

nm

)
,

and hence ∥∥Ŝk −Σ∗k
∥∥
∞ = OP

(√
mk logmk

nm
+max

j 6=k

√
(mj + sj) logmj

nm

)
,

which leads to the desirable result. This ends the proof of Lemma B.3. �

C Auxiliary lemmas

Lemma C.1. Assume a random matrix X ∈ Rp×q follows the matrix-variate normal distribution
such that vec(X) ∼ N(0;Ψ∗ ⊗Σ∗) with Ψ∗ ∈ Rq×q and Σ∗ ∈ Rp×p. Then for any symmetric and
positive definite matrix Ω ∈ Rp×p, we have E(X>ΩX) = Ψ∗tr(ΩΣ∗).

Proof of Lemma C.1: Since the matrix Ω is symmetric and positive definite, it has the Cholesky
decomposition Ω = V>V, where V is upper triangular with positive diagonal entries. Let Y := VX
and denote the j-th row of matrix Y as yj = (yj,1, . . . , yj,q). We have E(X>ΩX) = E(Y>Y) =∑p
j=1 E(y>j yj). Here yj = vjX with vj the j-th row of V. Denote the i-th column of matrix X as

x(i), we have yj,i = vjx(i). Therefore, the (s, t)-th entry of E(y>j yj) is[
E(y>j yj)

]
(s,t)

= E[vjx(s)vjx(t)] = vjE[x(s)x
>
(t)]v

>
j = vjΨ

∗
s,tΣ

∗v>j ,

where Ψ∗s,t is the (s, t)-th entry of Ψ∗. The last equality is due to vec(X) = (x>(1), . . . ,x
>
(q))
> ∼

N(0;Ψ∗ ⊗Σ∗) Therefore, we have

E(X>ΩX) =

p∑
j=1

E(y>j yj) = Ψ∗
p∑
j=1

vjΣ
∗v>j = Ψ∗tr

( p∑
j=1

v>j vjΣ
∗
)
= Ψ∗tr(ΩΣ∗).

This ends the proof of Lemma C.1. �

The following lemma is stated by [24].
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Lemma C.2. Let random variables x1, . . . , xn ∈ R be i.i.d. drawn from standard normal N(0; 1)
and denote x = (x1, . . . , xn)

> ∈ Rn be a random vector. For a function f : Rn → R with Lipschitz
constant L, that is, for any vectors v1,v2 ∈ Rn, there exists L ≥ 0 such that |f(v1) − f(v2)| ≤
L‖v1 − v2‖2. Then, for any t > 0, we have

P {|f(x)− E[f(x)]| > t} ≤ 2 exp

(
− t2

2L2

)
.

The following lemma is useful for the proof of Lemma B.1. A similar statement was given in Lemma
I.2 of [33].
Lemma C.3. Suppose that a d-dimensional Gaussian random vector y ∼ N(0;Q), Then, for any
t > 2/

√
d, we have

P
[1
d

∣∣‖y‖22 − E(‖y‖22)
∣∣ > 4t‖Q‖2

]
≤ 2 exp

{
−
d
(
t− 2/

√
d
)2

2

}
+ 2 exp(−d/2).

Proof of Lemma C.3: Note that E(‖y‖22) ≤ [E(‖y‖2)]2 and hence

‖y‖22 − E(‖y‖22) ≤ [‖y‖2 − E(‖y‖2)][‖y‖2 + E(‖y‖2)].

The term (‖y‖2 −E(‖y‖2) can be bounded via the concentration inequality in Lemma C.2 by noting
that ‖y‖2 is a Lipschitz function of Gaussian random vector y. The term ‖y‖2 + E(‖y‖2) can also
be bounded by the large deviation bound since y is a Gaussian random vector. This ends the proof of
Lemma C.3. �

D Additional simulation results

In this section, we explain the details in generating the true precision matrices and then show additional
numerical results.

Triangle: For each k = 1, . . . ,K, we construct the covariance matrix Σk ∈ Rmk×mk such that its
(i, j)-th entry is [Σk]i,j = exp(−|hi− hj |/2) with h1 < h2 < · · · < hmk

. The difference hi− hi−1
with i = 2, . . . ,mk is generated independently and identically from Unif(0.5, 1). This generated
covariance matrix mimics the autoregressive process of order one, i.e., AR(1). We set Ω∗k = Σ−1k .

Nearest neighbor: For each k = 1, . . . ,K, we construct the precision matrix Ωk ∈ Rmk×mk

directly from a four nearest-neighbor network. We first randomly pick mk points from a unit square
and compute all pairwise distances among the points. We then search for the four nearest-neighbors
of each point and a pair of symmetric entries in the precision matrix Ωk that has a random chosen
value from [−1,−0.5] ∪ [0.5, 1]. To ensure its positive definite property, we let the final precision
matrix as Ω∗k = Ωk + (|λmin(Ωk) + 0.2| · 1mk

), where λmin(·) refers to the smallest eigenvalue.

The additional error criterions for comparison are the averaged estimation errors in Frobinusm norm
and max norm, i.e.,

1

K

K∑
k=1

∥∥Ω̂k −Ω∗k
∥∥
F
,

1

K

K∑
k=1

∥∥Ω̂k −Ω∗k
∥∥
∞.

Note that these two criterions are only available to the P-MLE method and our Tlasso. The direct
Glasso method estimate the whole Kronecker product and hence could not produce the estimator for
each precision matrix.

Remind that, as we show in Theorem 3.5 and Theorem 3.9, the estimation error for the k-th precision
matrix isOp(

√
mk(mk + sk) logmk/(nm)) in Frobenius norm orOp(

√
mk logmk/(nm)) in max

norm, where m = m1m2m3 in this example. These theoretical findings are supported by the
numerical results in Figure 2. In particular, as sample size n increases from Scenario s1 to s2, the
estimation errors in both Frobenius norm and max norm expectedly decrease. From Scenario s1
to s3, one dimension m1 increases from 10 to 100, and other dimensions m2,m3 decrease from
10 to 5, in which case the averaged estimation error in max norm is decreasing, while the error in
Frobenius norm increases due to its additional

√
mk + sk effect. Moreover, compared to the P-MLE
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Figure 2: Averaged estimation errors of the precision matrices in Frobenius norm and max norm of
each method in Simulations 1&2, respectively. The left two plots are for Simulation 1, and the right
two are for Simulation 2.

method, our Tlasso is better in Scenarios s1 and s2 and is worse in Scenario s3 in Frobenius norm.
However, in terms of the max norm, our Talsso delivers significant better performance in 4 scenarios
and comparable results in the rest 2 scenarios.
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