Cancer upregulated gene 2 induces epithelial-mesenchymal transition of human lung cancer cells via TGF-ß signaling

SUPPLEMENTARY FIGURES

Supplementary Figure S1: No difference of cell growth between CUG2 overexpressing cells and their control cells during 24 h. A549-CUG2, BEAS-CUG2 and their control cells were inoculated at $1x10^5$ cells per well using a 12-well plate. We set 12 h post-inoculation as an initiation time for the measurement of cell growth. At 12 h post-inoculation, CUG2 siRNA (500 nM) or control siRNA (500 nM) was added. (siCon; Control siRNA, siCUG2; CUG2 siRNA) MTT assays were performed for measuring cell growth at 24 and 48 h. Dye solution containing tetrazolium was added to the cells in the plates and incubated for 2 h. The absorbance of the formazan produced by living cells was measured at 570 nm. The results were presented as the mean \pm standard deviation (SD) of three independent experiments performed in triplicate. (ns: not significant; p>0.05, * ; p<0.05).

Supplementary Figure S2: Optimization of NPM1 siRNA concentration for NPM1 silence. A549-CUG2 and BEAS-CUG2 cells were treated with siNPM at the different doses (100, 300, and 500 nM) at 12 h post-inoculation. (siNPM1; NPM siRNA) At 48 h post-treatment, the cells were harvested and prepared for cell lysates. Down-regulation of NPM1 was detected by immunoblotting.

Supplementary Figure S3: TGF- β 1 treatment induces EMT in A549-Vec and BEAS-Vec cells. A. Expression of CUG2, E-cadherin, N-cadherin, and vimentin in A549-Vec and BEAS-Vec cells was detected by immunoblotting at 12 h and 24 h post-treatment with TGF- β 1 (5 ng/mL). B. Cell migration was measured in A549-Vec and BEAS-Vec cells at 24 h post-treatment with TGF- β 1 (5 ng/mL) by a wound healing assay. The assays were repeated twice. C. An invasion assay was performed with A549-Vec and BEAS-Vec cells at 24 h post-treatment with TGF- β 1 (5 ng/mL). The assays were repeated twice. Each assay was performed in triplicate and error bars indicate SD. (***; *p*< 0.001). D. A549-Vec and BEAS-Vec cells were treated with TGF- β 1 (5 ng/mL) for 12 h and 24 h. The cells were fractionated into cytosolic and nuclear extracts. Expression of phospho-Smad2, Smad2/3, Snail, and Twist was detected by immunoblotting. Sp1 and actin were used loading controls for nuclear and cytosolic extracts, respectively.

(A)

Supplementary Figure S4: EW-7197 treatment decreases CUG2 expression at the transcriptional level but not at the protein level. A. A549-CUG2 and BEAS-CUG2 cells were treated with EW-7197 (1.25 μ M) and incubated for 48 h. At 8 h before harvest, MG132 (2 μ M) was added in the cells and the cells were prepared for the detection of CUG2 protein levels by immunoblotting. **B.** A549-CUG2 and BEAS-CUG2 cells were treated with EW-7197 (1.25 μ M) and at 24 h post-treatment, the cells were harvest for isolation of total RNAs. After synthesis of cDNAs, qRT-PCR was performed. The assay was repeated twice. Each assay was performed in triplicate. Error bars indicates SD. (***;p<0.001).

Supplementary Figure S5: TGF-\beta1 silence inhibits the CUG2-induced EMT. A. At 48 h post-treatment with TGF- β 1 siRNA (500 nM), expression of TGF- β , E-cadherin, N-cadherin, vimentin, phospho-Smad2, Smad2/3, Snail, and Twist in A549-CUG2 and BEAS-CUG2 cells was detected by immunoblotting. (siCon; control siRNA, siTGF- β 1; TGF- β 1 siRNA) **B.** Cell migration was measured by a wound healing assay in A549-CUG2 and BEAS-CUG2 cells at 48 h post-treatment with TGF- β 1 siRNA. The wound closure areas were monitored by phase-contrast microscopy at a magnification of 100×. The assays were repeated twice. **C.** An invasion assay was performed with A549-CUG2 and BEAS-CUG2 at 48 h post-treatment with TGF- β 1 siRNA. Scale bar indicates 100 µm. The assays were repeated twice. Each assay was performed in triplicate and error bars indicate SD. (***; *p*< 0.001).

Supplementary Figure S6: Treatment with Akt or MAPK inhibitor marginally reduces EMT in A549-Vec and BEAS-Vec cells. A549-CUG2 and BEAS-CUG2 cells were treated with wortmannin (Wort), PD98059 (PD), SP600125 (SP), or SB203580 (SB). A wound healing assay was performed for cell migration. The wound closure areas were monitored by phase-contrast microscopy at a magnification of $100\times$. The assay was repeated twice. Cell invasion assay was performed using 48-well Boyden chambers. The chamber was assembled using polycarbonate filters coated with Matrigel. The assay was repeated twice. Each assay was performed in triplicate. Error bar indicates SD. (ns; p > 0.05, *; p < 0.05, **; p < 0.01).

Supplementary Figure S7: Expression of both CUG2 and NPM1 shows interdependence. A549-CUG2 and BEAS-CUG2 cells were treated with CUG2 siRNA (500 nM) or NPM1 siRNA (500 nM). At 48 h post-treatment, the cells were harvested and CUG2 and NPM1 protein levels were detected by immunoblotting. (siCUG2; CUG2 siRNA, siNPM1; NPM1 siRNA).