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Constructing bayesian networks by integrating gene expression 
and copy number data identifies NLGN4Y as a novel regulator of 
prostate cancer progression

SUPPLEMENTAL METHODS

Constructing IMBNs for prostate cancer by 
integrating gene expression and CNA data

Two prostate cancer data sets were used in the study, 
the TCGA prostate adenocarcinoma (PRAD) study [1] and 
Taylor prostate cancer study [2]. For the TCGA PRAD 
dataset, the gene expression and gene-based CNA data 
were downloaded from the TCGA data portal (https://
tcga-data.nci.nih.gov/tcga/). For the Taylor dataset, gene 
expression and CNA data were downloaded from the 
GEO repository with accession numbers GSE21034 and 
GSE21035. All data are log2 transformed.

It has been shown that CNA contributes most 
significantly to PCa tumorigenesis and progression [3]. 
CNA alters expression level of underlying genes directly. 
We defined cis-CNA genes as genes whose expression 
levels and their CNAs are significantly correlated. Then, 
we can decompose expression variance of a gene G  into 
multiple parts as G cisCNA R~ * ε+  (Supplementary 
Figure S12), due to its cis-CNA, due to its regulators R , 
and their interactions.

As searching for an optimal Bayesian network 
structure is a NP-hard problem, we can only include a 
limited number of genes with informative gene expression 
or CNAs as nodes in our network reconstruction 
procedure. For the TCGA PRAD data set, we selected 
8,907 informative genes that were expressed in the 
tumor tissues (the mean expression levels >5) and whose 
expression levels varied (the standard deviation >0.5). 
We also included 3,012 cis-CNAs (p-value <0.01 for the 
Spearman’s correlation between gene expression and CNA 
after multiple testing correction) as nodes. Similarly for 
the Taylor data set, we selected 6,955 informative genes 
with the mean expression levels >4 and the standard 
deviation >0.35 as well as 157 cis-CNAs as nodes.

The selected gene expression and gene-based CNA 
profiles were input into a Bayesian network reconstruction 
software package, RIMBANet (Reconstructing Integrative 
Molecular Bayesian Network) (4–7). A Bayesian network 
is a directed acyclic graph in which the edges of the graph 
are defined by conditional probabilities that characterize 
the distribution of states of each node given the state of 
its parents [8]. The network topology defines a partitioned 
joint probability distribution over all nodes in a network, 
such that the probability distribution of states of a node 
depends only on the states of its parent nodes: formally, 

a joint probability distribution p X( )  on a set of nodes 

X  can be decomposed as p X p X X( ) ( | Pa( )),i

i

i∏=  
where XPa( )i  represents the parent set of X i. In our 
networks, each node represents expression level or CNA 
of a gene. These conditional probabilities reflect not only 
relationships between genes, but also the stochastic nature 
of these relationships, as well as noise in the data used to 
reconstruct the network.

Bayes formula allows us to determine the likelihood 
of a network model M  given observed data D  as a 
function of our prior belief that the model is correct and 
the probability of the observed data given the model: 
P M D P D M P M( | ) ~ ( | )* ( ).  We can set a model M ’s  
prior probability based on biological knowledge. For 
genes with cis-CNAs, we assume that the expression 
variations of these genes were directly affected by their 
CNAs. To represent the assumption, we set a structure 
prior p cis CNA G( - ) 1,i i→ =  which is equivalent to start a 
searching process with an initial structure with a set of 

→cis CNA G- i i  edges instead an empty initial structure. 
We also assume the cis-CNAs only affected expression 
levels of their cis genes directly, and any trans effects on 
other genes were through expression variations of their 
cis genes. Thus, we set the prior → =p cis CNA G( - ) 0i j  
for i j.≠

The number of possible network structures grows 
super-exponentially with the number of nodes, so an 
exhaustive search of all possible structures to find the 
one best supported by the data is not feasible, even for 
a relatively small number of nodes. We employed Monte 
Carlo Markov Chain (MCMC) [9] simulation to identify 
potentially thousands of different plausible network 
structures, which are then combined to obtain a consensus 
network (see below). Each reconstruction begins with a 
null network. Small random changes are then made to 
the network by flipping, adding, or deleting individual 
edges, ultimately accepting those changes that lead to an 
overall improvement in the fit of the network to the data. 
We assess whether a change improves the network model 
using the Bayesian Information Criterion BIC [10], which 
avoids overfitting by imposing a cost on the addition of 
new parameters. This is equivalent to imposing a lower 
prior probability P M( )  on models with larger numbers 
of parameters.

Searching optimal BN structures given a dataset is 
an NP-hard problem. We employed an MCMC method 
to do local search of optimal structures. As the method 
is stochastic, the resulting structure will be different 
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for each run. In our process, 1,000 BN structures were 
reconstructed using different random seeds to start the 
stochastic reconstruction process. From the resulting set 
of 1,000 networks generated by this process, edges that 
appeared in greater than 30% of the networks were used 
to define a consensus network. A 30% cutoff threshold for 
edge inclusion was based on our simulation study [11], 
where a 30% cutoff yields the best tradeoff between recall 
rate and precision. The consensus network resulting from 
the averaging process may not be a BN (a directed acyclic 
graph). To ensure the consensus network structure is a 
directed acyclic graph, edges in this consensus network 
were removed if and only if [1] the edge was involved in 
a loop, and [2] the edge was the most weakly supported of 
all edges making up the loop.

Network analysis

1) The degree of a node in a network is generally 
defined as the number of edges connecting the node to 
other nodes. As connections in constructed IMBNs are 
sparse, we define the degree of a node in an IMBN as 
the number of nodes that can be reached from the seed 
node within two hops. 2) Key regulator analysis is aimed 
to identify genes with high potentials to regulate a large 
number of genes when perturbed. We use the degree of 
a node in an IMBN defined above as a measurement 
of transcriptional regulation potential. Given d  as the 
degree of a node, key regulators are defined as nodes with 
d d d2 ( ).σ> +  3) A gene’s network neighborhood was 
defined as genes whose distance to the seed gene is <= k.   
As the size of a gene’s network neighborhood greatly 
affect the significance of functional annotation of the 
gene’s network neighborhood by enrichment analysis, 
we aimed to define network neighborhoods resulting to 
similar sizes. We adjusted k  according to the connectivity 
of each gene so that the defined neighborhood was of 
similar size for all genes. Particularly, for each gene, we 
chose the smallest k  at which the number of genes in 
its neighborhood is >=100. 4) Sub-networks associated 
with Biochemical Recurrence (BCR): We first selected 
genes significantly associated (adjusted P-value < 0.01) 
with BCR using the Cox regression model, termed as 
“initial BCR genes”. To remove sporadic associations and 
expand high confident associations, we then projected 
the initial BCR genes onto the IMBNs for prostate 
cancer constructed above and identified genes whose 
neighborhood is significantly enriched (p-value of 
Fisher’s exact test <10−6) for the initial BCR genes, which 
together formed BCR subnetworks. The genes in the BCR 
subnetworks are termed as “network selected BCR genes” 
collectively. We constructed sub-networks for genes 
positively and negatively associated with BCR separately.

Collection of reference network databases

To assess accuracies of reconstructed IMBNs for 
prostate cancers, we collected interactions from multiple 
databases, including 36,727 interactions covering 9,205 
genes from HPRD database [12], 195,859 high confident 
interactions covering 12,427 genes from STRING 
database [13], and 476,891 interactions covering 16,010 
genes from HumanNet database [14]. We also collected 
multiple functional gene sets including 186 KEGG [15] 
pathways covering 5,267 genes, 50 hallmark gene sets 
[16] covering 4,386 genes, and 1300 GO [17] annotation 
sets (sets with size >=200 are excluded) covering 6,942 
genes from MsigDB databases [16].

Compilation of cancer genes and high confident 
prostate cancer related genes

We assembled a list of 152 high confident prostate 
cancer related genes (Supplementary Table S2). These 
genes have been identified in at least two previous studies 
related to prostate cancer (Supplementary Table S3). 
We also compiled a list of 813 known cancer genes (not 
restricted to prostate cancer) from cancer gene census [18] 
and KEGG cancer pathways [15] (Supplementary Table 
S6).

ERG and AR signatures

A list of 87 TMPRSS2-ERG fusion signature genes 
(comparing PCa patients with and without the fusion) was 
collected from a previous study [19] (Supplementary Table 
S7). We also compiled a list of 157 AR signature genes 
(Supplementary Table S8) from multiple sources including 
27 AR transcriptional targets based on experimental 
perturbation [20] and two curated AR pathway gene sets: 
PID_AR_PATHWAY (61 genes) and HALLMARK_
ANDROGEN_RESPONSE (101 genes) from MsigDB 
database [16].

Human tissue atlas

Gene expression profiles of 126 primary human 
tissues were downloaded from http://xavierlab2.mgh.
harvard.edu/EnrichmentProfiler/download.html. Given a 
gene, the preferentially expressed tissues are defined as 
the top 5 tissues with the highest gene expression level.

Patient’s clinical information

For the Taylor’s dataset, following radical 
prostatectomy, patients were followed with history, 
physical exam, and serum PSA testing every 3 months for 
the first year, 6 months for the second year, and annually 
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thereafter. Biochemical recurrence (BCR) was defined as 
PSA ≥0.2 ng/ml on two occasions. For the TCGA PRAD 
dataset, all tumor samples in TCGA were from primary 
tumors prior any treatment. BCR events were reported in 
the dataset without specific definition of BCR.

In the Taylor’s dataset, 21.6% of the patients were 
documented with clinical metastatic events, 72.7% were 
documented as “NO” in the metastatic event, and 5.6% 
were NA. For the TCGA dataset, there was no information 
about metastatic event.

Patient treatment information

The treatment information is sparse for the Tylor and 
TCGA datasets. For Tylor’ dataset, 9.3% of patients are 
documented with chemotherapy, and the rest are documented 
as “NA”; 23.3% are documented with hormone therapy, and 
the rest “NA”; 16% are documented with radiotherapy, and 
the rest “NA”. In summary., 6% of patients are documented 
with all three types of therapies, i.e., chemotherapy, hormone 
therapy and radiotherapy, 10.7% documented with two types 
of therapies, 9.3% documented with one type of therapy 
and 74% documented with NA for all three therapies. For 
TCGA dataset, 7.4% patients are documented as “YES” in 
adjuvant radiation, 40% as “NO”, the rest 52.6% as “Not 
Available” or “Unknown”. As for drug treatment, 11.4% are 
documented with hormone therapy, 1% with chemotherapy, 
and the rest with no information.
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Supplementary Figure S1: Fraction of genes with similar network neighborhood in TCGA and Taylor’s datasets as 
grouped by their node degrees.

SUPPLEMENTARY FIGURES AND TABLES
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Supplementary Figure S2: A and B. DHCR24 subnetwork extracted from TCGA IMBN (A) and Tylor IMBN (B). Nodes of yellow 
color represent the known AR signature genes. Genes known to be cancer related are labeled in larger font size. Square nodes represent 
genes regulated by cis CNA. C. Evaluation of DHCR24 subnetworks using AR signature genes through ROC like curve and partial AUC.
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Supplementary Figure S3: Expression of NLGN4Y transcripts in a panel of PCa cell lines. Cellular mRNA expression was 
examined by qRT-PCR and the expression level was normalized to NLGN4Y level in 22Rv1 cells. NLGN4Y transcripts were not detected 
in 8 cell lines as shown above.
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Supplementary Figure S4: A. Short and long exposure results of western blot analysis of expression of exogenous NLGN4Y in LNCaP 
cells. B. Treatment of LNCaP/N cells with Neurexin 1β/Fc decoy receptor induced phosphorylation of ERK.



www.impactjournals.com/oncotarget/ Oncotarget, Supplementary Materials 2016

Supplementary Figure S5: A. Monoclonal PC3/N cells showed dramatically decreased ERK phosphorylation. B. Monoclonal PC3/N 
cells proliferated slower. C. Expression of several pro-inflammatory cytokines was suppressed in monoclonal PC-3/N cells.
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Supplementary Figure S6: NLGN4Y regulated ERK and cell proliferation in 22Rv1 cells. A. Knockdown of NLGN4Y 
mRNA in 22Rv1 cells increased ERK phosphorylation. B. Knockdown of NLGN4Y mRNA in 22Rv1 cells increased cell proliferation.
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Supplementary Figure S7: NLGN4Y expression decreased the mRNA levels of several neurotropic factors in PC-3 
cells. A. and consistently, NLGN4Y shRNA upregulated the expression of these genes B.
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Supplementary Figure S8: A. Defects in cell spreading in monoclonal PC-3/N cells (clone 9 and 15). B. Defects in F-actin organization 
in monoclonal PC-3/N cells (clone 15). C. Defects in cell migration in monoclonal PC-3/N cells (clone 15) as shown by a wound healing 
assay.
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Supplementary Figure S9: Barplot of gene expression of key regulators for samples with different Gleason scores. 
P-value was calculated based on the F test for the association between gene expression and Gleason score.
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Supplementary Figure S10: Barplot of gene expression of key regulators for samples with different tumor stages. 
P-value was calculated based on the F test for the association between gene expression and tumor stage.
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Supplementary Figure S11: Barplot of gene expression of key regulators for samples with different lymph node status. 
P-value was calculated based on the F test for the association between gene expression and lymph node status.



www.impactjournals.com/oncotarget/ Oncotarget, Supplementary Materials 2016

Supplementary Figure S12: Gene expression variation of a gene is caused by CNA of the gene and binding of 
transcription factors (TFs) to its promoter region. A. low gene expression due to a low copy number of the gene; B. low gene 
expression due to none TF binding; C. high gene expression due to TF binding at the promoter region; D. high gene expression due to gene 
copy number amplification; E. higher gene expression due to gene copy number amplification with TF binding at the promoter region.



www.impactjournals.com/oncotarget/ Oncotarget, Supplementary Materials 2016

Supplementary Table S1: The estimated accuracy of PCa IMBNs using different benchmark datasets 

Reference databases
TCGA dataset Taylor dataset

expression & 
CNA

expression only expression & 
CNA

expression only

Gene network HPRD [81] 1.2%
(0.1%±0.05%)

1.1%
(0.11%±0.05%)

1%
(0.11%±0.06%)

1.2%
(0.12%±0.07%)

HumanNet [24] 7.5%
(0.61%±0.07%)

7%
(0.59%±0.06%)

7.3%
(0.63%±0.1%)

7%
(0.64%±0.1%)

STRING [22] 7%
(0.29%±0.07%)

6.5%
(0.3%±0.05%)

6.1%
(0.33%±0.09%)

6.3%
(0.34%±0.09%)

Gene sets KEGG [25] 26%
(5.1%±0.6%)

24%
(4.8%±0.6%)

32%
(4.9%±0.6%)

30%
(4.8%±0.8%)

MsigDB 
Hallmark [26]

34%
(7.5%±0.6%)

32%
(7.2%±0.6%)

28%
(7.4%±1%)

28%
(7.3%±0.9%)

GO* [27] 14%
(4.3%±0.4%)

13%
(4.4%±0.4%)

12%
(4.3%±0.5%)

12%
(4.2%±0.5%)

*GO gene sets with size >=200 are excluded.
Numbers in the parentheses are the mean and standard deviation of accuracies of random networks generated by permuting 
gene names in the corresponding IMBN.
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Supplementary Table S2: A list of “high confidence” prostate cancer genes defined as those included in more than 
one of the prostate cancer related gene sets listed in Supplementary Table S3

See Supplementary File 1
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Supplementary Table S3: Gene sets in MsigDB used to generate a list of high confident prostate cancer genes 

Geneset Name GeneNum

CHANDRAN_METASTASIS_DN 306

CHANDRAN_METASTASIS_UP 221

KEGG_PROSTATE_CANCER 89

LI_PROSTATE_CANCER_EPIGENETIC 30

LIU_PROSTATE_CANCER_DN 482

LIU_PROSTATE_CANCER_UP 96

TOMLINS_METASTASIS_DN 20

TOMLINS_METASTASIS_UP 14

TOMLINS_PROSTATE_CANCER_DN 40

TOMLINS_PROSTATE_CANCER_UP 40

WALLACE_PROSTATE_CANCER_DN 6

WALLACE_PROSTATE_CANCER_UP 20

WANG_HCP_PROSTATE_CANCER 111

YEGNASUBRAMANIAN_PROSTATE_CANCER 128

The high confident prostate cancer genes are defined as those included in more than one of the above gene sets.
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Supplementary Table S4: Canonical pathways enriched in ERG subnetworks (MsigDB)

TCGA Tylor

REACTOME_NEURONAL_SYSTEM (158) 6.E-03 1.E-02

REACTOME_TRNA_AMINOACYLATION (26) 1.E+00 2.E-04

REACTOME_CYTOSOLIC_TRNA_
AMINOACYLATION (17) 1.E+00 2.E-03

KEGG_PURINE_METABOLISM (113) 4.E-01 5.E-03

REACTOME_NITRIC_OXIDE_STIMULATES_
GUANYLATE_CYCLASE (21) 1.E+00 2.E-03

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS (24) 1.E+00 3.E-03

MIPS_MULTISYNTHETASE_COMPLEX (8) 1.E+00 3.E-03

REACTOME_PLATELET_HOMEOSTASIS (56) 1.E+00 3.E-03

PID_AR_TF_PATHWAY (35) 4.E-01 1.E-02

MIPS_P2X7_RECEPTOR_SIGNALLING_COMPLEX (9) 5.E-03 1.E+00

Note: Numbers in each cell represent p-values form fisher’s exact test. TCGA: ERG subnetwork extracted from TCGA 
IMBN. Tylor: ERG subnetwork extracted from Tylor IMBN.
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Supplementary Table S5: Hallmark pathways enriched in BCR subnetworks (MsigDB)

tcga_pos tcga_neg tylor_pos tylor_neg combined_
pos

combined_
neg

HALLMARK_E2F_
TARGETS (146) 1.E-54 1.E+00 2.E-14 1.E+00 1.E-52 1.E+00

HALLMARK_G2M_
CHECKPOINT (142) 7.E-43 1.E+00 2.E-19 1.E+00 2.E-44 1.E+00

HALLMARK_TNFA_
SIGNALING_VIA_NFKB 
(169)

1.E+00 2.E-12 7.E-01 4.E-16 1.E+00 4.E-19

HALLMARK_MITOTIC_
SPINDLE (156) 2.E-13 1.E+00 2.E-09 9.E-01 7.E-15 1.E+00

HALLMARK_
EPITHELIAL_
MESENCHYMAL_
TRANSITION (179)

9.E-01 2.E-03 9.E-01 2.E-11 7.E-01 4.E-11

HALLMARK_
MYOGENESIS (159) 9.E-01 7.E-11 1.E+00 3.E-05 9.E-01 6.E-09

HALLMARK_HYPOXIA 
(173) 1.E+00 2.E-05 1.E+00 5.E-04 1.E+00 5.E-07

HALLMARK_APOPTOSIS 
(130) 8.E-01 6.E-03 8.E-01 2.E-06 8.E-01 4.E-06

HALLMARK_UV_
RESPONSE_DN (124) 9.E-01 2.E-02 9.E-01 2.E-04 8.E-01 9.E-07

HALLMARK_
SPERMATOGENESIS (78) 3.E-06 1.E+00 2.E-02 9.E-01 5.E-05 8.E-01

HALLMARK_ESTROGEN_
RESPONSE_EARLY (174) 1.E+00 3.E-02 1.E+00 8.E-04 1.E+00 8.E-05

HALLMARK_
COAGULATION (101) 1.E+00 5.E-02 1.E+00 3.E-04 1.E+00 1.E-04

HALLMARK_MYC_
TARGETS_V1 (143) 2.E-05 1.E+00 5.E-01 1.E+00 1.E-03 1.E+00

HALLMARK_IL6_JAK_
STAT3_SIGNALING (62) 1.E+00 3.E-02 1.E+00 4.E-03 1.E+00 5.E-03

HALLMARK_KRAS_
SIGNALING_UP (169) 1.E+00 4.E-02 7.E-01 4.E-02 1.E+00 1.E-03

HALLMARK_IL2_STAT5_
SIGNALING (168) 1.E+00 9.E-03 9.E-01 1.E-01 1.E+00 5.E-03

HALLMARK_
INFLAMMATORY_
RESPONSE (154)

1.E+00 8.E-02 1.E+00 6.E-02 1.E+00 9.E-03

HALLMARK_
INTERFERON_GAMMA_
RESPONSE (170)

1.E+00 1.E+00 1.E+00 9.E-03 1.E+00 4.E-02

Note: Numbers in each cell represent p-values form fisher’s exact test. tcga_pos/tylor_pos/combined_pos: subnetworks 
positively associated with BCR extracted from TCGA IMBN/Tylor IMBN/combined IMBN. tcga_neg/tylor_neg/
combined_neg: subnetworks negatively associated with BCR extracted from TCGA IMBN/Tylor IMBN/combined IMBN.
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Supplementary Table S6: A list of 813 known cancer genes (not restricted to prostate cancer) collected from cancer 
gene census [18] and KEGG cancer pathways [15]

See Supplementary File 2

Supplementary Table S7: A list of 87 TMPRSS2-ERG fusion signature genes (comparing PCa patients with and 
without the fusion) collected from a previous study [19]

See Supplementary File 3

Supplementary Table S8: A list of 157 AR signature genes collected from multiple sources [16, 20]

See Supplementary File 4


