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Matrine derivative YF-18 inhibits lung cancer cell proliferation 
and migration through down-regulating Skp2

SUPPLEMENTARY MATERIALS

Synthesis and characterization of YF-18 

Sodium hydride 2.8 g (116 mmol) was added into 
50.0 ml anhydrous THF and then matrine 1.24g (5 mmol) 
was added. The reaction mixture was stirred with slow 
warming to 80 °C for 30min. 1-Naphthaldehyde 1.56 
g (10 mmol) was added into the mixture. The reaction 
termination was monitored by TLC, then cooled down 
to room temperature and the solution was acidified with 
3N HCl until pH reached to 7-8. The aqueous phase was 
extracted with dichloromethane (30 x 3), and the combined 
organic phases was washed with water, brine, and dried 
(Na2SO4) sequentially, then filtered and evaporated 
under reduced pressure to give a yellow residue. Finally, 
the yellow residue was purified with silica gel column 
chromatography (petroleum ether/ethyl acetate = 1:1) to 
give compound YF-18.

Characterization of YF-18

White solid (49% yield), m.p. 173.5-176.3 °C; 1H 
NMR (600 MHz, CD3Cl): δ ppm 8.22 (s, 1H), 8.04~8.00 
(m, 1H), 7.90~7.87 (m, 1H), 7.83 (d, J = 8.4 Hz, 1H), 
7.54~7.51 (m, 2H), 7. 48 (t, J = 7.8 Hz, 1H), 7.33 (d, J 
= 7.2 Hz, 1H), 4.59 (dd, J = 4.2 Hz, J = 12.6 Hz, 1H), 
4.02~3.97 (m, 1H), 3.28 (t, J = 12.6 Hz, 1H), 2.92~2.84 
(m, 2H), 2.73~2.68 (m, 1H), 2.42~2.35 (m, 1H), 2.19 (s, 
1H), 2.12~2.05 (m, 1H), 1.92~1.76 (m, 3H), 1.71~1.57 
(m, 4H), 1.53~1.42 (m, 4H), 1.36~1.26 (m, 2H); 13C 
NMR (150 MHz, CD3Cl): δ ppm 164.70, 133.65, 133.47, 
132.91, 132.62, 131.92, 128.39, 128.14, 126.63, 126.18, 
126.02, 125.08 (2C), 63.82, 57.23 (2C), 53.98, 42.85, 
42.65, 35.64, 27.80, 26.39, 26.23, 23.44, 21.19, 20.77; 
MS, m/z: 386.99 (M+). HRMS: calcd for C26H30N2O 
(M+H)+, 386.2413; found, 387.2489.

Scheme 1: Synthetic route for compound YF-18.

SUPPLEMENTARY FIGURE AND TABLE

Supplementary Figure 1: YF-18 treatment could not induce cell apoptosis in A549, H1975, and 95D lung cancer cells.
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Supplementary Table 1: Substrates of Skp2

Substrate Function Regulation

p27 Cell cycle inhibition Skp2 induces the degradation of p27 [1]

E-cadherin Cell migration regulation Skp2 induces the degradation of E-cadherin [2]

p57 Cell cycle inhibition Skp2 induces the degradation of p57 [3]

p21 Cell cycle inhibition Skp2 induces the degradation of p21 [4]

p130 Cell cycle inhibition Skp2 induces the degradation of p130 [5]

Smad4 Cell cycle arrest Skp2 induces the degradation of cancer-derived Smad4 mutants[6]

CDK9 Transcriptional elongation Skp2 triggers the degradation of CDK9 [7]

Myc Cell cycle regulation and Apoptosis Skp2 triggers the degradation of Myc [8]

FOXO1 Apoptosis Skp2 triggers the degradation of FOXO1 [9]

MKP1 ERK signaling Skp2 triggers the degradation of MKP1 [10]

TOB1 Cell cycle inhibition Skp2 induces the degradation of TOB1 [11]

Brca-2 DNA repair Skp2 triggers the degradation of Brca-2

CyclinD Cell cycle regulation Skp2 induces the degradation of CyclinD [4]

CyclinE Cell cycle regulation Skp2 induces the degradation of CyclinE [12]

Orc1p DNA replication Skp2 triggers the degradation of Orc1p [13]

E2F1 Cell cycle regulation/Apoptosis Skp2 induces the degradation of E2F1 [14]

MEF Cell cycle regulation Skp2 induces the degradation of MEF [15]

Myb Cell cycle regulation Skp2 causes the degradation of Myb [16]

RASSF1A Cell cycle regulation Skp2 induces the degradation of RASSF1A [17]

Cdt1 DNA replication Skp2 triggers the degradation of Cdt1 [18]

Rag-2 DNA recombination Skp2 triggers the degradation of Rag-2 [19]

UBP43 Type 1 IFN signaling Skp2 triggers the degradation of UBP43 [20]
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