Supporting Information

Scandium-Catalyzed Intermolecular Hydroaminoalkylation of Olefins with Aliphatic Tertiary Amines

Adi E. Nako, Juzo Oyamada, Masayoshi Nishiura and Zhaomin Hou*

Organometallic Chemistry Laboratory and RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

houz@riken.jp

Contents

1. General Methods	S2
2. Catalyst Screening	S3
3. Typical Procedure for the Catalytic Alkylation of Amines with Olefins	S4
4. Analytical Data	S4
5. Kinetic Isotope Effect Experiments	S9
6. Dialkylation of 1k to give 3k	S11
7. References	S12
8. ¹ H and ¹³ C NMR Spectra of Products	S13

1. General Methods

All manipulations were performed under a nitrogen atmosphere by use of standard Schlenk techniques or in an mBRAUN Labmaster glovebox. Nitrogen was purified by passing through a Dryclean column (4 Å molecular sieves, Nikka Seiko Co.) and a Gasclean GC-XR column (Nikka Seiko Co.). Hexane, THF, toluene and benzene (dehydrated, stabilizer-free) were obtained from Kanto Chemical Co. and purified by use of an MBraun SPS-800 solvent purification system. Silica gel column chromatography was performed with Silica Gel 60 N (spherical, neutral, 40-50 mm) obtained from Kanto Chemical Co. $[Ln(CH_2C_6H_4NMe_2-o)_3]$ (Ln = Sc, Y, Lu, Gd, Sm)¹ and $[(C_5Me_5)Sc(CH_2C_6H_4NMe_2-o)_2]^2$ were prepared according to the literature methods. N,N-dimethylbutylamine (1a), N,Ndimethyloctylamine (1b), N,N-dimethylcyclohexylamine (1c), N,N-dibutylmethylamine (1e), Nmethylpyrrolidine (1f), d_3 -N-methylpyrrolidine (1f_{d3}), N-methylpiperidine (1h) and tropane (1j) were commercially available. N-methyl, N-ethylbutylamine (1d), N-methyl, 4-methylpiperidine (1i), Nmethylhexamethyleneimine (**1g**), and N,N-dimethyladamantylamine (**1k**), were prepared via the literature method.³ All olefins were commercially available, except 4-dimethylaminostyrene (2e) which was synthesized via the literature method.⁴ Amines and olefins were all distilled from appropriate drying agents such as CaH₂ and Na. All ¹H NMR and ¹³C NMR spectra were recorded on either a JEOL AL-400 MHz instrument or a Bruker AVANCE III HD 500 NMR spectrometer in C₆D₆ with tetramethylsilane as an internal standard otherwise mentioned. Data are reported as follows: chemical shift in ppm (d), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sex = sextet, sep = septet, m = multiplet, br = broad signal), coupling constant (Hz), integration. Gas chromatography analysis was performed on Shimadzu GC2014 using a capillary column (Agilent J&W GC columns DB-1, 30m, 0.32 mm i.d., 0.25 mm film thickness. High-resolution MS were obtained on a Bruker microTOF-Q III (ESI+).

2. Catalyst Screening

In a glovebox, $[Sc(CH_2C_6H_4NMe_2-o)_3]$ (6 mg, 0.013 mmol) was dissolved in C_6D_6 (1.0 mL). To this solution, ferrocene (19 mg, 0.1 mmol), *N*,*N*-dimethylbutylamine (25mg, 0.25 mmol), norbornene (26 mg, 0.28 mmol) and $[Ph_3C][B(C_6F_5)_4]$ (16 mg, 0.013 mmol) were added sequentially. The biphasic mixture was transferred to a J Young NMR tube, sealed and a baseline ¹H NMR spectrum taken. The tube was then heated at 70 °C for 24 hours, and the yield calculated from the internal standard (ferrocene). For entries 5 and 6, the sample was quenched with EtOAc (2 mL) after 24 h at 70 °C, filtered and the volatiles removed *in vacuo* to remove the paramagnetic catalyst.

Table S1. Catalyst Dependant Hydroaminoalkylation of Norbornene with N,N-dimethylbutylamine

Me	Catalyst (5 mol%) Co-catalyst (5 mol%)) %) Me	\sum
C₄H ₉ ́ ^N ∖I	Me C_6D_6 , 24 h 70 °C	C ₄ H ₉ ^N	
1a	2a	3a	
Entry ^a	Catalyst	Co-catalyst	Yield, % ^b
1	$[(C_5Me_4SiMe_3)Sc(CH_2C_6H_4NMe_2-o)_2]$	$[Ph_3C][B(C_6F_5)_4]$	90
2	[(C ₅ H ₅)Sc(CH ₂ C ₆ H ₄ NMe ₂ -o) ₂]	$[Ph_3C][B(C_6F_5)_4]$	52
3	$[Y(CH_2C_6H_4NMe_2-o)_3]$	$[Ph_3C][B(C_6F_5)_4]$	0
4	[Lu(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃]	$[Ph_3C][B(C_6F_5)_4]$	0
5	[Gd(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃]	$[Ph_3C][B(C_6F_5)_4]$	0
6	[Sm(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃]	$[Ph_3C][B(C_6F_5)_4]$	0
7	[Sc(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃]	N/A	0
8	N/A	$[Ph_3C][B(C_6F_5)_4]$	0
9 ^c	[Sc(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃]	$[Ph_3C][B(C_6F_5)_4]$	<5

^a Reactions were carried out with 0.25 mmol amine and 0.275 mmol norbornene in 1 mL of C_6D_6 . ^b NMR yield calculated against Cp_2Fe as an internal standard. ^c 10 mol% [Ph₃C][B(C₆F₅)₄] used.

3. Typical Procedure for the Catalytic Alkylation of Amines with Olefins

In a glovebox, $[Sc(CH_2C_6H_4NMe_2-o)_3]$ (22 mg, 0.05 mmol) was dissolved in toluene (2.0 mL). To this solution *N*-methylpiperidine (99 mg, 1 mmol), styrene (115 mg, 1.1 mmol) and $[Ph_3C][B(C_6F_5)_4]$ (46 mg, 0.05 mmol) were added sequentially. The biphasic mixture was transferred to a Schlenk ampoule, sealed and heated at 70 °C for 24 hours. EtOAc (5 mL) was added to the crude mixture and the volatiles removed *in vacuo*. The compound was purified by silica gel column chromatography (hexane/EtOAc), to afford **4a** as colourless oil (173 mg, 0.851 mmol, 85 % yield).

4. Analytical Data

Me

> **3b**: ¹H NMR (500 MHz, C₆D₆): δ 2.32 − 2.27 (m, 2H), 2.23 (br, 1H), 2.18 − 2.14 (m, 2H), 2.16 (s, 3H), 1.96 (dd, *J* = 7.0 Hz, 5.0 Hz, 1H), 1.66 − 1.60 (m, 1H), 1.50 − 1.45 (m, 4H), 1.38 − 1.25 (br m, 12H), 1.18 − 1.13 (m, 3H), 1.05 (d, *J* = 9.5 Hz,

1H), 0.90 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (125 MHz, C_6D_6): δ 64.3, 58.7, 42.7, 40.7, 39.9, 37.0, 36.5, 35.6, 32.4, 30.5, 30.1, 29.9, 29.5, 28.1, 27.9, 23.1, 14.4. HR MS (ESI+): Found 252.2692 [M+H]⁺, calcd. for $C_{17}H_{34}N^+$ 252.2691.

3c: ¹H NMR (500 MHz, C₆D₆): δ 2.35 – 2.17 (m, 4H), 2.21 (s, 3H), 2.05 (dd, *J* = 12.3 Hz, 7.2 Hz, 1H), 1.81 – 1.67 (m, 4H), 1.66 – 1.58 (m, 1H), 1.58 – 1.44 (m, 3H), 1.40 – 1.33 (m, 1H), 1.32 – 1.27 (m, 1H), 1.23 – 1.10 (m, 7H), 1.06 (d, *J* = 9.7 Hz, 1H), 1.04 – 0.96 (m, 1H). ¹³C NMR (125 MHz, C₆D₆): δ 63.7, 59.7, 41.1, 39.9,

38.1, 37.0, 36.3, 35.6, 30.5, 29.6, 29.1, 28.9, 26.9, 26.5. HR MS (ESI+): Found 222.2221 $[M+H]^+$, calcd. for $C_{15}H_{28}N^+$ 222.2222.

Et C_4H_9 **3d**: ¹H NMR (500 MHz, C₆D₆): δ 2.50 – 2.31 (m, 4H), 2.24 (br, 1H), 2.21 – 2.17 (m, 2H), 2.03 (dd, *J* = 12.5 Hz, 7.1 Hz, 1H), 1.65 – 1.58 (m, 1H), 1.55 – 1.27 (m, 8H), 1.20 – 1.12 (m, 3H), 1.06 (d, *J* = 9.7 Hz, 1H), 0.98 (t, *J* = 7.1 Hz, 3H), 0.92 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 60.3, 54.0, 48.2, 41.0, 39.9, 36.9, 36.5, 35.6, 30.5, 30.2, 29.5, 21.0, 14.4, 12.4. HR MS (ESI+): Found: 210.2222 [M+H]⁺, calcd. for C₁₄H₂₈N⁺ 210.2222.

 C_4H_9

3e: ¹H NMR (500 MHz, C₆D₆): δ 2.44 – 2.31 (m, 4H), 2.26 (br, 1H), 2.23 – 2.18 (m, 2H), 2.04 (dd, *J* = 12.5 Hz, 7.0 Hz, 1H), 1.67 – 1.60 (m, 1H), 1.56 – 1.41 (m, 6H), 1.39 – 1.29 (m, 6H), 1.21 – 1.11 (m, 3H), 1.06 (d, *J* = 9.7 Hz, 1H), 0.92 (t, *J* = 7.2

Hz, 6H). ¹³C NMR (125 MHz, C₆D₆): δ 61.0, 54.7, 41.0, 39.9, 36.9, 36.5, 35.5, 30.5, 30.2, 29.5, 21.0, 14.4. HR MS (ESI+): Found 238.2536 [M+H]⁺, calcd. for C₁₆H₃₂N⁺ 238.2535.

3f: ¹H NMR (400 MHz, C_6D_6): δ 2.46 - 2.36 (m, 4H), 2.32 (dd, *J* = 11.6 Hz, 8.8 Hz, 1H), 2.28 (br, 1H), 2.17 (br, 1H), 2.07 (dd, *J* = 11.6 Hz, 7.3 Hz, 1H), 1.67 - 1.60 (m, 5H), 1.51 - 1.44 (m, 2H), 1.41 - 1.35 (m, 1H), 1.30 (ddt, *J* = 9.7 Hz, 3.8 Hz, 1.9 Hz, 1H),

1.22 - 1.10 (m, 3H), 1.07 - 1.03 (m, 1H). ¹³C NMR (100 MHz, C₆D₆): δ 62.6, 54.6, 41.9, 39.9, 36.9, 36.7, 35.6, 30.5, 29.5, 24.0. HR MS (ESI+): Found 180.1755 [M+H]⁺, calcd. for C₁₂H₂₂N⁺ 180.1752.

3g: ¹H NMR (500 MHz, C₆D₆): δ 2.55 (br, 4H), 2.27 (dd, *J* = 12.1 Hz, 8.5 Hz, 1H), 2.21 – 2.18 (m, 2H), 2.11 (dd, *J* = 12.1 Hz, 7.4 Hz, 1H), 1.57 (br, 9H), 1.51 – 1.44 (m, 2H), 1.37 – 1.30 (m, 1H), 1.28 (d, *J* = 9.5 Hz, 1H), 1.15 (br, 3H), 1.05 (d, *J* = 9.4 Hz, 1H). ¹³C NMR (125 MHz, C₆D₆): δ 64.5, 56.0, 41.3, 39.9, 37.0, 36.4, 35.7, 30.5, 29.5, 29.3, 27.6. HR MS (ESI+): Found: 208.2066 [M+H]⁺, calcd. for C₁₄H₂₆N⁺ 208.2065.

3h: ¹H NMR (500 MHz, C₆D₆): δ 2.30 (br, 4H), 2.21 (br, 1H), 2.16 (br, 1H), 2.12 (dd, J = 12.2 Hz, 8.6 Hz, 1H), 1.93 (dd, J = 12.1 Hz, 7.4 Hz, 1H), 1.66 – 1.61 (m, 1H), 1.56 (s, 2H), 1.56 – 1.51 (m, 4H), 1.48 – 1.44 (m, 1H), 1.35 – 1.27 (m, 4H), 1.18 – 1.10 (m, 3H), 1.03 (d, J = 9.7 Hz, 1H). ¹³C NMR (125 MHz, C₆D₆): δ 65.8, 55.4, 40.0, 37.0, 36.6, 35.6, 30.5, 30.1, 29.5, 26.7, 25.2. HR MS (ESI+): Found 194.1904 [M+H]⁺, calcd. for C₁₃H₂₄N⁺ 194.1909.

3i: ¹H NMR (500 MHz, C₆D₆): δ 2.80 – 2.73 (m, 2H), 2.22 (d, J = 9.0 Hz, 1H),
2.17 – 2.12 (m, 2H), 1.99 – 1.91 (m, 1H), 1.77 (m, 1H), 1.71 – 1.63 (m, 2H),
1.61 – 1.42 (m, 7H), 1.40 – 1.27 (m, 2H), 1.20 – 1.10 (m, 3H), 1.05 (d, J = 9.7)

Hz, 1H), 0.83 (d, J = 6.6 Hz, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 65.5 (x2), 63.2, 62.8, 55.0, 54.6, 40.1, 40.0 (x3), 37.0, 36.6 (x2), 35.6 (x2), 33.7, 31.6, 31.5, 30.5, 29.5, 26.1, 20.0. HR MS (ESI+): Found 208.2065 [M+H]⁺, calcd. for C₁₄H₂₆N⁺ 208.2065.

Me

3j: ¹H NMR (500 MHz, C₆D₆): δ 3.06 (s, 2H), 2.32 (s, 1H), 2.20 (s, 1H), 2.11 (dd, *J* = 12.1 Hz, 8.5 Hz, 1H), 1.99 (dd, *J* = 12.1 Hz, 7.2 Hz, 1H), 1.85 – 1.78 (m, 4H), 1.58 – 1.47 (m, 3H), 1.44 – 1.35 (m, 5H), 1.32 – 1.30 (m, 1H), 1.22 – 1.13 (m,

5H), 1.07 (d, J = 9.1 Hz, 1H). ¹³C NMR (125 MHz, C₆D₆): δ 57.9, 57.8, 56.7, 39.5, 37.4, 34.5, 34.`, 33.`, 29.1, 29.0, 28.1, 27.1, 24.5, 24.3, 15.0. HR MS (ESI+): Found 220.2065 [M+H]⁺, calcd. for C₁₅H₂₅N⁺ 220.2065.

3k: ¹H NMR (500 MHz, C₆D₆): δ 2.72 (d, *J* = 3.9 Hz, 1H), 2.53 (t, *J* = 12.5 Hz, 1H), 2.25 (s, 3H), 2.22 – 2.17 (m, 4H), 2.00 (br, 3H), 1.77 (d, *J* = 11.7 Hz, 3H), 1.73 – 1.71 (m, 1H), 1.67 (d, *J* = 11.7 Hz, 3H), 1.61 – 1.45 (m, 12H), 1.43 – 1.40 (m, 1H), 1.35 – 1.17 (m, 5H), 1.15 (d, *J* = 7.5 Hz, 2H), 1.01 (d, *J* = 9.5 Hz, 2H). ¹³C NMR (125 MHz, C₆D₆): δ 54.0, 52.8, 49.3, 46.0, 43.5, 41.8, 41.4,

41.3, 40.4, 39.3, 37.5, 37.3, 35.4, 34.5, 33.3, 31.8, 30.6, 30.2, 29.7 (x2). HR MS (ESI+): Found 368.3317 $[M+H]^+$, calcd. for C₂₆H₄₂N⁺ 368.3317.

4a: ¹H NMR (500 MHz, C₆D₆): δ 7.19 – 7.16 (m, 2H), 7.12 (d, *J* = 7.6 Hz, 2H), 7.08 (t, *J* = 7.6 Hz, 1H), 2.58 (t, *J* = 7.7 Hz, 2H), 2.25 (br, 4H), 2.20 (t, *J* = 7.1 Hz, 2H), 1.73 (quin, *J* = 7.5 Hz, 2H), 1.52 (quin, *J* = 5.5 Hz, 4H), 1.33 (br, 2H). ¹³C

NMR (125 MHz, C_6D_6): δ 142.9, 128.9, 128.6, 126.0, 58.6, 54.9, 33.3, 29.3, 26.6, 25.1. HR MS (ESI+): Found 204.1753 [M+H]⁺, calcd. for $C_{14}H_{21}N^+$ 204.1752.

4b: ¹H NMR (500 MHz, C₆D₆): δ 7.07 (d, *J* = 7.7 Hz, 2H), 7.02 (d, *J* = 7.7 Hz, 2H), 2.60 (t, *J* = 7.6 Hz, 2H), 2.27 (br, 4H), 2.23 (t, *J* = 7.2 Hz, 2H), 2.16 (s, 3H), 1.76 (quin, *J* = 7.5 Hz, 2H), 1.53 (quin, *J* = 6.0 Hz, 4H), 1.33 (br,

2H). ¹³C NMR (125 MHz, C₆D₆): δ 139.9, 135.1, 129.3, 128.8, 58.7, 55.0, 33.5, 29.4, 26.7, 25.2, 21.1. HR MS (ESI+): Found 218.1906 [M+H]⁺, calcd. for C₁₅H₂₄N⁺ 218.1909.

4c: ¹H NMR (500 MHz, C_6D_6): δ 7.28 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 8.1Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H), 2.27 (br, 4H), 2.24 (t, J = 7.0 Hz, 2H),t-Bu1.78 (quin, J = 7.5 Hz, 2H), 1.53 (quin, J = 5.5 Hz, 4H), 1.33 (m, 2H), 1.26

(s, 9H). ¹³C NMR (125 MHz, C₆D₆): δ 148.1, 139.5, 128.2, 125.1, 58.4, 54.6, 34.0, 33.1, 31.2, 29.0, 26.3, 24.8. HR MS (ESI+): Found 260.2373 [M+H]⁺, calcd. for C₁₈H₃₀N⁺ 260.2373.

4d: ¹H NMR (500 MHz, C₆D₆): δ 7.15 (d, J = 8.3 Hz, 2H), 6.67 (d, J = 8.5 Hz, 2H), 2.65 (t, J = 7.5 Hz, 2H), 2.56 (s, 6H), 2.31 – 2.28 (m, 6H), 1.83 NMe₂ (quin, J = 7.5 Hz, 2H), 1.54 (quin, J = 6.0 Hz, 4H), 1.34 (br, 2H). ¹³C NMR

(125 MHz, C_6D_6): δ 149.5, 131.1, 129.4, 113.5, 55.8, 55.0, 40.7, 33.1, 29.8, 26.7, 25.2. HR MS (ESI+): Found 247.2177 [M+H]⁺, calcd. for $C_{16}H_{27}N_2^+$ 247.2174.

4e: ¹H NMR (500 MHz, C_6D_6): δ 6.87 - 6.80 (m, 4H), 2.45 (t, *J* = 7.6 Hz, 2H), 2.24 (br, 4H), 2.14 (t, *J* = 7.0 Hz, 2H), 1.62 (quin, *J* = 7.5 Hz, 2H), 1.52 (quin, *J* = 5.5 Hz, 4H), 1.3 (br, 2H). ¹³C NMR (125 MHz, C_6D_6): δ 159.8 (*J* = 242.8

Hz), 136.5 (J = 3.2 Hz), 128.2 (J = 7.7 Hz), 113.3 (J = 21.0 Hz), 56.4, 53.0, 31.0, 27.3, 24.7, 23.2. HR MS (ESI+): Found 222.1657 [M+H]⁺, calcd. for C₁₄H₂₁FN⁺ 222.1658.

4f: ¹H NMR (500 MHz, C₆D₆): δ 7.12 (d, *J* = 8.3 Hz, 2H), 6.79 (d, *J* = 8.3 Hz, 2H), 2.40 (t, *J* = 7.6 Hz, 2H), 2.23 (br, 4H), 2.12 (t, *J* = 7.0 Hz, 2H), 1.58 CI (quin, *J* = 7.5 Hz, 2H), 1.52 (quin, *J* = 5.5 Hz, 4H), 1.33 (br, 2H). ¹³C NMR **2** 131.8 130.2 128.7 58.3 54.9 37.0 29.0 26.6 25.1HR MS (ESI+): Found

(125 MHz, C_6D_6): δ 141.3, 131.8, 130.2, 128.7, 58.3, 54.9, 37.0, 29.0, 26.6, 25.1HR MS (ESI+): Found 238.1357 [M+H]⁺, calcd. for $C_{14}H_{21}CIN^+$ 238.1363.

4g: ¹H NMR (500 MHz, C₆D₆): δ 7.52 (d, J = 7.2 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 7.17 – 7.12 (m, 3H), 2.62 (t, J = 7.6 Hz, 2H), Ph 2.28 (br, 4H), 2.24 (t, J = 7.1 Hz, 2H), 1.77 (quin, J = 7.0 Hz, 2H), 1.54

(quin, J = 5.5 Hz, 4H), 1.34 (br, 2H). ¹³C NMR (125 MHz, C₆D₆): δ 142.0, 141.8, 139.2, 129.3, 129.0, 127.4 (x2), 127.2, 58.6, 55.0, 33.5, 29.3, 26.7, 25.2. HR MS (ESI+): Found 280.2060 [M+H]⁺, calcd. for C₂₀H₂₆N⁺ 280.2065.

4h: ¹H NMR (500 MHz, C₆D₆): δ 2.34 (br, 4H), 2.27 (t, *J* = 7.5 Hz, 2H), 1.58 – 1.50 (m, 6H), 1.35 (br, 2H) 0.53 – 0.49 (m, 2H), 0.01 (s, 9H). ¹³C NMR (125 MHz, C₆D₆): δ 63.2, 55.1, 26.7, 25.2, 22.1, 14.5 HR MS (ESI+): Found 200.1834

 $[M+H]^+$, calcd. for $C_{11}H_{26}NSi^+$ 200.1835.

5a: ¹H NMR (500 MHz, C₆D₆): **5a** δ 5.64 – 5.59 (m, 1H), 5.53 – 5.51 (m, 1H), 3.01 – 2.95 (m, 1H), 2.48 – 2.41 (m, 1H), 2.38 – 2.23 (br m, 5H), 2.21 – 2.12 (m, 3H), 2.10 (dd, *J* = 7.9 Hz, 4.0Hz, 1H), 2.01 – 1.90 (m, 1H), 1.84 – 1.77 (m, 1H), 1.56 – 1.51 (m, 5H), 1.43 (d, *J* = 9.6 Hz, 1H) 1.36 – 1.25 (m, 3H), 0.931 (dtd, *J* = 12.0 Hz, 5.5Hz, 1.5 Hz, 1H). **5a'** δ 5.64 – 5.59 (m, 1H), 5.53 – 5.51 (m,

1H), 3.08 - 3.02 (m, 1H), 2.48 - 2.41 (m, 1H), 2.38 - 2.23 (br m, 5H), 2.21 - 2.12 (m, 3H), 2.08 - 2.06 (br, 1H), 2.01 - 1.90 (m, 2H), 1.56 - 1.51 (m, 6H), 1.36 - 1.25 (m, 3H), 1.01 (dtd, J = 12.9 Hz, 4.4Hz, 1.7 Hz, 1H); 13 C NMR (125 MHz, C₆D₆): **5a** δ 132.9, 130.7, 65.9, 55.3, 53.1, 44.7, 42.9, 40.4, 38.7, 32.5, 32.2,

31.3, 26.7, 25.2. **5a'** δ 132.7, 131.4, 65.6, 55.4, 54.1, 43.1, 42.5, 41.5, 38.8, 34.3, 32.7, 29.0, 26.7, 25.2; HR MS (ESI+): Found 232.2070 [M+H]⁺, calcd. for C₁₆H₂₆N⁺ 232.2065.

5b: ¹H NMR (500 MHz, C₆D₆): δ 2.30 (br, 4H), 2.04 (ddd, J = 28.9 Hz, 12.0 Hz, 7.3 Hz, 2H), 1.81 (td, J = 13.7 Hz, 6.8 Hz, 1H), 1.53 (quin, J = 6.0 Hz, 4H), 1.34 (br, 2H), 1.02 (d, J = 6.5 Hz, 3H), 0.84 (dd, J = 14.7 Hz, 4.5 Hz, 1H), 0.36 – 0.28 (m, 1H), 0.07 (s, 9H). ¹³C NMR (125 MHz, C₆D₆): δ 69.8, 55.5, 27.6, 26.7, 25.1, 23.3, 21.8, -0.37. HR MS (ESI+): Found 214.1987 [M+H]⁺, calcd. for C₁₂H₂₈NSi⁺ 214.1991.

5c: ¹H NMR (500 MHz, C₆D₆): δ 7.19 (t, *J* = 7.4 Hz, 2H), 7.13 – 7.08 (m, 3H), 2.84 (dd, *J* = 13.3 Hz, 4.7 Hz, 1H), 2.31 – 2.26 (br m, 5H), 2.09 (dd, *J* = 12.0 Hz, 7.6 Hz, 1H), 1.99 (dd, *J* = 12.0 Hz, 7.1 Hz, 1H), 1.96 – 1.88 (m, 1H), 1.52 (quin, *J* = 6.0 Hz, 4H), 1.33 (br, 2H), 0.87 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 141.6, 129.7, 128.4 (x2), 126.0, 66.0, 55.3, 41.6, 33.0, 26.7, 25.1, 18.2. HR MS (ESI+): Found 218.1904 [M+H]⁺, calcd. for C₁₅H₂₄N⁺ 218.1909.

5d: ¹H NMR (500 MHz, C_6D_6): δ 6.88 - 6.81 (m, 4H), 2.69 (dd, J = 13.4 Hz, 4.7 Hz, 1H), 2.24 (br, 4H), 2.17 (dd, J = 13.4 Hz, 8.4 Hz, 1H), 2.02 (dd, J = 12.51 Hz, 7.9 Hz, 1H), 1.95 (dd, J = 12.2 Hz, 6.9 Hz, 1H), 1.85 - 1.76 (m, 1H), 1.52 (quin, J = 5.5 Hz, 4H), 1.33 (br, 2H), 0.80 (d, J = 6.6 Hz, 3H).¹³C NMR (125 MHz, C_6D_6): δ 161.8 (d, J = 242.9 Hz), 137.1 (d, J = 3.2 Hz), 131.0 (d, J = 7.6 Hz), 115.1 (d, J = 20.9 Hz), 65.8, 55.3, 40.5, 32.9,

26.6, 25.1, 18.0. HR MS (ESI+): Found 236.1817 [M+H]⁺, calcd. for C₁₅H₂₃FN⁺ 236.1815.

5e: ¹H NMR (500 MHz, C_6D_6): δ 8.29 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.23 (d, J = 6.9 Hz, 1H), 3.60 (dd, J = 13.5 Hz, 8.5 Hz, 1H), 2.46 (dd,

J = 13.5 Hz, 8.9 Hz, 1H), 2.35 (br, 2H), 2.24 (br, 2H), 2.17 – 1.98 (m, 3H), 1.56 (quin, J = 5.5 Hz, 4H), 1.35 (br, 2H), 0.85 (d, J = 6.4 Hz, 3H).¹³C NMR (125 MHz, C₆D₆): δ 138.4, 134.8, 133.0, 129.2, 127.5, 127.0, 125.8, 125.6 (x2), 124.9, 67.0, 55.7, 39.3, 32.8, 26.7, 25.1, 18.7. HR MS (ESI+): Found 268.2063 [M+H]⁺, calcd. for C₁₉H₂₆N⁺ 268.2065.

5f: ¹H NMR (500 MHz, C₆D₆): δ 2.29 (br, 4H), 2.10 (dd, *J* = 12.1 Hz, 6.7 Hz, 1H), 2.00 (dd, *J* = 12.1 Hz, 7.9 Hz, 1H), 1.68 – 1.59 (m, 1H), 1.54 (quin, *J* = 5.5 Hz, 4H), 1.51 – 1.45 (m, 1H), 1.38 – 1.22 (m, 6H), 1.12 – 1.05 (m, 1H), 0.97 (d, *J* = 6.6 Hz,

3H), 0.92 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 67.0, 55.5, 35.4, 30.9, 29.7, 26.7, 25.2, 23.5, 18.7, 14.4. HR MS (ESI+): Found 184.2064 [M+H]⁺, calcd. for C₁₂H₂₆N⁺ 184.2065.

5g: ¹H NMR (500 MHz, C₆D₆): δ 2.32 (br m 2H), 2.25 (br, 2H), 2.20 (dd, J = 12.1 Hz, 6.2 Hz, 1H), 2.01 (dd, J = 12.1 Hz, 8.6 Hz, 1H), 1.75 – 1.72 (m, 2H), 1.68 – 1.65 (m, 1H), 1.60 – 1.51 (m, 7H), 1.36 -1.31 (m, 3H), 1.27 – 1.20 (m, 2H), 1.17 – 1.08 (m, 2H), 1.06 -0.97 (m, 1H), 0.94 (d, J = 6.8 Hz, 3H).¹³C NMR (125 MHz, C₆D₆): δ

64.4, 55.6, 41.3, 35.8, 31.5, 28.7, 27.4, 27.3, 27.2, 26.7, 25.2, 15.1.HR MS (ESI+): Found 210.2224 $\ensuremath{\left[\mathsf{M}+\mathsf{H}\right]^{+}}$, calcd. for $C_{14}H_{28}\mathsf{N}^{+}$ 210.2222.

5h: ¹H NMR (500 MHz, C_6D_6): δ 2.31 – 2.28 (br, 4H), 2.09 (dd, *J* = 12.0 Hz, 6.7 Hz, 1H), 2.00 (dd, *J* = 12.0 Hz, 7.9 Hz, 1H), 1.89 – 1.64 (m, 6H), 1.54 (quin, *J* = 6.0 Hz, 4H), 1.44 – 1.30 (m, 4H), 1.27 – 1.10 (m, 3H), 0.99 – 0.79 (m, 3H), 0.96

(d, J = 6.5 Hz, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 67.4, 55.5, 44.0, 35.4, 34.8, 33.5, 27.7, 27.2, 26.9, 26.8, 26.7, 25.2, 19.2. HR MS (ESI+): Found 224.2378 [M+H]⁺, calcd. for C₁₅H₃₀N⁺ 224.2378.

6a: ¹H NMR (500 MHz, C₆D₆): δ 7.18 (d, *J* = 7.5 Hz, 2H), 7.11 (d, *J* = 7.3 Hz, 2H) 7.08 (t, *J* = 7.3 Hz, 1H), 2.61 (t, *J* = 7.6 Hz, 2H), 2.35 – 2.32 (m, 6H), 1.74 (quin, *J* = 7.5 Hz, 2H), 1.61 – 1.55 (m, 4H). ¹³C NMR (125 MHz, C₆D₆): δ 142.7, 128.8,

128.7, 126.1, 55.7, 54.2, 33.9, 30.9, 23.9. HR MS (ESI+): Found 190.1599 $[M+H]^+$, calcd. for $C_{13}H_{20}N^+$ 190.1596.

5. Kinetic Isotope Effect Experiments

Compound **6a** could be synthesized following the general procedure above in an 81 % isolated yield.

Intermolecular Competition Experiment

In a glovebox, $[Sc(CH_2C_6H_4NMe_2-o)_3]$ (6 mg, 0.013 mmol) was dissolved in toluene (1.0 mL). To this solution $1f_{d3}$ (22 mg, 0.25 mmol), 1f (21 mg, 0.25 mmol), styrene (26 mg, 0.25 mmol) and $[Ph_3C][B(C_6F_5)_4]$ (16 mg, 0.013 mmol) were added sequentially. The biphasic mixture was transferred to a Schlenk ampoule, sealed and heated at 70 °C for 8 hours. EtOAc (5 mL) was added to the crude mixture and the volatiles removed *in vacuo*. The compound was purified by silica gel column chromatography (hexane/EtOAc), to afford a mixture of **6a** and **6a**_{d3} as a colorless oil (12 mg, 25 % yield). A k_H/k_D value of 2.70 was found by comparison of the relative ratios of **6a** and **6a**_{d3} by ¹H NMR spectroscopy using the integration values for the benzylic proton(s). No deuterium scrambling was observed when this mixture of **6a** and **6a**_{d3} was exposed to the standard reaction conditions.

Comparison of Initial Rates

In a glovebox, $[Sc(CH_2C_6H_4NMe_2-o)_3]$ (6 mg, 0.013 mmol) was dissolved in C₇D₈ (1.0 mL). To this solution, ferrocene (19 mg, 0.1 mmol), *N*-methylpyrrolidine (21mg, 0.25 mmol), styrene (29 mg, 0.28 mmol) and $[Ph_3C][B(C_6F_5)_4]$ (16 mg, 0.013 mmol) were added sequentially. The biphasic mixture was transferred to a J Young NMR tube, sealed and the reaction monitored by ¹H NMR at 70 °C for 12 h. The reaction with d₃-*N*-methylpyrrolidine was performed and monitored under exactly the same conditions. Initial rates were extracted by comparing the ¹H NMR integration of the benzylic proton(s) of **6a** and **6a**_{d3} against the internal standard. A k_H/k_D value of 1.97 ± 0.03 was found by comparison of the initial rates of reaction.

Fig. S2. Initial Rates of C–H/C–D Addition of *N*-methylpyrrolidine to Styrene

6. Dialkylation of 1k to give 3k

7. References

- (1) (a) L. E. Manzer, *J. Am. Chem. Soc.*, 1978, **100**, 8068; (b) W. X. Zhang, M. Nishiura, T. Mashiko and Z. Hou, *Chem. Eur. J.*, 2008, **14**, 2167.
- (2) X. Li, M. Nishiura, K. Mori, T. Mashiko and Z. Hou, Chem. Commun., 2007, 4137.
- (3) R. N. Icke, B. B. Wisegarver, and G. A. Alles Org. Synth., 1945, 25, 89.
- (4) P. Wei, X. Bi, Z. Wu and Z. Xu, Org. Lett., 2005, 7, 3199.

8. ¹H and ¹³C NMR spectra of products

100 90 f1 (ppm)

-10

10 0

