### **Online Supplementary Material**

### Hannoush et al.

#### Part A.

### Methods

## UV melting and circular dichroism studies

These experiments were carried out as described previously (27) at an oligonucleotide concentration of ~ 4.5  $\mu$ M in 0.01 M Na<sub>2</sub>HPO<sub>4</sub>, 0.1 mM Na<sub>2</sub>EDTA, buffer, pH 7.00 ± 0.02. The melting temperature was calculated according to the base line method assuming a two-state (all-or-none) transition. Single-strand molar extinction coefficients were calculated from those of mononucleotides and dinucleotides using the nearest-neighbor approximation method (ref. 30). 2',5'-RNA, and RNA:2',5'-RNA chimeras were assumed to have the same molar extinction coefficient as RNA. Single-strand concentration was determined from UV absorbance at high temperature.

All CD spectra were recorded at 5 °C and were normalized by subtraction of the background scan with buffer. Taking the known oligonucleotide concentration into account, the normalized spectra were converted to molar ellipticities.

# 5'-End [<sup>32</sup>P]-labeling of oligonucleotides

The oligonucleotide (100 pmol) was dissolved in 5  $\mu$ l of 10 x T4 PNK Buffer (0.5 M Tris-HCl, pH 7.6, 100 mM MgCl<sub>2</sub>, 100 mM 2-mercaptoethanol) to which 10 pmol of Gamma-ATP and 9 units (3-6  $\mu$ l, diluted with 1 x T4 PNK buffer) of T4 Polynucleotide Kinase (PNK) were added. The assay volume was adjusted to 50  $\mu$ l in total volume with dd water. After the contents were mixed well and centrifuged briefly, they were incubated at 37 °C for 1.5 h. The reaction was terminated by heating to 65 °C for 5 min followed by evaporation (under vacuum) until dryness.

Just prior to loading onto a gel, the dried sample was dissolved in 16  $\mu$ l of loading buffer and subsequently heated to 100 °C for about 10 min to effect denaturation of any secondary structure. The gel was run at 2000 V for 3 h. After removal of the glass plates, the major and slowest moving band was excised from the gel and crushed and soaked in 0.5 ml of doubled distilled water overnight at 37 °C. The sample was then desalted by loading on a Nap<sup>TM</sup>-5 column containing Sephadex<sup>®</sup> G-25 Medium (0.9 x 2.8 cm, Pharmacia Biotech) and elution with 1 ml dd water. The obtained solution was lyophilized to dryness and subsequently quantitated for radioactive content by using a Bioscan/QC 2000 counter (Amersham).

| Reported yields from solid-phase synthesis |                       |                                  |       |          |              |
|--------------------------------------------|-----------------------|----------------------------------|-------|----------|--------------|
|                                            |                       | Hairpin                          | Crude | Isolated | Purification |
|                                            | Code                  | $5' \rightarrow 2'/3'$ direction | Yield | Yield    | Technique    |
| Entry                                      |                       |                                  | (ODU) | (ODU)    |              |
| 1                                          |                       | ggac(UUCG)gtcc                   | 90.2  | 23.8     |              |
| 2                                          | RRR                   | GGAC(UUCG)GUCC                   | 61.3  | 18.6     | HPLC/ppt.    |
| 3                                          | <u>R</u> RR           | <u>GGAC(UUCG)</u> GUCC           | 67.7  | 16.9     | Gel/Seph.    |
| 4                                          | RR <u>R</u>           | GGAC(UUCG) <u>GUC</u> C          | 63.6  | 8.34     | HPLC/ppt.    |
| 5                                          | <u>RR</u>             | <u>GGAC(UUCG)GUC</u> C           | 53.5  | 17.2     | Gel/Seph.    |
| 6                                          | <u>R</u> RD           | GGAC(UUCG)gtcc                   | 63.8  | 19.86    | Gel/Seph.    |
| 7                                          | D <u>R</u> D          | ggac( <u>UUCG</u> )gtcc          | 47.1  | 19.4     | HPLC/ppt.    |
| 8                                          | DR <u>R</u>           | ggac(UUCG) <u>GUC</u> C          | 52.8  | 17.5     | Gel/Seph.    |
| 9                                          |                       | <u>GGAC(UUCG)GUC</u> C           | 56.0  | 9.8      | Gel/Seph.    |
| 10                                         | <u>R</u> R            | GGAC(UUCG)GUCC                   | 58.0  | 13.9     | HPLC/ppt.    |
| 11                                         | D <u>RR</u>           | ggac( <u>UUCG</u> )GUCC          | 49.1  | 12.4     | Gel/Seph.    |
| 12                                         | <u>RR</u> D           | GGAC(UUCG)gtcc                   | 66.1  | 14.3     | Gel/Seph.    |
| 13                                         | <u>RR</u> R           | <u>GGAC(UUCG</u> )GUCC           | 61.7  | 9.8      | Gel/Seph.    |
| 14                                         | R <u>RR</u>           | GGAC( <u>UUCG)GUC</u> C          | 63.7  | 12.9     | Gel/Seph.    |
| 15                                         | R <sub>C</sub> RR     | GGA <u>C</u> (UUCG)GUCC          | 61.4  | 9.3      | Gel/Seph.    |
| 16                                         | RR <sub>G</sub> R     | GGAC(UUCG)GUCC                   | 65.0  | 11.4     | Gel/Seph.    |
| 17                                         | TRT                   | tttt(UUCG)tttt                   | 60.7  | 12.3     | Gel/Seph.    |
| 18                                         | $R\underline{R}^{1}R$ | GGAC(UACG)GUCC                   | 53.6  | 4.4      | HPLC/ppt.    |
| 19                                         | $R\underline{R}^2R$   | GGAC( <u>UUUG</u> )GUCC          | 51.3  | 3.7      | HPLC/ppt.    |
| 20                                         | $R\underline{R}^{3}R$ | GGAC(UUUU)GUCC                   | 34.2  | 2.7      | HPLC/ppt.    |
| 21                                         | $D\underline{R}^{1}D$ | ggac( <u>UACG</u> )gtcc          | 45.8  | 6.1      | Gel/Seph.    |
| 22                                         | $D\underline{R}^2D$   | ggac( <u>UUUG</u> )gtcc          | 79.0  | 10.5     | HPLC/ppt.    |
| 23                                         | $D\underline{R}^{3}D$ | ggac( <u>UUUU</u> )gtcc          | 86.0  | 6.6      | HPLC/ppt.    |
| 24                                         | DDD                   | ggac(uucg)gtcc                   | 88.8  | 19.2     | Gel/Seph.    |
| 25                                         | RDR                   | GGAC(uucg)GUCC                   | 80.8  | 5.5      | Gel/Seph.    |
| 26                                         |                       | ggac(tttt)gtcc                   | 90.5  | 22.3     | Gel/Seph.    |
| 27                                         | DUD                   | ggac(UUUU)gtcc                   | 64.1  | 15.6     | Gel/Seph.    |
| 28                                         | DRR                   | ggac(UUCG)GUCC                   | 60.0  | 12.4     | Gel/Seph.    |
| 29                                         | D <u>R</u> R          | ggac( <u>UUCG</u> )GUCC          | 58.9  | 10.1     | Gel/Seph.    |
| 30                                         | R <sub>C</sub> RR     | GGA <u>C(UUCG</u> )GUCC          | 55.6  | 14.0     | Gel/Seph.    |
| 31                                         | RR <sub>U</sub> R     | GGAC(UUCG)GUCC                   | 65.8  | 19.1     | Gel/Seph.    |

Part B. Characterization and Purification of Oligonucleotides

Crude yield represents the total amount of oligonucleotide obtained after solid-phase synthesis. The isolated yield represents that total amount of oligonucleotide obtained after purification/desalting. "Seph." denotes Sephadex; "ppt." refers to propanol precipitation.

# **Purity Check**

Purity of all purified desalted oligonucleotides was checked by using either analytical 24% denaturing acrylamide gels or analytical ion-exchange HPLC, and was found to be > 90% in most cases.



Analytical polyacrylamide (24%) denaturing gel showing representative purified oligonucleotides. Lane 1: <u>RRR</u>; Lane 2: <u>RRR</u>; Lane 3: <u>DRR</u>; Lane 4: <u>RRD</u>; Lane 5: <u>RRR</u>; Lane 6: <u>RRR</u>; Lane 7: R<sub>c</sub>RR; Lane 8: RR<sub>G</sub>R; Lane 9: TRT; Lane 10: C<sub>5</sub>RC<sub>5</sub>.



Representative an ion-exchange HPLC profile for a pure sample. Analysis was done at 55 °C with a flow rate of 1 ml/min and a linear gradient of 0-23% NaClO<sub>4</sub> in H<sub>2</sub>O.

## MALDI-TOF Mass Spectrometry

The molecular weights of the purified oligonucleotides were confirmed by MALDI-TOF mass spectrometry (for representative examples, see below). The matrix used was 6-aza-2-thiothymine (Aldrich) at a concentration of 10 mg/ml in 20 mM ammonium citrate (Fluka) (1:1 acetonitrile/water, v/v) buffer. The machine was run in either the positive reflecton or negative linear mode. This gave correct molecular weight signals for the desired oligonucleotides with excellent signal to noise ratios. Typically, 20  $\mu$ M solution of purified oligomer in water was prepared, from which 2  $\mu$ l was pipetted into a tube containing 2  $\mu$ l of matrix. After this solution was vortexed, 1  $\mu$ l was pipetted, applied to a metal plate and subsequently air-dried. A brief pulse of nitrogen laser was directed to the sample in order to ionize it prior to analysis by the Kratos Kompact instrument.

|       |                       | Calculated             | Calculate | Observed | Observed                  |
|-------|-----------------------|------------------------|-----------|----------|---------------------------|
|       | Code                  | $\epsilon \ge 10^{-4}$ | d Mass    | Mass     | Molecular Ion             |
| Entry |                       | $(M^{-1}.cm^{-1})$     | (g/mol)   | (g/mol)  |                           |
| 1     | DRD                   | 11.448                 | 3682.4    | 3682.1   | $(M-3H+2Li)^{-1}$         |
| 2     | RRR                   | 11.595                 | 3810.2    | 3810.6   | $(M-3H+4Li)^+$            |
| 3     | <u>R</u> RR           | 11.595                 | 3802.3    | 3802.3   | (M-4H+3Li) <sup>-</sup>   |
| 4     | RR <u>R</u>           | 11.595                 | 3792.4    | 3792.8   | $(M+Li)^+$                |
| 5     | <u>R</u> R <u>R</u>   | 11.595                 | 3792.4    | 3792.7   | $(M+Li)^+$                |
| 6     | <u>R</u> RD           | 11.448                 | 3756.5    | 3755.5   | (M-2H+Na) <sup>-</sup>    |
| 7     | D <u>R</u> D          | 11.448                 | 3688.3    | 3686.9   | (M-4H+3Li) <sup>-</sup>   |
| 8     | DR <u>R</u>           | 11.453                 | 3748.4    | 3748.8   | (M-3H+Na+Li) <sup>-</sup> |
| 9     | <u>RRR</u>            | 11.595                 | 3806.4    | 3804.3   | (M-2H+Na) <sup>-</sup>    |
| 10    | R <u>R</u> R          | 11.595                 | 3806.4    | 3806.2   | (M-2H+Na) <sup>-</sup>    |
| 11    | D <u>RR</u>           | 11.453                 | 3742.5    | 3740.0   | (M-2H+Na) <sup>-</sup>    |
| 12    | <u>RR</u> D           | 11.448                 | 3752.3    | 3752.1   | (M-4H+3Li) <sup>-</sup>   |
| 13    | <u>RR</u> R           | 11.595                 | 3802.3    | 3801.3   | (M-4H+3Li) <sup>-</sup>   |
| 14    | R <u>RR</u>           | 11.595                 | 3784.5    | 3786.7   | (M-H) <sup>-</sup>        |
| 15    | R <sub>C</sub> RR     | 11.595                 | 3802.3    | 3801.3   | (M-4H+3Li) <sup>-</sup>   |
| 16    | RR <sub>G</sub> R     | 11.595                 | 3802.3    | 3802.3   | (M-4H+3Li) <sup>-</sup>   |
| 17    | TRT                   | 10.690                 | 3650.2    | 3648.5   | (M-4H+3Li) <sup>-</sup>   |
| 18    | $R\underline{R}^{1}R$ | 11.918                 | 3807.5    | 3807.6   | (M-H) <sup>-</sup>        |
| 19    | $R\underline{R}^2R$   | 11.778                 | 3803.2    | 3803.3   | (M-4H+3Li) <sup>-</sup>   |
| 20    | $R\underline{R}^{3}R$ | 11.709                 | 3764.2    | 3763.3   | (M-4H+3Li) <sup>-</sup>   |
| 21    | $D\underline{R}^{1}D$ | 11.771                 | 3693.6    | 3694.8   | (M-H) <sup>-</sup>        |
| 22    | $D\underline{R}^2D$   | 11.631                 | 3689.3    | 3689.8   | $(M-4H+3Li)^{-}$          |
| 23    | $D\underline{R}^{3}D$ | 11.562                 | 3650.3    | 3648.5   | $(M-4H+3Li)^{-1}$         |

MALDI-TOF MS of representative hairpins and calculated extinction coefficients

| 24 | DDD               | 11.448 | 3618.4 | 3621.8 | $(M-3H+2Li)^{-1}$  |
|----|-------------------|--------|--------|--------|--------------------|
| 25 | RDR               | 11.595 | 3736.4 | 3736.6 | $(M-3H+2Na)^{-1}$  |
| 26 | DTD               | 11.124 | 3624.6 | 3626.5 | (M-H) <sup>-</sup> |
| 27 | DUD               | 11.562 | 3632.5 | 3632.2 | (M-H) <sup>-</sup> |
| 28 | DRR               | 11.453 | 3720.5 | 3720.6 | (M-H) <sup>-</sup> |
| 29 | D <u>R</u> R      | 11.453 | 3720.5 | 3720.6 | (M-H) <sup>-</sup> |
| 30 | R <sub>C</sub> R  | 11.595 | 3784.5 | 3783.5 | (M-H) <sup>-</sup> |
| 31 | RR <sub>U</sub> R | 11.595 | 3784.5 | 3785.4 | (M-H) <sup>-</sup> |
|    |                   |        |        |        |                    |

Molar Extinction coefficients ( $\epsilon$ ) for the various oligonucleotides were calculated using the nearest-neighbor approximation method (ref. 30). 2',5'-RNA, and RNA:2',5'-RNA chimeras were assumed to have the same molar extinction coefficient as RNA.

# Hannoush et al.





ln(conc)



Van't Hoff plots of representative hairpin library members. The spectra show concentration independence over a 50-fold range, consistent with a *unimolecular* transition process. UV thermal melting measurements were recorded at 260 nm in 0.01 M Na<sub>2</sub>HPO<sub>4</sub>, 0.1 mM Na<sub>2</sub>EDTA, pH 7.0 buffer.

Hannoush et al.

## Part D.



Integrity of hairpin aptamers towards RNase H activity. A representative 5'-[<sup>32</sup>P]-labeled potent hairpin aptamer was incubated with the enzyme in the absence of the natural RNA:DNA substrate. The gel shows no enzyme degradation of the hairpin aptamer, excluding the possibility that this might have been a reason for the observed decreased rate of degradation of the natural substrate in the inhibition assays performed earlier. The 5'-[<sup>32</sup>P]-RNA strand in the RNA:DNA substrate, in the absence of hairpin inhibitor, is completely degraded within 20 min.

## Hannoush et al.

## Part E.

| Entry | 5'-Sequence-3'      | Code       | Mixture           | $IC_{50}(\mu M)$ |
|-------|---------------------|------------|-------------------|------------------|
| 1     | GGAC                | 5'-R       | 5'-R + R-3'       | n.i              |
| 2     | GUCC                | R-3'       | 5'-D + R-3'       | n.i.             |
| 3     | ggac                | 5'-D       | 5'-R + RR         | n.i.             |
| 4     | (UUCG)GUCC          | RR         | 5'-R + <u>R</u> R | n.i.             |
| 5     | ( <u>UUCG</u> )GUCC | <u>R</u> R | 5'-D + RR         | n.i.             |
| 6     |                     |            | 5'-D + <u>R</u> R | n.i.             |

Test of RNase H inhibitory activity of short linear oligomers

n.i. = no inhibition; IC<sub>50</sub> is the oligomer concentration required to inhibit 50% RNase H activity of HIV-1 RT. Measurements were repeated twice. Capital letters represent RNA residues; underlined letters are 2',5'-RNA residues (*e.g.* <u>UC</u> =  $U_{2'p5}C_{2'p}$ ); DNA residues are represented by small letters. The appropriate oligomers were mixed at different molar concentrations, heated to 95 °C, and then left to anneal at 4 °C for 72 h. The inhibition assay was run as described in the Materials and Methods section.