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Section S1. UV-vis-NIR Titrations

Section S1.1. Titrations of Porphyrin Monomer P1,, and Monodentate Ligands
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Figure S1: Structures of reference porphyrin monomer P1;, and monodentate ligands.

Titrations with porphyrin monomer P1;, and pyridine or 4-phenylpyridine were performed in order to
determine reference binding constants (K, and Kpp).

All titrations were performed in chloroform (containing ca. 0.5% ethanol as stabilizer) at 298 K. Care was
taking to keep the porphyrin concentration constant throughout the entire titration by adding porphyrin to the
ligand solution before titrations were started. The binding curves were fitted using a 1:1 binding isotherm using
the equation:

A= Apitiar ((Ka([L] +[Ply) + 1) =V (K, ([L] + [P]y) + 1)? — 4K? [P]o[L]>

Aw — Ainitial 2Ka[P]O

where A is the observed absorption at a specific wavelength or the difference of absorbance between two
wavelengths; A;nitiqr is the starting absorption at this wavelength; A, is the asymptotic final absorption at this
wavelength; K, is the association constant between ligand and porphyrin host; [L] is the concentration of
ligand; [P]o is the concentration of porphyrin host. The free variables which were adjusted to optimize the fit to
the experimental data during the fitting procedure are A;nitial, A, and K,. Fitting analysis was carried out
using the Origin software (Figures S2-S7) giving K,y = (3.26 £ 0.25) x 10* M and Kpp =(4.25+0.12) x 10 M.
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Figure S2: UV-vis titration of P1;, and pyridine, R* = 0.9992. (Run 1, CHCl;, 298 K, [P1z,] = 3.21 uM, K = 3.05 x 10° M™).
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Figure S3: UV-vis titration of P1;, and pyridine, R* = 0.9992. (Run 2, CHCl;, 298 K, [P1z,] = 2.98 uM, K = 3.51 x 10° M™).
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Figure S4: UV-vis titration of P1;, and pyridine, R* = 0.9995. (Run 3, CHCl;, 298 K, [P1z,] = 3.62 uM, K = 3.22 x 10° M™).
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Figure S5: UV-vis titration of P1,, and 4-phenylpyridine, R® = 0.9996. (Run 1, CHCl5, 298 K, [P1z,] = 6.37 pM, K =4.24 x 10° M ?).
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Figure S6: UV-vis titration of P1,, and 4-phenylpyridine, R* = 0.9997. (Run 2, CHCls, 298 K, [P1,,] = 6.63 uM, K = 4.37 x 10° M™).
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Figure S7: UV-vis titration of P1,, and 4-phenylpyridine, R* = 0.9996. (Run 3, CHCls, 298 K, [P1,,] = 6.25 uM, K = 4.13 x 10° M™).

Section 1.2. Denaturation Titrations with Pyridine on Heterometallated Oligomers

When binding strength increases, the binding curves become increasingly square, leading to greater
uncertainty in the fit. In order to derive a trustworthy binding constant, denaturation titrations (break-up
titration) need to be performed with a competing ligand such as pyridine. Using the data from these break-up
titrations (Ky, = denaturation constant) and the formation constant of the single site binding event of the
competing ligand with a zinc-porphyrin monomer (Kp, = association constant for pyridine to P1z,) allows us to
derive the formation binding constant (Ky) between the oligomers (N = number of zinc porphyrin binding sites)
and the template using the following equation:

KN
K= by
Kdn

via the thermodynamic cycle shown in Figure S8.
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Figure S8: Thermodynamic cycle relating the formation constant of the template complex (K;) to the denaturation constant (Ky,) and
binding constant of each porphyrin unit for pyridine (K,).

All the linear pentamers were found to interact strongly with the templates T5 and T4 and therefore
denaturation titrations were performed on these complexes in order to determine binding constants.

Denaturation titrations were performed in chloroform at 298 K. The 1:1 complexes between the porphyrin
oligomers and templates were prepared in the cuvette prior to the denaturation titration. All formation
titrations were carried out at constant porphyrin concentrations by adding porphyrin to the ligand (T5 or T4)
stock solution and titrating until a 1:1 complex was formed according to UV. All denaturation titrations were
carried out at constant porphyrin-template complex concentration by adding both porphyrin and template to
the ligand (pyridine) stock solution before titrations started.

Data were fitted to the N-dentate denaturation binding isotherm described in the following equation:

- N 2 2N N
R i +JKdn[L] + 4K [LIV [Plo
A = Apnitial 2[P],

where A is the observed absorption at a specific wavelength or difference of absorption between two
wavelengths; A;nitiqr is the starting absorption at a specific wavelength or difference between absorption in
two wavelengths; A, is the terminal absorption at a specific wavelength or difference of absorption in two
wavelengths; Ky, is the dissociation constant between ligand and porphyrin oligomer complex, [L] is the
concentration of ligand; [Plo is the concentration of porphyrin oligomer complex, N is the number of binding
sites in the complex (e.g. N = 4 in P5¢,-T4). The titration curves and fittings are shown below.

Table S1: Results from UV-vis-NIR titrations in Figures S9-S16

- 9.07+1.99x10°  1.10+0.29 x 10° 1.72 +0.45 x 10°

244+026x10°  4.10+0.71 x 10° 32 1.28+0.22 x 10°
8.08+0.27x10°  1.24+0.17 x 10 64 1.93 +0.27 x 10°

8.95+0.26 x 10° 1.12 +0.16 x 10’ 64 1.74 +0.25 x 10°
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Figure S9: UV-vis-NIR titration of pyridine and P5¢,T5. R* = 0.9980. (Run 1, CHCl;, 298 K, [P5¢,-T5] = 1.08 uM, K = 1.10 x 10° M)
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Figure S10: UV-vis-NIR titration of pyridine and P5¢,-T5. R* = 0.9983. (Run 2, CHCls, 298 K, [P5¢,'T5] = 1.08 uM, K = 7.07 x 10° M).
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Figure S11: UV-vis-NIR titration of pyridine and P5,,-T5. R* = 0.9971. (Run 1, CHCl;, 298 K, [P5,4-T5] = 1.01 uM, K = 2.69 x 10" M)
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Figure S12: UV-vis-NIR titration of pyridine and P5,,-T5. R* = 0.9967. (Run 2, CHCl;, 298 K, [P5,4-T5] = 1.26 uM, K = 2.18 x 10" M)
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Figure S13: UV-vis-NIR titration of pyridine and P5¢,-T4. R* = 0.9994. (Run 1, CHCls, 298 K, [P5¢,'T4] = 1.21 uM, K = 8.05 x 10° M3).
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Figure S14: UV-vis-NIR titration of pyridine and P5¢,-T4. R* = 0.9991. (Run 2, CHCls, 298 K, [P5¢,-T4] = 1.22 uM, K = 8.11 x 10° M3).
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Figure S15: UV-vis-NIR titration of pyridine and P5,,-T4. R* = 0.9986. (Run 1, CHCl;, 298 K, [P5,4-T4] = 1.25 uM, K = 9.21 x 10° M),
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Figure S16: UV-vis-NIR titration of pyridine and P5,,-T4. R* = 0.9984. (Run 2, CHCl;, 298 K, [P5,4-T4] = 1.24 uM, K = 8.70 x 10° M)
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Section 1.3. Denaturation of P5,,-T5 with Pyridine

Denaturation titrations were performed on the complex P5z,°T5 with pyridine under the same conditions as

described in Section 1.2.
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Figure S17: UV-vis-NIR titration of pyridine and P5,,-T5. R*=0.9982. (Run 1, CHCI3, 298 K, [P57,°T5] = 1.71 uM, K =
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Figure S18: UV-vis-NIR titration of pyridine and P5,,-T5. R*=0.9983. (Run 2, CHCl;, 298 K, [P5,,-T5] = 1.69 uM, K =

5.06 x 10°M™).
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Figure S19: UV-vis-NIR titration of pyridine and P5,-T5. R* = 0.9962. (Run 3, CHCl;, 298 K, [P5z,'T5] = 1.83 uM, K = 4.49 x 10° M™*).

The denaturation constant, 4.58 + 0.48 x 10° M™, was translated into a statistically corrected association
constant of 1.1 + 0.4 x 10" M. To elucidate the effective molarity of the central porphyrin in the chain, we
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look at a single mutation in which we compare the stability of P52,-T5 (1.1 + 0.4 x 102 M) to the stability of
P5,4-T5 (1.3 £ 0.2 x 10° M ™) according to the thermodynamic cycle below.

Kehem = 1.1 x 1012 M1 Kehem = 1.3 X 105 M~

Figure S20: Complexes used to determine the interaction between the zinc center in the central porphyrin and the pyridine leg of the
template T5 in CHCI; at 298 K. (Ar = 3,5-di-tert-butylphenyl) in order to determine the effective molarity of the central porphyrin.

The thermodynamic cycle shows the relationship between the individual species and allows us to determine
the EM:

K¢(P54, ' T5)

Kf(PSZH * T5)

B (1.1x10%2%)

~ (2.1x103)x(1.3x105)

KpnEM =

EM =4.0x103 M

where Kpy, is the equilibrium constant of the porphyrin monomer P1;, binding to 4-phenylpyridine (see Section
1.1). We determined the effective molarity of the central porphyrin unit as 4 + 1 x 10> M.
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Section S2. Calculation of Statistical Factors

To understand the stability constants of different complexes, it is useful to factor out statistical contributions.
Thus, a measured equilibrium constant K., can be factorized into its statistical component K, and its statistically
corrected value Kgem according to the following equation:

wA +xB=yC+ zD
_QZQ5 _QRQ3QIQ
“CQReE QB QRQE

where for each species i, Q; is the partition coefficient, Q’; is the statistically corrected partition coefficient, and

JKChem

o; is the symmetry number.?

Values of K, were calculated using Benson’s symmetry number method.*® The symmetry number (o) of each
species is the product of its external symmetry number, 0., (calculated from the point group of the molecule)
and its internal symmetry number, o;,;, (calculated from the number of degenerate internal rotors). The values
of o for all the complexes involved are shown in Table S2. The external symmetry number is defined as the
number of different but indistinguishable atomic arrangements that can be obtained by rotating a given
molecule as a whole as a rigid object. The internal symmetry number is defined as the number of different but
indistinguishable atomic arrangements that can be obtained by internal rotations around single bonds.

Table S2: Internal, external and total symmetry numbers for each component.*

component point group Oint Ooxt o
pyridine Cov 1 2 2
4-phenylpyridine Cov 1 2 2
T5 Cyy 1 2 2

T4 Dan 1 4 4

P1;, Dap, 1 4 4
PS4 D2n 2*=16 4 64
PSc, Dan 2*=16 4 64
P52 Dan *=16 4 64
P54 T5 Caoy 2 2 4
PS¢, T5 Coy 1 2 2
P5z,- TS Cay 1 2 2
P5,4- T4 Cyy 2 2 4
P5¢, T4 Cyy 2 2 4

[* Note that when counting internal rotations and calculating o0;,;, we do not include rotors which are unaffected by the
binding process, such as the para-phenylene links in T5 because if a rotor is unaffected by the binding process it has no
influence on Kj.]
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Figure S21: Statistical factors involved in the formation and denaturation (pyridine) of the P5¢,-T5 complex. K, = 64.
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Figure S22: Statistical factors involved in the formation and denaturation (pyridine) of the P5,,4-T5 complex. K, = 32.
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Figure S24: Statistical factors involved in the formation and denaturation (pyridine) of the P5,,4:T4 complex. K, = 64.
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Section $3. ‘H NMR Spectra of Linear Pentamers

The Figure below shows the aromatic region of the proton NMR spectra corresponding to the linear pentamers
containing either a central copper (P5¢,) or a zinc porphyrin (P5z,). Due to the large similarity in the chemical
environments of many of the signals, much overlap is observed. The overlap prevents us from being able to
determine the T, and T, relaxation times but we can clearly see that the fine structure of the signals in P5¢,
which are spatially far removed from the paramagnetic copper center is retained (e.g. signals a and b) in P5¢,.

I-P5 .
falm ol
g ehkn 2 e
. : . P
] 1 1 ] 1 1
10.0 9.5 9.0 85 8.0 7.5

Figure S25: The "H NMR spectra (CDCl3, 400 MHz, 298 K) of P5, and P5;, and the general signal assignment for the oligomer. Only the
aromatic part of the spectrum is shown. The signals assigned with the red dots correspond to ds-pyridine.

Section S4. DFT Calculations

Constrained DFT geometry optimizations were carried out for several fixed separation distances between
pyridine and the central metal of the porphyrin unit to explore the binding strength of pyridine to Pl¢, in
comparison to Plz,. The optimizations were carried out in Turbomole V6.1° under C, symmetry using
DFT/B3LYP in combination with the TZVP basis set,” Rl-approximation® and an empirical dispersion correction

. 9,10
to the energies.”

The SCF energy differences with respect to the minimum structure were then plotted as a function of the
metal-pyridine separation distance and are shown in Figure S26. From these calculations, the following
conclusions can be drawn: The metal---pyridine equilibrium separation distance (d;) is calculated to be 2.18 A
for P1,, whereas it is found to be 2.35 A for P1¢,. The potential energy gain for P1c, is considerably less than

for P1;,, indicating that the binding of pyridine is weaker in the case of copper as the central metal. However,
S14



since we are only comparing SCF energies, no relative numbers shall be given here. Without dispersion
correction equilibrium M---Np, separation distances of 2.25 A and 2.59 A are obtained for P1;, and Plg,
respectively.

80- ,././l\./l:—Zn
S P
: /

- /' /0""—_—
2 40- ot SSCS
LLl
< \n/:/ ./'/

0_

TN

Figure S26: Total SCF energy differences with respect to the minimum structure as a function of the metal---pyridine separation
distance for P1¢, (green line) and P1,, (red line) obtained from a constraint geometry optimization in Turbomole using DFT/B3LYP in
combination with the TZVP basis set and including dispersion correction for the energies.

Regarding the geometry of P1;,:-Py, experimental data are available from X-ray crystallography in the CSD
database. A statistical analysis of all available experimental data was found to yield a value of 2.16 + 0.03 A as
the mean zinc-pyridine separation distance,* which is in very good agreement with the presented DFT results.
A similar analysis based on X-ray data for the distance between the zinc atom and the porphyrin plane results
in a mean value of 0.24 + 0.06 A. This result compares favourably with the distance of 0.28 A obtained for
P1;, from the DFT calculations in this work. In the equilibrium geometry, the zinc atom is thus markedly pulled
out of the porphyrin plane as is also shown in graphical form in Figure S27. For P1¢,--Py a distance of 0.12 A is
found by DFT, indicating that the copper atom roughly remains in the centre of the porphyrin plane even when
a pyridine ligand is bound.

Figure S27: Side-view of the optimized minimum geometries of P1,,:-Py (left) and P1c,-Py (right). The zinc center is pulled further
out of the plane of the porphyrin upon binding pyridine and a smaller seperation distance is found.

Figure S27 shows a comparison of the optimized structures for P1z, Py and Plc, Py obtained from DFT to
illustrate the different equilibrium metal---pyridine separation distances and the different locations of the
metal atom with respect to the porphyrin plane. The calculated equilibrium metal---pyridine separation
distance is increased in P1c,--Py (2.35 A) as compared to P1,--Py (2.18 A). Upon binding of a pyridine ligand,
the zinc atom is markedly pulled out of the porphyrin plane, whereas the position of the copper atom with
respect to the porphyrin plane is much less affected.
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Section S5. T; and T, Relaxation Time Constant Measurements

Section $5.1. T, Measurements on P3,,
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Figure S28: The '"H NMR spectrum of P3,, (CDCl;, 700 MHz, 298 K). Only the aromatic part of the spectrum is shown. The graph below
shows the cross signals between chemical shift of the proton signals with respect to the corresponding T; relaxation time constants.

Table S3. Summary of the data describing the chemical shift of the aromatic proton signal of P3,, with the
accompanying T, relaxation time constants.

f 9.987 3.33 0.098
g 9.928 3.32 0.10
a 9.749 2.53 0.048
e 9.106 2.68 0.024
h 9.031 2.78 0.041
b 8.992 2.51 0.026
i 8.178 2.24 0.16
c 8.121 2.22 0.015
i 7.901 2.15 0.020
d 7.872 2.08 0.020
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Figure S29: Inversion recovery curves and exponential fits for the T;’s of P3,, peaks a—j.
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Section $5.2. T, Measurements on P3,,
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Figure S30: The '"H NMR spectrum of P3,, (CDCl;, 700 MHz, 298 K). Only the aromatic part of the spectrum is shown. The graph below
shows the cross signals between chemical shift of the proton signals with respect to the corresponding T, relaxation time constants.

Table S4. Summary of the data describing the chemical shift of the aromatic proton signal of P3,, with the
accompanying T, relaxation time constants.

Peak name 6 (ppm) T, (s) error (s)
f 9.987 0.0564 0.0019
g 9.927 0.0520 0.0017
a 9.750 0.0599 0.0058
e 9.106 0.190 0.0209
h 9.031 0.0729 0.0036
b 8.991 0.177 0.0281
i 8.178 0.639 0.0092
c 8.122 0.698 0.0165
j 7.901 0.775 0.0321
d 7.872 0.748 0.0135
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Figure S31: CPMG relaxation curves and exponential fits for the T,’s of P3,, peaks a—j.
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Section §5.3. T, Measurements on P3¢,
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Figure S32: The 'H NMR spectrum of P3¢, (CDCl;, 700 MHz, 298 K). Only the aromatic part of the spectrum is shown. The graph below
shows the cross signals between chemical shift of the proton signals with respect to the corresponding T; relaxation time constants.

Table S5. Summary of the data describing the chemical shift of the aromatic proton signal of P3¢, with the
accompanying T, relaxation time constant.

f 9.878 0.146 0.033
a 9.753 0.880 0.024
e 9.063 0.346 0.019
b 8.983 1.12 0.022
c 8.110 0.813 0.004
d 7.871 1.10 0.003
j 7.767 0.099 0.020
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Figure S33: Inversion recovery curves and exponential fits for the T,’s of P3¢, peaks a—j.
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Section $5.4. T, Measurements on P3¢,
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Figure S34: The 'H NMR spectrum of P3¢, (CDCl;, 700 MHz, 298 K). Only the aromatic part of the spectrum is shown. The graph below
shows the cross signals between chemical shift of the proton signals with respect to the corresponding T, relaxation time constants.

Table S6. Summary of the data describing the chemical shift of the aromatic proton signal of P3¢, with the
accompanying T, relaxation time constants.

f 9.887 0.00474 0.00018
a 9.756 0.0116 0.0003
e 9.060 0.00867 0.00040
b 8.980 0.0128 0.0004
c 8.114 0.0318 0.0012
d 7.875 0.0831 0.0028
i 7.774 0.0106 0.0009
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Figure S35: CPMG relaxation curves and exponential fits for the T,’s of P3¢, peaks a-j.
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Section 55.5. R, and R, decay rate versus distance plots

The dipolar relaxation rate is expected to depend on the inverse of the 6" power of the distance between a
nucleus and an electron. We have taken the experimental T; and T, relaxation time constants and plotted the
change in the corresponding rates (R, = 1/T; and R, = 1/T,) between P3¢, and P3,4 to the distance between the
copper center and the corresponding proton. The distance is estimated from crystal structures of similar
oligomers. The experimental data were fitted to equation (S1):

y = TA;G (1)
1 1 1 1
T(P3)  Ti(P3zm) O T:(P3cy)  T>(P3zm)
proton and metal center and A is a free fitting parameter. The T, data fit with relatively good accuracy,
confirming the expected distance dependence. The trend can also be observed for the T, data but the variation
in the points in much larger and only an overall trend can be observed relating dipolar relaxation and distance

between the two nuclei.

where y is the change in relaxation rate ( ), r is the distance between the

1 2 ] Model NewFunction4 (User) 200_ f Model ~ NewFunction4 (User)
] ) Equation A/(x"6) E é Equation A/(x"6)
] Reduced 0.324 1 Reduced 5209.3
Chi-Sor ] Chi-Sar
] Adj. R-Sq 0.975 1 Adj. R-S -0.4664
81 = Value Standard 1 Value Standard
] B A 4.3190 207047.5 1 B A 7.0787 2.62226
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Figure $36: Changes in relaxation rates from comparing R; and R, values in P3¢, and P3,, for peaks a—j.
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Section S6. Experimental Procedures

General Experimental

Dry toluene and THF were obtained by passing the solvents through columns of alumina, under
nitrogen. Diisopropylamine (DIPA) was distilled from CaHz and kept over activated molecular sieves (3
A, 8-12 mesh). Unless specified otherwise, all other solvents were used as commercially supplied.
Flash chromatography was carried out on silica gel 60 under positive pressure. Analytical thin-layer
chromatography was carried out on aluminum-backed silica gel 60 F254 plates. Visualization was
achieved using UV light when necessary.

All UV-vis-NIR spectra were recorded in solution using a Perkin-Lambda 20 spectrometer (1 cm path
length quartz cell). Chloroform (containing ca. 0.5% ethanol as stabilizer) was used for all titrations
without any further purification.

Unless stated otherwise, *H/*C NMR spectra were recorded at 298 K using Bruker AV400 (400/100
MHz), Bruker AV500 (500/125 MHz), Bruker AV600 (600/150 MHz), Bruker AV700 (700/175 MHz)
instruments. *H, and *C NMR spectra are reported in ppm; coupling constants are given in Hertz, to
the nearest 0.1 Hz. The solvent used were CDCl3s or a mixture of CDCls and pyridine-ds (99:1 by
volume).

MALDI-TOF mass spectra were carried out using Waters MALDI Micro MX spectrometer.
Free-base 10,20-di-trihexyl(ethylnyl)silane-5,15-bis-(3,5-di-tert-butylphenyl)porphyrin (P1,4)

P1;, (955 mg, 0.7 mmol) was dissolved in CHCI; (250 mL).
Trifluoroacetic acid (2.7 mL) was mixed with CHCl; (24
mL) to give a 10% solution). Both solutions were
degassed. The TFA solution was added dropwise to the
porphyrin solution and the reaction mixture was stirred
at room temperature under nitrogen for 15 min. UV and
TLC indicated the completion of the reaction and the
mixture was passed immediately through a short plug of
silica gel (CHCl3). Column chromatography (50:1:1, 40-60
petroleum ether : ethyl acetate : pyridine) gave the title
compound as a dark solid (622 mg, 68%).

'H NMR (400 MHz, CDCls, 298 K): &y (ppm) 9.62 (4H, d, J

=4.7 Hz, H2), 8.85 (4H, d, J = 4.7 Hz, H3), 8.04 (4H, bd, J = 1.5 Hz, H4), 7.82 (2H, bt, H6), 1.55 (36H, s, H5), 1.75—
0.61 (78H, m, H1),—2.12 (2H, s, H7).

3¢ NMR (125 MHz, CDCls, 298 K): 8¢ (ppm) 149.0, 140.3, 129.7, 123.1, 121.3, 108.1, 101.0, 100.8, 35.0, 33.3,
31.7,24.4,22.7,14.2,13.8.

MALDI-TOF: m/z = 1299 (CggH130N4Si>, M* requires 1300).
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Free-base 10,20-di-ethynyl-5,15-bis-(3,5-di-tert-butylphenyl)porphyrin (P1”,4)

P1,4 (100 mg, 0.077 mmol) was dissolved in CH,Cl, (25 mL) under a flow of
nitrogen. Tetra-n-butylammonium fluoride solution (1.0 M in THF, 1.31 mL,
1.31 mmol) was added dropwise to the reaction mixture and was stirred at
room temperature for 15 min. The crude reaction mixture was immediately
passed through a short plug of silica gel (CHCl;). The product was
recrystallized by layer addition (CH,Cl,/MeOH) to give the title compound as
a purple powder (42.4 mg, 76%).

'H NMR (400 MHz, CDCls, 298 K): 8,1 (ppm) 9.66 (4H, d, J = 4.7 Hz, H2), 8.91
(4H, d, J = 4.7 Hz, H3), 8.05 (4H, bd, J = 1.6 Hz, H4), 7.78 (2H, bt, H6), 4.20
(2H, s, H1), 1.56 (36H, s, H5), —2.26 (2H, s, H7).

3¢ NMR (100 MHz, CDCls, 298 K): 6c (ppm) 149.2, 140.4, 130.0, 123.3,
121.5,99.4, 85.7, 84.5, 35.2, 31.9, 29.9.

MALDI-TOF: m/z = 734 (Cs,HssN4, M* requires 735).

Copper 5,15-(3,5-bis-tert-butyl-phenyl)-10,20-bis-trihexylsilanylethynyl-porphyrin (P1c,)

P1,, (47.6 mg, 0.036 mmol) was dissolved in CHCl; (15
mL). Cu(OAc),-H,0 (333 mg, 1.67 mmol) was added and
the reaction was stirred at reflux for 2 h under nitrogen.
The reaction mixture was allowed to cool to room
temperature after which MeOH was added to the
reaction mixture to precipitate the product. The
product was filtered and washed with MeOH to give a
green solid (38.6 mg, 77%).

'H NMR (400 MHz, CDCls, 298 K): &4 (ppm) broad.
MALDI-TOF: m/z = 1361 (CggH15CuN,Si», M* requires
1362).

Amax (CHCl3) / nm log(e): 610 (4.59), 567 (4.25), 434
(5.66).
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P2’

(CeH13)Si

The dimer P2 (0.54 g, 0.25 mmol) was dissolved in CH,Cl, (60 mL), CHCl; (60 mL) and pyridine (1.2 mL). Tetra-n-
butylammonium fluoride (0.375 mL, 1.0 M solution in THF, 0.375 mmol) was added to the stirred solution
dropwise. The progress of the reaction was monitored by TLC until an optimal product mixture was reached.
The mixture immediately was passed through a short plug of silica gel (CHCl; + 1% pyridine). Column
chromatography (30:1:1, 40-60 petroleum ether : ethyl acetate : pyridine) gave:

P2’ (179.0 mg):

'H NMR (400 MHz, CDCl; + 1% pyridine-ds, 298 K): 6, (ppm) 9.93 (2H, d, J = 4.6 Hz, H8 or H9), 9.91 (2H, d, J =
4.6 Hz, H8 or H9), 9.69 (2H, d, H2 or H12), 9.68 (2H, d, H2 or H12), 9.02 (2H, d, H7 or H10), 9.01 (2H, d, H7 or
H10), 8.94 (2H, d, J = 4.6 Hz, H3 or H11), 8.91 (2H, d, J = 4.5 Hz, H3 or H11), 8.07 (8H, m, H4), 7.83 (4H, m, H6),
4.20 (1H, s, H13), 1.79-0.92 (39H, m, H1), 1.58 (72H, s, H5).

P2” (36.5 mg):
'H NMR (400 MHz, CDCls, 298 K): & (ppm) 9.93 (4H, d, J = 4.5 Hz, H8), 9.66 (4H, d, J = 4.5 Hz, H2), 8.98 (4H, d, J
= 4.5 Hz, H7), 8.91 (4H, d, J = 4.5 Hz, H3), 8.04 (8H, m, H4), 7.80 (4H, m, H6), 4.16 (2H, s, H1), 1.55 (72H, s, H5).

P2 Recovered starting material (131.5 mg).
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P3,,"

P1”,4 (10.0 mg, 0.013 mmol), P1’ (73.5 mg, 0.068 mmol), Pd,(dba); (4.36 mg, 0.0047 mmol), tri-2-
furylphosphine (8.84 mg, 0.038 mmol) and 1,4-benzoquinone (13.2 mg, 0.122 mmol) were dissolved in a
mixture of toluene : EtsN (5 : 1) (16 mL). The reaction mixture was stirred at 60 "C overnight. The solvents were
removed and the mixture was purified over a plug of silica gel (CHCl; + 1% pyridine). A small SEC column (CHCl;
+ 1% pyridine) was used to remove the 1,4-benzoquinone. A large SEC column (toluene + 1% pyridine) was
used for separating of the trimer species (15.4 mg, 39%).

'H NMR (700 MHz, CDCls, 298 K): & (ppm) 9.89 (4H, d, J = 4.5 Hz, H8), 9.88 (4H, d, J = 4.5 Hz, H9), 9.66 (4H, d, J
=4.5 Hz, H2),9.00 (4H, d, J = 4.6 Hz, H7), 8.98 (4H, d, J = 4.7 Hz, H10), 8.89 (4H, d, J = 4.5 Hz, H3), 8.14 (4H, d, J =
1.8 Hz, H11), 8.05 (8H, d, /= 1.8 Hz, H4), 7.87 (2H, t, J = 1.8 Hz, H13), 7.81 (4H, t, J = 1.8 Hz, H6), 1.77-0.90 (78H,
m, H1), 1.59 (36H, s, H12), 1.56 (72H, s, H5), —1.51 (2H, s, H14).

3C NMR (100 MHz, CDCls, 298 K): 8¢ (ppm) 153.1, 152.4, 151.0, 150.5, 149.3, 149.1, 141.2, 133.7, 133.2, 131.5,
131.0, 130.2, 129.9, 124.8,124.4,121.7,121.3, 35.3, 35.3, 33.5, 32.0, 31.9, 24.5, 22.9, 14.3, 14.0.

MALDI-TOF: m/z = 2893 (C19,H230N12Si2Zn,, M* requires 2894).

Amax (CHCI3) / nm log(g): 752 (5.15), 661 (4.96), 485 (5.29), 455 (5.70).

P3Cu

Si(CeHis)s

P3,4 (4.5 mg, 1.6 umol) was dissolved in chloroform (4 mL). Cu(OAc),-H,0 (12.2 mg, 67 mmol) was added as a
solid and the reaction was stirred at 60°C for 1 h. The reaction mixture was allowed to cool down to room
temperature after which MeOH was added to the reaction mixture to crash out the product. The precipitate
was filtered and washed with MeOH to give a red/brown solid (4.8 mg, 100%).

'H NMR (700 MHz, CDCls, 298 K): &y (ppm) 9.87 (4H, m, H8), 9.74 (4H, m, H2), 9.05 (4H, m, H7), 8.96 (4H, m,
H3), 8.09 (8H, m, H4), 7.86 (4H, m, H6), 7.75 (2H, m, H13), 1.59 (108H, m, H5 + H12), 1.89-0.80 (78H, m, H1).
MALDI-TOF: m/z = 2953 (C195H225CuN1,Si-Zn,, M requires 2954).

Amax (CHCI3) / nm log(g): 726 (5.20), 666 (4.89), 486 (5.37), 454 (5.65).
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P5,,"

P1”,4 (20.0 mg, 0.027 mmol), P2’ (254.1 mg, 0.14 mmol), Pd,(dba); (12.3 mg, 0.014 mmol), tri-2-furylphosphine
(25.2 mg, 0.11 mmol) and 1,4-benzoquinone (37.7 mg, 0.35 mmol) were dissolved in a mixture of toluene and
triethylamine (5:1) (37 mL). The reaction mixture was stirred at 60 °C overnight. The solvents were removed
and the mixture was purified over a plug of silica gel (CHCl; + 1% pyridine). A small SEC column (CHCl; + 1%
pyridine) was used to remove the 1,4-benzoquinone. Recycling GPC (1% pyridine in toluene) was used for true
separation (P5,4: 49.3 mg, 41%, P4: 124.8 mg, 33%).

'H NMR (500 MHz, CDCls, 298 K): &4 (ppm) 9.92 (16H, m , H8 + H9 + H15 + H16), 9.68 (4H, d, J = 4.5 Hz, H2),
9.02 (16H, m, H7 + H10 + H14 +H17), 8.91 (4H, d, J = 4.5 Hz, H3), 8.16 (4H, d, /= 1.8 Hz, H18), 8.12 (8H, d, /= 1.8
Hz, H11), 8.07 (8H, d, J = 1.8 Hz, H4), 7.89 (2H, t, / = 1.8 Hz, H20), 7.86 (4H, t, J = 1.8 Hz, H13), 7.83 (4H, t,/=1.8
Hz, H6), 1.77-0.91 (78H, m, H1), 1.62 (36H, s, H19), 1.60 (72H, s, H5 or 12), 1.59 (72H, s, H5 or H12), —1.48 (2H,
s, H21).

MALDI-TOF: m/z = 4485 (Cyo6H330N20Si2Zns, M™ requires 4486).

Amax (CHCI3) / nm log(g): 783 (5.43), 682 (5.09), 489 (5.64), 458 (5.79).

P5Cu

(CeH13)sSi

P5,4 (40 mg, 10.2 umol) was dissolved in CHCIl3 (10 mL). Cu(OAc),-H,0 (12.7 mg, 0.383 mmol) was
added as a solid and the reaction was stirred at 60°C for 1 h. The reaction mixture was allowed to cool
down to room temperature after which MeOH was added to the reaction mixture to crash out the
product. The precipitate was filtered and washed with MeOH to give a red/brown solid (29.5 mg,
73%).

'H NMR (400 MHz, CDCls, 298 K): &, (ppm) 9.90 (m, -ArHg), 9.67 (d, J = 4.4 Hz, -ArHp), 9.00 (m, -ArHj),
8.90 (d, J = 4.6 Hz, -ArHp), 7.82 (M, -ArHomno), 8.08 (M, -ArHya:), 1.57 (m, -tBuH), 1.77 (m, -CeHy3), 1.39 (m,
~CgH13), 1.02 (m, -CeH13), 0.90 (m, -CeHas).
MALDI-TOF: m/z = 4545 (Cae6H323N20CUSi,ZNns, M* requires 4547).
Amax (CHCI3) / nm log(g): 764 (5.45), 693 (5.07), 492 (5.63), 457 (5.75).
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P5"Cu

P5¢, (28 mg, 6.16 pmol) was dissolved in CH,Cl, (9 mL) and pyridine (9 pL). Tetra-n-butylammonium fluoride
solution (1.0 M in THF) (124 uL, 0.123 mmol) was added dropwise to the reaction mixture and was stirred at
room temperature for 15 min. After the completion of the reaction, MeOH was added to the reaction mixture
to crash out the product. The precipitate was filtered and washed with MeOH to give a red/brown solid (21.1
mg, 86%).

MALDI-TOF: m/z = 3976 (Cy60H25.CuN»oZns, M* requires 3982).

C-PGCuz

Hexadentate template T6 (81 mg, 81.6 umol) and P3”¢, (65 mg, 27.2 umol) were dissolved in CHCI3 (150 mL). A
solution of PdCl,(PPhs), (9.5 mg, 13.6 umol), Cul (9.5 mg, 50.3 umol), 1,4-benzoquinone (29.4 mg, 272 umol) in
CHCI; (10 mL) and diisopropylamine (0.5 mL) was added to the porphyrin solution and stirred at room
temperature overnight. The reaction mixture was passed through a plug of alumina using CHCl; as eluent. The
solvent was evaporated and redissolved in 1% pyridine in chloroform and passed over a SEC column (1%
pyridine in chloroform). Lastly, the ring was purified by recycling GPC (1% pyridine in toluene) to give the title
compound (1.8 mg, 2%).

'H NMR (600 MHz, CDCls, 298 K): 8, (ppm) 9.71-9.31 (m, -ArHpg), 8.93-8.68 (m, -ArHpg), 8.05 (s, -ArHqrho), 7.83
(s, -ArHpara), 7.78 (s, -ArHpara), 5.77 (m, T6), 5.68 (m, T6), 5.14 (m, T6), 2.34 (m, T6), 2.02 (m, T6), 1.59 (s, -tBuH).
MALDI-TOF: m/z = 4787 (C320H300Cu2N24Zns, M* requires 4774).

Amax (CHCI3) / nm log(g): 480 (5.67), 761 (5.47), 797 (5.58), 838 (5.55).
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Pentadentate template T5 (5.10 mg, 6.04 umol) and P5”¢, (8.02 mg, 2.01 umol) were dissolved in
CHCl;3 (8 mL). A solution of PdCl,(PPhs3), (0.71 mg, 1.01 umol), Cul (0.71 mg, 3.73 umol), 1,4-
benzoquinone (2.18 mg, 20.1 umol) in CHCl;3 (0.7 mL) and diisopropylamine (35 pL) was added to the
porphyrin solution and stir at room temperature overnight. The reaction mixture was passed through
a plug of alumina using CHCI; as eluent. The solvent was evaporated and redissolved in 20% pyridine
in chloroform and passed over a SEC column (20% pyridine in chloroform) to remove the template.
Lastly, the ring was purified by recycling GPC (1% pyridine in toluene) to give the title compound (1.33
mg, 17%).

'H NMR (500 MHz, CDCls, 298 K): 6 (ppm) 9.87-9.77 (m, -ArHg), 9.02—-8.85 (m, -ArHg), 8.08-7.98 (m, -
ArHortho), 7.84=7.77 (M, -ArHpara), 6.58 (s, bound pyridine), 5.86 (s, bound pyridine), 3.77 (s, bound
pyridine), 1.55 (s, -tBuH(cy)), 1.54 (s, -tBuH zn)).

MALDI-TOF: m/z = 7960 (Cs20Hs00Cu2N4oZns, M* requires 7960).

Amayx (CHCI3) / nm log(g): 806 (5.67), 771 (5.67), 495 (5.91).

Tetradentate template T4

Under an argon atmosphere 1,2,4,5-tetrabromobenzene (52 mg,
0.13 mmol), 4-[4-(tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl]pyridine (370 mg, 1.04 mmol), Pd(OAc), (6.0 mg, 0.03
mmol), SPhos (21.7 mg, 0.05 mmol) and Cs,CO; (859 mg, 2.60
mmol) were dissolved in toluene (3.25 mL), EtOH (0.65 mL) and
H,0 (0.65 mL). Oxygen was removed from the reaction mixture
by three freeze-pump-thaw cycles after which the mixture was
heated at 70 °C for 16 h. TLC (DCM:MeOH:Et;N = 8:1:0.1)
indicated the full consumption of the starting material, the

mixture was allowed to cool to room temperature after which
the product was extracted with CHCIl; and washed with H,0 and brine. The organic layer was dried over MgSO,
and concentrated in vacuo. The off-white solid was washed with MeOH and purified further by silica gel
column chromatography (dry loading, DCM:MeOH:Et;N = 100:1:0.25 = 100:6:0.5) to give T4 as a pale white
powder (45 mg, 49%).

'H NMR (400 MHz, CDCls, 298 K): 84 (ppm) 8.66 (8H, d, J = 5.9 Hz, H1), 7.66 (2H, s, H5), 7.60 (8H, d, J = 8.3 Hz,
H3), 7.52 (8H, d, /= 5.9 Hz, H2), 7.41 (8H, d, J = 8.3 Hz, H4).

3¢ NMR (100 MHz, CDCI3, 298 K): 8¢ (ppm) 150.7, 147.9, 141.8, 139.7, 137.0, 133.5, 131.0, 127.2, 121.7.
MALDI-TOF: m/z = 691 (CsoH3:N4, M" requires 690).
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Section S7. Spectra Confirming Identity of New Compounds
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Figure S37: The "H NMR spectrum of P1,, (400 MHz, CDCl;).
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Figure $38: The MALDI-MS spectrum of P1,, (m/z = 1299 (CggH130N,Sio, M requires 1300), matrix: dithranol).
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Figure $39: The MALDI-MS spectrum of P1¢, (m/z = 1361 (CggH1,5CuN,Si,, M” requires 1362), matrix: dithranol).
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Figure S40: The '"H NMR spectrum of P2’ (400 MHz, CDCl; + 1% pyridine-ds).
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Figure S41: The "H NMR spectrum of P1”’,, (400 MHz, CDCl3).
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Figure $42: The MALDI-MS spectrum of P1”,, (m/z = 734 (Cs,HssN4, M* requires 735), matrix: dithranol).
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Figure S43: The 'H NMR spectrum of P3,, (700 MHz, CDCl,).
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Figure S44: The MALDI-MS spectrum of P3,,, (m/z = 2893 (C19,H230N1,5i,Zn,, M* requires 2894), matrix: dithranol).
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Figure S45: The "H NMR spectrum of P3¢, (700 MHz, CDCl;).
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Figure S46: The MALDI-MS spectrum of P3¢, (m/z = 2954 (C15,H,25CuN;,Si,Zn,, M requires 2955), matrix: dithranol).
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Figure S47: The "H NMR spectrum of P5,, (500 MHz, CDCl; + 1% ds pyridine).
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Figure S48: The MALDI-MS spectrum of P5,,, (m/z = 4485 (C96H330N205i,Zns, M* requires 4486), matrix: dithranol).
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Figure S49: The '"H NMR spectrum of P5¢, (500 MHz, CDCl; + 1% d;s pyridine).
100 454723 450003
j 4543.23 4550.23
Q |
] 4552.23
| miz calculated for C296H328N20CuSi2Zna
0
100 4545.31
1 4545.59
4541.27
2 4548.80

4 experimental data for C296H328N20CuSi2Zn4
m/z

0
3000 3250 3500 3750 4000 4250 4500 4750 5000 5250 5500 5750

Figure S50: The MALDI-MS spectrum of P5¢, (m/z = 4545 (Cye6H325CuUNSi>Zns, M requires 4547), matrix: dithranol).
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Figure S51: The 'H NMR spectrum of T4 (400 MHz, CDCl;). The signals at  1.59 ppm and 6 1.26 ppm correspond to water and grease
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Figure S52: The MALDI-MS spectrum of T4 (m/z = 691 (CsoH34N4, M requires 690), matrix: dithranol).
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Figure S53: The "H NMR spectrum of ¢c-P6,,-T6 (600 MHz, CDCl;).
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Figure S54: The MALDI-MS spectrum of c-P6¢,, (m/z = 4787 (C31,H300Cu,N24Zn,s, M requires 4774). matrix: DCTB).
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Figure S55: The "H NMR spectrum of ¢c-P10¢,; (500 MHz, CDCl3). The zinc porphyrins are coordinating an axial pyridine, the signals
corresponding to pyridine are denoted as Py in the '"H NMR spectrum.
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Figure $56: The MALDI-MS spectrum of c-P10¢,, (m/z = 7960 (Cs2oHs00CuU,NaoZng, M requires 7960). matrix: DCTB).
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Section S8. ‘H NMR spectra of 1:1 complexes of P5¢, and P5,, with T4 and T5

The 'H NMR spectra shown below illustrate the chemically pure 1:1 complexes of the linear porphyrin
oligomers P5¢, and P5,4 mixed with 1 equivalent T4 or T5. The spectrum of P5,4:T4 could be assigned and the
spectrum for P5¢, T4 was assigned by analogy. Due to the presence of the paramagnetic copper(ll) center,
broadening is observed in both the porphyrin oligomer and the template signals in close proximity to the
copper. The template complexes with T5 were found to be more complex and dynamic and could therefore not
be assigned. We contemplate that the higher complexity is due to the extra template leg (reducing the
symmetry of the template) and the fact that the central leg of the template can either be pointing towards the
central porphyrin or point the other way (towards the trihexylsilyl protecting groups) resulting in a larger
amount of signals leading to higher complexity in the NMR spectra.
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Figure S57: The "H NMR spectrum of P5,,:T4 (500 MHz, CDCl;).
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Figure S58: The "H NMR spectrum of P5¢,-T4 (500 MHz, CDCl;).
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