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Supplementary Figure S1: Energy distribution. Normalized energy inside a sphere of radius R as a function
of the radius R normalized to R2 for the cases: (black dashed) when no shell is present, (blue) when (µr, µθ) = (∞, 0)
and (red) when (µr, µθ) = (∞, 1/2). The radii ratio of the shell is γ = R1/R2 = 0.5.
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Supplementary Figure S2: Measurements for different applied field directions. (a) Angle of the magnetic
induction B at the center of the shell (obtained from measurements of Bz and Bx, see below), θINT, as a function
of the angle of the applied magnetic field, θEXT (black symbols). Black line is a guide to the eye. Red line indicates
the relation θINT = θEXT as a reference. (b) Measured Bz (black circles) and Bx (blue triangles) at the center of the
shell as a function of the angle of the applied magnetic field θEXT. Bz follows a cosine dependence (green line) larger
than the values of the z-component of the applied field B0,z (blue line) for all angles, whereas Bx is lower than the
x-component of the applied field B0,x (magenta line). All angles are defined with respect to the z-axis.
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Supplementary Figure S3: Phase difference between the measured and the applied field. Measured phase
difference between the measured and applied field as a function of frequency corresponding to the measurements in
Fig. 4b of the article. Line is a guide to the eye.
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Supplementary Discussion 1: Magnetic field spherical concentrator in a uniform applied magnetic field

In order to study the magnetic concentration properties of a spherical shell in a uniform applied magnetic field, we
derive the analytic solutions of the magnetostatic Maxwell equations. Consider a spherical shell of inner radius R1

and outer radius R2, centered at r = 0, made of a linear, homogeneous and anisotropic magnetic material. The shell
is characterized by its polar, azimuthal and radial relative permeabilities, µθ, µϕ and µr, such that Bθ = µθµ0Hθ,
Bϕ = µϕµ0Hϕ and Br = µrµ0Hr, being Br,θ,ϕ and Hr,θ,ϕ the radial, polar and azimuthal components of the magnetic
induction B and the magnetic field H, respectively, and µ0 the permeability of free space. We choose µϕ = µθ for
simplicity. A uniform magnetic field H0 is applied in the z direction. Since there are not free currents in our system,
∇ ∧H = 0, the magnetic field can be written in terms of a magnetic scalar potential φ as H = −∇φ everywhere in
space. In the shell itself (SHE: R1 < r < R2), the scalar potential must fulfill the equation

∇2φSHE =
∂

∂r

(
r2
∂φSHE

∂r

)
+

1

sinθ

µθ
µr

∂

∂θ

(
sinθ

∂φSHE

∂θ

)
= 0, (S1)

while in the interior hole region (INT: r ≤ R1) and in the external region (EXT: r ≥ R2) the scalar potential should
satisfy,

∇2φINT,EXT =
∂

∂r

(
r2
∂φINT,EXT

∂r

)
+

1

sinθ

∂

∂θ

(
sinθ

∂φINT,EXT

∂θ

)
= 0. (S2)

The general solutions of these equations, taking into account that φ must be finite when r → 0 and tend to −H0rcosθ
when r →∞, can be written as

φINT =

∞∑
n=1

aINT
n rncos(nθ + αINT

n ), (S3)

φSHE =

∞∑
n=1

aSHE
n r1/2(−1−

√
1+4n(1+n)µθ/µr)cos(nθ + αSHE

n ) +

∞∑
n=1

bSHE
n r1/2(−1+

√
1+4n(1+n)µθ/µr)sin(nθ + βSHE

n ), (S4)

φEXT =

∞∑
n=1

bEXT
n r−n−1sin(nθ + βEXT

n )−H0rcosθ. (S5)

Applying magnetostatic boundary conditions (continuity of the radial component of B and of the tangential com-
ponent of H) it follows that αINT

1 = αSHE
1 = 0, βSHE

1 = βEXT
1 = π/2, aINT

n = aSHE
n = bSHE

n = bEXT
n = 0 when n > 1,

and

aINT
1 = H0

−6µrα(R2/R1)(3+α)/2

F +G(R2/R1)α
, (S6)

aSHE
1 = H0

−3(−2− µr + µrα)R
(3+α)/2
2

F +G(R2/R1)α
, (S7)

bSHE
1 = H0

−3(2 + µr + µrα)R
(3+α)/2
2 R−α1

F +G(R2/R1)α
, (S8)

bEXT
1 = H0

−2(−1− µr + 2µθµr)R
3
2(1− (R2/R1)α)

F +G(R2/R1)α
, (S9)

where F = −4− µr − 4µrµθ + 3µrα, G = 4 + µr + 4µrµθ + 3µrα, and α2 = 1 + 8µθ/µr.
From these equations two important results arise: (i) the field inside the spherical hole is a uniform field in the

direction of the applied magnetic field with magnitude HINT = −aINT
1 and (ii) the field created by the sphere at the

exterior region corresponds to the field of a dipole centered at the origin of coordinates with magnetic moment m =
4πbEXT

1 ẑ.
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A. Energy analysis

It is demonstrated in the main text that the maximum concentration of magnetic field inside the hole of a shell
is achieved when using a spherical shell with permeabilities µr → ∞ and µθ → 0. Since the coefficient bEXT

1 is not
zero for these permeabilities, Eq. (S9), this shell distorts the external magnetic field. Another interesting spherical
shell, which concentrates the magnetic field inside its hole while being magnetically undetectable is obtained when
considering the permeabilities µr →∞ and µθ → 1/2.

In this section we compare the energy in a sphere of radius R for a shell with (µr, µθ) = (∞, 0), Emax, to the energy
in the same region for a shell with (µr, µθ) = (∞, 1/2), End. These energies are normalized by E0, which is the energy
that there would be in the region r < R if no shell was present. The analytic expressions for these energies are

Emax(R)

E0(R)
=


9

γ2(2+γ)2 if R < R1

9γ
(2+γ)2

(
R2

R

)3
if R1 ≤ R ≤ R2

9γ
(2+γ)2

(
R2

R

)3
+
(

1−
(
R2

R

)3)[(R2

R

)3 (γ−1
2+γ

)2
+ 1

]
if R2 < R

End(R)

E0(R)
=


1
γ2 if R < R1

γ
(
R2

R

)3
+ 1− γR2

R if R1 ≤ R ≤ R2

1 if R2 < R

where γ = R1/R2.
In Supplementary Figure S1, Emax(R)/E0(R) and End(R)/E0(R) are plotted as a function of the radius of the

sphere normalized by R2. It can be observed that Emax(R) is larger than End(R) in the hole, and also that Emax(R)
is different from E0(R) for R > R2.



7

Supplementary Discussion 2: Field and gradient enhancement for a dipolar source

In this section the analytic solutions of Maxwell equations for a dipolar source are derived to analyse how a spherical
shell can concentrate a non-uniform magnetic field. Consider a dipole placed at −dẑ. The scalar magnetic potential
in terms of the spherical coordinates centered at the origin r, θ, and ϕ, is

φD =
m [rsinθsinθ′′cos(ϕ− ϕ′′) + (rcosθ + d)cosθ′′]

4π(r2 + d2 + 2drcosθ)3/2
, (S10)

where θ′′ and ϕ′′ are the spherical angles of the magnetic moment of the dipole m.

A. Dipole pointing towards the center of a spherical shell

We consider a spherical shell of external radius R2 and internal radius R1. Its magnetic permeability is homogeneous,
linear and anisotropic, being µr in the radial direction, µϕ in the azimuthal direction and µθ in the polar direction.
For simplicity, we choose µϕ = µθ.

Consider a magnetic dipole placed outside the spherical shell, at −dẑ (d > R2), with magnetic moment m = mẑ.
In this case θ′′ = 0 and Eq. (S10) becomes

φD =
m

4π

rcosθ + d

(r2 + d2 + 2drcosθ)3/2
. (S11)

The magnetic potential of Eq. (S11) can be written in terms of a sum of Legendre Polynomials, Pn(cosθ), as

φD =

{
m/(4πd2)

∑∞
n=0(n+ 1)(−1)n (r/d)

n
Pn(cosθ) if r ≤ d,

m/(4πd2)
∑∞
n=0 n(−1)n+1 (d/r)

n+1
Pn(cosθ) if r > d.

(S12)

Since there are no free currents in the system, ∇ ∧ H = 0, the magnetic field can be written in terms of a magnetic
scalar potential φ in the whole space, H = −∇φ. By taking into account ∇ ·B = 0, Br = µrHr and Bθ = µθHθ we
obtain the equations that the scalar potential should satisfy in the whole space [Eqs. (S1) and (S2), since the problem
is azimuthally symmetric]. The general solutions of these equations inside the hole (INT: r ≤ R1), inside the shell
(SHE: R1 < r < R2) and in the external region (EXT: r ≥ R2) can be written as

φINT =

∞∑
n=0

anr
nPn(cosθ), (S13)

φSHE =

∞∑
n=0

bnr
1
2

(
−1−
√

1+4n(1+n)µθ/µr
)
Pn(cosθ) +

∞∑
n=0

cnr
1
2

(
−1+
√

1+4n(1+n)µθ/µr
)
Pn(cosθ), (S14)

φEXT =

∞∑
n=0

dnr
−n−1Pn(cosθ) + φD, (S15)

where we have considered that the scalar potential should be finite when r → 0 and tend to the applied potential,
φD, Eq. (S12), when r →∞.

At this point, we apply magnetostatic boundary conditions. The radial component of the magnetic induction B
and the tangential component of H must be continuous at r = R1 and r = R2 in order to satisfy ∇ · B = 0 and ∇ ∧
H = 0, respectively. The obtained coefficients are,

an =
m(−1)n(n+ 1)(2n+ 1)qR

(q+1)/2
2 µr(R2/d)nR

(q−1)/2−n
1

2πd2 (µr (Rq1 (2n (q − (n+ 1)µθ) + q − 1) +Rq2 (2n (µθ + nµθ + q) + q + 1))− 2n(n+ 1) (Rq1 −R
q
2))

, (S16)
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bn =
m(−1)n(n+ 1)(2n+ 1)Rq1R

(q+1)/2
2 (R2/d)n (2n− qµr + µr)

4πd2 (µr (Rq1 (2n (µθ + nµθ − q)− q + 1)−Rq2 (2n (µθ + nµθ + q) + q + 1)) + 2n(n+ 1) (Rq1 −R
q
2))

, (S17)

cn =
m(−1)n(n+ 1)(2n+ 1)R

(q+1)/2
2 (R2/d)n (2n+ qµr + µr)

4πd2 (µr (Rq1 (2n (q − (n+ 1)µθ) + q − 1) +Rq2 (2n (µθ + nµθ + q) + q + 1))− 2n(n+ 1) (Rq1 −R
q
2))

, (S18)

dn =
m(−1)nn(n+ 1)Rn+1

2 (Rq1 −R
q
2) (R2/d)n (µr (µθ + nµθ − 1)− n)

2πd2 (µr (Rq1 (2n (q − (n+ 1)µθ) + q − 1) +Rq2 (2n (µθ + nµθ + q) + q + 1))− 2n(n+ 1) (Rq1 −R
q
2))

, (S19)

where q =
√

1 + 4n(1 + n)µθ/µr.

When a spherical shell is placed in a uniform applied magnetic field, it creates a dipolar field outside its external
surface and a uniform field inside its hole. Interestingly, from Eqs. (S13) - (S15) and Eqs. (S16) - (S19), we see
that the response of the spherical shell to a dipolar field is more complex, since the magnetic potential it creates is
constituted by infinite terms. The response of a cylindrical shell to a dipolar field could also be understood as a sum
of infinite terms. However, that sum was equivalent to that of a non-centered dipole. When considering spherical
shells this correspondence is not found.

We would like to see if there is a spherical shell that does not distort the magnetic field created by an external
dipole. This would require dn = 0 for all n because, as seen in Eq. (S15), this coefficient indicates how the spherical
shell distorts an external magnetic field. For a given value of n, dn = 0 is obtained only when

µθ =
µr + n

µr(1 + n)
, (S20)

which depends on n. Therefore, a shell with angular and radial permeabilities fulfilling Eq. (S20) for a given n can
cancel at most a single n term of the magnetic scalar potential. Consequently, all spherical shells distort the magnetic
field created by a dipole in its outer region.

Extreme spherical concentrator

If we consider the extreme spherical concentrator, (µr, µθ) = (∞, 0), the coefficients an from Eq. (S16), which give
the magnetic field inside the shell’s hole, are simplified and can be written as

an =
m

4πd2
(−1)n(1 + n)(1 + 2n)R−n1 R2 (R2/d)

n

R2 + n(R1 +R2)
. (S21)

From Eqs. (S13) and (S21), one obtains that the magnetic field at r = 0 and the derivative of its z component with
respect to z when a spherical concentrator is used are

HINT(r = 0) =
m

4πd3
6 (R2/R1)

2

1 + 2 (R2/R1)
ẑ, (S22)

∂HINT
z

∂z

∣∣∣∣
r=0

= − m

2πd4
15(R2/R1)2

3 + 2R1/R2
. (S23)

The magnetic field and gradient at r = 0 created by a dipole pointing radially (without the presence of a spherical
shell) can be obtained from Eq. (S11) and are HD(r = 0) = m/(2πd3)ẑ and (∂HDz/∂z)|r=0 = −3m/(2πd4),
respectively. Hence, using an extreme spherical concentrator the magnetic field and gradient at r = 0 are increased
by the factors,

HINT(r = 0)

HD(r = 0)
=

3 (R2/R1)
2

1 + 2 (R2/R1)
, (S24)
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(∂HINT
z /∂z)

∣∣∣∣
r=0

(∂HDz/∂z)

∣∣∣∣
r=0

=
5 (R2/R1)

2

3 + 2 (R1/R2)
. (S25)

which can be increased by designing a spherical concentrator with larger radii ratio R2/R1.

B. Dipole pointing towards the non-radial plane

As in section A, we consider a spherical shell of external radius R2 and internal radius R1. Its magnetic permeability
is homogeneous, linear and anisotropic, being µr in the radial direction, µϕ in the azimuthal direction and µθ in the
polar direction. We choose µϕ = µθ to simplify.

Considering a magnetic dipole placed outside the spherical shell, at −dẑ (d > R2), with magnetic moment m
perpendicular to the z direction. In this situation, θ′′ = π/2 and Eq. (S10) becomes

φD =
m

4π

rsinθcos(ϕ− ϕ′′)
(r2 + d2 + 2drcosθ)3/2

, (S26)

One can choose the origin of the x and y axis so that ϕ′′ = π/2 (m = mŷ). Then, cos(ϕ − ϕ′′) = sinϕ and the
magnetic potential of Eq. (S11) can be written as

φD =

{
m/(4πd2)

∑∞
l=0(−1)l (r/d)

l
P 1
l (cosθ)sinϕ if r ≤ d,

m/(4πd2)
∑∞
l=0(−1)l (d/r)

l+1
P 1
l (cosθ)sinϕ if r > d,

(S27)

where P 1
l (cosθ) is the first derivative of the Legendre Polynomials Pl(cosθ) with respect to θ.

Since there are not free currents in the system, ∇ ∧ H = 0, the magnetic field can be written in terms of a magnetic
scalar potential φ in the whole space, H = −∇φ. Using ∇ ·B = 0, Br = µrHr, Bϕ = µϕHϕ and Bθ = µθHθ one can
obtain the equations that the scalar potential should satisfy in the whole space. In the shell itself (SHE: R1 < r < R2),
the scalar potential must fulfill the equation

∇2φSHE =
∂

∂r

(
r2
∂φSHE

∂r

)
+

1

sinθ

µθ
µr

∂

∂θ

(
sinθ

∂φSHE

∂θ

)
+

1

sin2θ

µθ
µr

∂2φSHE

∂ϕ2
= 0, (S28)

while in the interior hole region (INT: r ≤ R1) and in the external region (EXT: r ≥ R2) the scalar potential should
satisfy

∇2φINT,EXT =
∂

∂r

(
r2
∂φINT,EXT

∂r

)
+

1

sinθ

∂

∂θ

(
sinθ

∂φINT,EXT

∂θ

)
+

1

sin2θ

∂2φINT,EXT

∂ϕ2
= 0. (S29)

The general solutions of Eqs. (S28) and (S29) can be written in terms of the m derivative of the Legendre
Polynomials as

φINT =

∞∑
l=0

l∑
m=−l

aml r
lPml (cosθ)sinϕ, (S30)

φSHE =

∞∑
l=0

l∑
m=−l

bml r
l/2

(
−1−
√

1+4l(l+1)µθ/µr
)
Y ml (θ, ϕ) +

∞∑
l=0

l∑
m=−l

cml r
l/2

(
−1+
√

1+4l(l+1)µθ/µr
)
Pml (cosθ)sinϕ, (S31)

φEXT =

∞∑
l=0

l∑
m=−l

dml r
−l−1Pml (cosθ)sinϕ+ φD, (S32)
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where we have assumed that the scalar potential should be finite when r → 0 and tend to the applied potential, φD,
Eq. (S27), when r →∞.

By imposing magnetic boundary conditions we obtain, aml = bml = cml = dml = 0 ∀m 6= 1, and

a1l =
mµr(−1)l(2l + 1)qR

(q+1)/2
2 (R2/d)

l
R

(q−1)/2−l
1

2πd2 (µr (Rq1(2l(q − µθ(l + 1)) + q − 1) +Rq2(2l(µθl + µθ + q) + q + 1))− 2l(l + 1) (Rq1 −R
q
2))

, (S33)

b1l = − m(−1)l(2l + 1)Rq1R
(q+1)/2
2 (R2/d)

l
(µr(−q) + µr + 2l)

4πd2 (µr (Rq1(2l(q − µθ(l + 1)) + q − 1) +Rq2(2l(µθl + µθ + q) + q + 1))− 2l(l + 1) (Rq1 −R
q
2))

, (S34)

c1l =
m(−1)l(2l + 1)R

(q+1)/2
2 (R2/d)

l
(µrq + µr + 2l)

4πd2 (µr (Rq1(2l(q − µθ(l + 1)) + q − 1) +Rq2(2l(µθl + µθ + q) + q + 1))− 2l(l + 1) (Rq1 −R
q
2))

, (S35)

d1l =
m(−1)llRl+1

2 (R2/d)
l
(µr(µθl + µθ − 1)− l) (Rq1 −R

q
2)

2πd2 (µr (Rq1(2l(q − µθ(l + 1)) + q − 1) +Rq2(2l(µθl + µθ + q) + q + 1))− 2l(l + 1) (Rq1 −R
q
2))

(S36)

where q =
√

1 + 4l(1 + l)µθ/µr.
As in the case of a dipole pointing in the radial direction, the magnetic field in the external region is distorted by

the presence of the spherical shell. One can obtain from Eq. (S36) the required magnetic permeabilities to not distort
one of the terms, l, of the magnetic potential, but it does not exist any shell providing non-distortion for all l. The
obtained relation between µr and µθ is equivalent to that of Eq. (S20).

Extreme spherical concentrator

When considering the extreme spherical concentrator, µr →∞ and µθ → 0, the coefficient a1l , which indicates the
magnetic field concentration, becomes

a1l =
m

4πd2
(−1)n(1 + 2n)R−n1 R2(R2/d)n

R2 + n(R1 +R2)
. (S37)

By looking at the form of the magnetic potential inside the hole, Eq. (S30) one sees that, same as for the case of a
dipole pointing radially towards the center of the shell, at r = 0 only the term l = 1 of the sum of the magnetic field
will be different from 0. The magnetic field at this point is

HINT(r = 0) = − m

4πd3
3(R2/R1)2

1 + 2R2/R1
ŷ, (S38)

where ŷ is the direction of the magnetic moment m of the dipole we have chosen. Analogously, the derivative of the
y component of the magnetic field with respect to z is

∂HINT
y

∂z

∣∣∣∣
r=0

=
m

4πd4
15(R2/R1)2

3 + 2(R1/R2)
. (S39)

The magnetic field that the bare dipole would create at r = 0, according to Eq. (S26) is −m/(4πd3)ŷ. Hence, by
using the extreme spherical concentrating shell the magnetic field at r = 0 has been increased by the same factor we
obtained considering a dipole with magnetic moment in the radial direction [Eq. (S24)]. The derivative of the Hy

component of the magnetic field created by this dipole with respect to z at r = 0 is (∂HDy/∂z)|r=0 = 3m/(4πd4).
Therefore, the gradient has also been increased by the shell the same ratio we obtained for a radial dipole [Eq. (S25)].


