Multimedia Appendix 2

Authors	Similarity metric	Methodology ^a	Neighbor hood- based	Cluster -based	Other algorithm	Programmin g language ^b
Jurisica et al [16]	Context- based metric	 Retrieving patients based on a context-based metric defined by a user. Relaxing the context to retrieve more patients (optional). 	✓			NR
		3. Weighted aggregation of the retrieved outcomes is used for an index patient.				
Bobrowski [17]	Euclidian distance	 Designing a linear transformation by maximizing within-class compactness and between-class scatteredness. 	~			NR
		2. Applying the transformation, and executing a <i>k</i> -NN (k=10) algorithm on the transformed data.				
Park et al [19]	Euclidian distance	1. Learning the distribution of distances in the training set.	✓			JAVA
		2. Finding the optimum cut- off probability using a grid search.				
		 Retrieving similar patients within the distance threshold. 				
		4. Weighted aggregation of the retrieved patients' outcomes is used for an index patient.				

Summary of the reviewed articles in terms of methodology (N=22).

Authors	Similarity metric	Methodology ^a	Neighbor hood- based	Cluster -based	Other algorithm	Programmin g language ^b
Saeed et al [21]	Correlation distance	 Applying a discrete wavelet transformation. Uniformly quantizing the wavelet coefficients' histogram at each scale to produce wavelet symbols. Using IDF map of wavelet symbols as predictors. Applying k-NN with majority vote within a threshold. 	 ✓ 			NR
Chattopadhy ay et al [23]	Absolute distance	 Retrieving a cohort of patients who are similar to a new patient. Splitting the retrieved data into cohorts with various risk levels. Calculating the relative distance of a new patient from each cohort. Assigning the new patient to the closest class. 	 ✓ 			JAVA

Authors	Similarity metric	Methodologyª	Neighbor hood- based	Cluster -based	Other algorithm	Programmin g language ^b
Sun et al [24]	Mahalanobis Distance	 Employing two schemes for deriving predictors: Wavelet coefficients: applying a wavelet transformati on and deriving top- 10 wavelet coefficients. Statistic predictors: calculating the mean and variance of two hours mean APB, systolic ABP, SPO₂ and heart rate data. Defining a Mahalanobis distance by solving an optimization problem by minimizing the within- class squared distances and maximizing between- class squared distances. Retrieving three most similar patients to an index patient based on the similarity metric learned in step 2. 				NR

Authors	Similarity metric	Methodology ^a	Neighbor hood- based	Cluster -based	Other algorithm	Programmin g language ^b
Sun et al [25]	Mahalanobis Distance	 Imputing the missing data: Replacing with the mean. Using the correlation between sensors and using linear regression imputation. Applying wavelet transformation and deriving top-10 wavelet coefficients. Defining a Mahalanobis distance by solving an optimization problem by minimizing the withinclass squared distances and maximizing between-class squared distances. Retrieving five most similar patients to an index patient based on the similarity metric learned in step two. 				NR

Authors	Similarity metric	Methodology ^a	Neighbor hood- based	Cluster -based	Other algorithm	Programmin g language ^ь
David et al [26]	Euclidian distance	 Assigning random weights to the predictors. Selecting neighbors for an index patient using Euclidian distance. Applying singular value decomposition to map the data to a lower dimensional space. Examining the discriminative power of the assigned weights. Repeating steps (1)-(4) to achieve a set of random discriminative weights. Combining all confirmed weighting vectors to derive a differential matrix. Using the differential matrix to obtain the neighborhood of an index patient. 				NR
Houeland	Tree-based	 8. Using the weighted aggregation of the neighboring labels. 1. Generating a forest of 	✓			NR
[27]	metric	 Generating a forest of randomly grown trees of height five. Each tree sorts a patient into one of 16 leaf nodes (buckets). Using k-NN (k = 1)—Two patients are said to be similar if they are in the same leaf node for a higher number of trees. 				

Authors	Similarity metric	Methodology ^a	Neighbor hood- based	Cluster -based	Other algorithm	Programmin g language ^b
Wang et al [28]	Mahalanobis Distance	 Learning a Mahalanobis distance for each party by maximizing inter-class compactness and between-class scatteredness. Defining a quadratic optimization problem to derive a single optimal distance metric. Using k-NN algorithm. 	✓			NR
Wang et al [29]	Mahalanobis Distance	 Learning a Mahalanobis distance using the following steps: For each patient, retrieving k nearest neighboring cases based on the Euclidean distance. Solving a local spline regression problem. Aggregating local neighborhoo ds' losses and minimizing the global loss of local spline regressions to derive the precision matrix. 				NR

Authors	Similarity metric	Methodologyª	Neighbor hood- based	Cluster -based	Other algorithm	Programmin g language ^b
		2. Using <i>k</i> -NN (<i>k</i> = 5) algorithm.				
Campillo- Gimenez et al [30]	XOR distance	 Training an LR model on a part of the training set. Using the LR coefficients and outcomes for assigning weights to the predictors and cases, respectively. Exploiting a k-NN algorithm with an XOR patient similarity metric. 	<i>✓</i>			R
Gottlieb et al [32]	Various similarity metrics	 Calculating eight similarity metrics between hospitalizations and two similarity majors for ICD codes. Combining the metrics into 16 hospitalization- discharge code associations. Calculating the score of a potential discharge code for a new patient's hospitalization data. Using an LR classifier to distinguish the true associations. 				MATLAB
Lowsky et al [33]	Mahalanobis distance	 Defining a Mahalanobis distance with precision matrix equals to inverse of the covariance matrix of the training data. Retrieving k most similar patients to a new patient. Generating the Kaplan- Meier survival curve for the new patient based on 	~			MATLAB

Authors	Similarity metric	Methodology ^a	Neighbor hood- based	Cluster -based	Other algorithm	Programmin g language ^b
		the retrieved cases.				
Hielscher et al [34]	Heterogeneo us Euclidean Overlap Metric (HEOM) [27]	 Splitting the dataset based on gender. Selecting predictors by Correlation-based Feature Selection algorithm [28]. Employing k-NN with majority vote and weighting vote for classification 	2			NR
Zhang et al [36]	Jaccard similarity coefficient	 Constructing a drug similarity matrix by using chemical structure extracted from PubChem, and drug target protein information extracted from DrugBank. 			×	NR
		2. Building patient-drug similarity matrix using the Jaccard similarity coefficient between ICD9 diagnosis codes of patients and ICD9-format drug indications from MEDI database				
		3. Constructing patient similarity network using Jaccard similarity coefficient on ICD9 diagnosis codes.				
		4. Concatenating the three matrices and employing label propagation methoc to infer the efficiency of a drug for an index patient.				
Henriques et al [37]	Coefficients' signs-based distance	 Representing a signal by Haar wavelet coefficients. Defining a similarity 	✓			NR

Authors	Similarity metric	Met	:hodology ^a	Neighbor hood- based	Cluster -based	Other algorithm	Programmin g language ^b
		3.	metric based on the sign of each coefficient. Employing <i>k</i> -NN for prediction				
Lee et al [39]	Cosine similarity metric	1. 2. 3.	Calculating all pair-wise cosine patient similarity metric between an index patient and patients in training set Ranking the patients based on the similarity values Using k most similar patients to train 3 prediction models: a) Majority vote (k- NN) b) LR c) Decision tree	✓			R
Ng et al [40]	Mahalanobis distance	1. 2. 3. 4.	Supervised learning of a Mahalanobis patient similarity metric. Computing patient similarity and identifying a cohort of <i>k</i> similar patients. Selecting predictors. Training an LR on the cohort for risk prediction.	✓			NR
Panahiazar et al [41]	Mahalanobis distance	1.	Splitting patients based on their response to a medication (good or poor). Clustering the patients using two approaches:		✓		NR

Authors	Similarity metric	Methodologyª	Neighbor hood- based	Cluster -based	Other algorithm	Programmin g language ^b
		 a. Unsupervise d clustering: k-means and hierarchical clustering. b. Supervised clustering with medications 				
		 as labels. 3. Measuring the similarity of an index patient to the mean of each cluster using a Mahalanobis distance. 4. Considering the medication of the most similar cluster for a new patient. 				
Wang [42]	Tree-based distance	1. Constructing a tree by optimizing two-term objective function: a. A human expert's knowledge term. b. A data mining based term.			×	Python
		 Using the tree to index patient profiles and then rapidly retrieve the nearest neighbors to a new patient. 				

Authors	Similarity metric	Methodologyª	Neighbor hood- based	Cluster -based	Other algorithm	Programmin g language ^b
Wang et al [43]	Euclidean Distance in a transformed space	 Learning a transformed Euclidean distance by optimizing two-term objective function: a. Human expert's knowledge term. b. Data mining based term. Using a k-NN algorithm. 	√			MATLAB

^a Methodology: ABP: arterial blood pressure; ICD: International Classification of Diseases;

IDF: inverse document frequency; k-NN: k-nearest neighbor; LR: logistic regression; SPO2:

saturation of peripheral oxygen; XOR: exclusive or.

^b NR: not reported.