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Note 1

Disease models in H; and Hj

We define ‘differential causative pathology’ (our alternative hypothesis, H1) to mean that some subset of
disease-associated variants have different population effect sizes in the case subgroups in question. Our
method tests against the null hypothesis Hy that all disease associated variants have the same effect sizes
in both subgroups. An equivalent formulation of Hy is that the (possibly empty) sets of SNPs which
have different minor allele frequencies in case and control groups and which have different minor allele
frequencies in case subgroups are non-intersecting.

The multitude of potential causes for disease heterogeneity necessitate that both Hy and H; encompass
a range of such causes. We list several below, with illustration in supplementary table

We define the ’'genetic architecture’ of a trait as a set of variants and corresponding effect sizes (log-
odds ratios or asymptotically similar statistics) between populations with and without the trait. In
general, most effect sizes are zero or negligibly small.

1.1 Disease models in H;

The simplest model of disease heterogeneity in H; is the scenario in which some variants are associated
with one case subgroup, but not the other. For such a variant the effect size in one subgroup is zero, and
in the other nonzero. This would be expected to arise if some of the pathological processes giving rise to
the disease were specific to one case subgroup.

A second potential model in H; is when the same variants are associated with both subgroups, but
the relative effect sizes differ. This may arise in a situation where pathological processes differ in relative
impact between subgroups. For instance, if two pathological processes may lead to a disease of interest,
and one process is likely to occur during the neonatal period while the another is likely to occur during
adolescence, a division of a case group into neonatal-onset and adolescent-onset would likely show variants
associated with the first process as being more important in the first subgroup, and variants associated
with the second process as being more important in the second, although the set of associated variants
may be the same in both subgroups. The scenario may also arise if the cases can be split into subgroups
like those described in the first paragraph, but the subgrouping criterion is only an approximation to this
split.

A third model is when the same variants are associated with both subgroups with but where the
effect sizes in one subgroup are a constant factor larger than in the other subgroup. This corresponds to
differential heritability between subgroups, with the same pathological processes present. In a liability
threshold model where some environmental variable has an additive effect with genetic risk, we would
expect that defining subgroups based on the environmental variable would lead to this scenario (ﬁgure.
In this case, the environment modulates the effect of the genetic risk. As an example, under the assumption
that a dietary risk factor has an additive effect with genetic risk factors in type 2 diabetes, a disease
subgroup with the dietary risk factor would be expected to have lower disease heritability than a subgroup
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6 NOTE 1. DISEASE MODELS IN Hy AND H,

without it.

1.2 Disease models in H,

Under Hy, all disease associated variants have the same effect size in both subgroups. This may take
the form of an absence of any systematic genetic difference between case subgroups, in which case the
population allelic frequencies of disease-associated SNPs, and hence the effect sizes of such SNPs between
controls and each case subgroup, are equal.

Hypothesis Hy also allows the presence of genetic differences between subgroups at different SNPs to
those associated with the disease. This may be particularly prominent if variation in the disease depends
on how the disease process acts on different individual physiologies, in which case genetic variation between
subgroups is at different SNPs to those involved in disease causality.

Gen. risk Env. risk Pr(D|G,E) Pr(D,G.E)

. o
H:p =5 Pia Bp 14

L:p=12 *PiB a(l-B)p;p

Hp=F s p,,  (1-0)pps,

L: p= I'ﬁ > Dop (]'a)(]'ﬂ)pZB

Figure 1.1: In a simplistic disease model, we consider two levels of genetic risk G with frequencies «,
1 — « and an independent two-level environmental risk factor E with frequencies 8, 1 — 5, and a disease
D. In cases with the environmental risk factor, we would expect the ratio of high-genetic risk to low-

genetic risk cases to be ﬁg;—‘:, and in cases without, ﬁg;—g. Assume we define subgroups based on the
environmental risk factor. If the risk factor has a multiplicative effect on Pr(D|G, E), so 17;;—3 = ;;;—g, the

prevalences of genetic risk groups are identical in the groups, and the heritability of D is the same. If the
effect of the environmental risk factor on Pr(D|G, E) changes with G, so the environmental risk factor
modulates the genetic risk, this will not hold.

1.3 Subgrouping by a risk factor

Partitioning a case group by a known disease risk factor may lead to subgroupings in either Hy or H;
dependent on the interaction between the genetic and environmental risk factors. If the risk factor on
which the subgrouping is based has a multiplicative effect on disease risk with genetic factors, then we
expect the subgrouping to be in Hy (figure . This may take the form of a binary risk factor: if a
disease is triggered by an environmental event (for example, a particular mutation driven by environmental
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1.3. SUBGROUPING BY A RISK FACTOR 7

mutagens), with susceptibility to that event determined genetically (for instance, impaired ability to
repair the mutation), conditioning on environment will not affect the distribution of genetic risk, and
the subgrouping will be in Hy. The genetic risk may also be binary; for example, the development of
a disease may require the knockout of a particular cellular process, with the genetic risk for the disease
solely involved in risk of the knockout.

However, deviation from a locally multiplicative model can also lead to a subgrouping in Hi. One
instance this may occur is if disease risk approaches 1. A current model of T1D pathogenesis requires the
presence of an environmental insult to trigger genetic susceptibility ([I]), which could be expected to lead
to a locally multiplicative relationship between age-at-diagnosis and genetic risk (figure . However, if
genetic risk can be high enough that some individuals are almost sure to get the disease, this will lead to
the subgrouping being in H; - a potential reason for the observation regarding age-at-diagnosis in T1D
in the main text.

Finally, cases may be subgrouped according to non-causative clinical disease associations. Assume
some binary clinical marker M has non-zero frequency in healthy individuals and has some set of associated
genetic variants Ggo. Let D be a genetically homogenous disease with a set of associated variants G such
that GoNG1 = 0 and D (or a necessary precurser of D) probabilistically causes M to occur more often than
in the general population. Then when we condition on case status (and hence any necessary precursers of
D) the only variants which are associated with M-status in cases will be in Gy, and a subgrouping based
on M will be in Hy, despite M being associated with D. If, however, subtypes of D with differential
genetic basis induce M to different degrees, and hence M serves as an index of such subtypes of D, then
a subgrouping of M will fall in H;.

Nature Genetics: doi:10.1038/ng.3751



8 NOTE 1. DISEASE MODELS IN Hy AND H,
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Figure 1.2: In a simplified model of incidence of type 1 diabetes or a similar autoimmune disease, we
consider the disease to be triggered by an environmental ‘insult’; for instance (eg, a viral illness) and
three levels of genetic susceptibility to such insults. Denoting by f(A) the density of such insults at
age A (red vertical lines show a possible example for one individual), we expect that for individuals at
low or moderate genetic risk the densities r1(A), ro(A) of disease incidence are proportional to f(A),
with lifetime risk [ ri(A)dA, [ro(A)dA respectively. The risk of disease at age A can be considered a
product of f(A) and a genetic risk score. In a high-risk group for a disease such as type 1 diabetes, it
is possible that the lifetime risk [r3(A)dA approaches 1, the high-risk group becomes ’saturated’ with
disease cases, and there are fewer non-affected individuals in the group at higher age groups, leading to
a lower constant of proportionality with f(A) at higher ages (dotted/solid lines). In the absence of the
high-risk group, a subgrouping of patients into those with age-at-onset X and those with age-at-onset Y
(vertical lines) would be expected to contain the same proportion of low- and mid- genetic risk samples
in each subgroup, with correspondingly equal heritability of disease in each subgroup. With the high-risk
group, the multiplicative effect of f(A) on disease risk breaks down, inducing an environmental influence
on the genetic risk, and changing the heritability between groups.
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Note 2

Distribution of Z scores

In this section, we define the test statistics (Z scores) used to characterise allelic differences between
groups and describe the rationale for our probabilistic model.
We partition SNPs into three theoretical categories:

1. SNPs which are not associated with case/control status or case subgroup status

2. SNPs which are associated with the main phenotype but have the same effect size in both case
subgroups

3. SNPs which are associated with the difference between case subgroups

We consider SNP effect sizes between subgroups and between cases and controls to be realisations of
bivariate random variables, which have different distributions in each category.

2.1 Definitions

2.1.1 Unstratified groups

Let  be a random sample of size n, from patient population X, and y a sample of size n, from a
population Y. Denote by mg, m, the allele frequencies of some SNP of interest in  and y, and by u,,
iy the allele frequencies in X and Y. We assume for the moment that z and y are unbiased samples, so
pa = E(mg) and py = E(my).

In general, we compute Z scores from GWAS -defined p-values P, using the formula

Zny my (Mg,my) = =0 1Py /2)sign(my —my) (2.1)

z’ny
Although there are several ways in which a GWAS p-value may be computed, the resultant Z scores all
have several common asymptotic properties. In general, we assume a Z score Zy, n, (Mg, my) is a smooth
function of allele frequencies m;, my, n., n, with the following properties

Ny Mg +NyMy

1. For fixed observed overall allele frequency e,

difference m, — m,

s Zngmy, (Mz,my) is monotonic to the allelic

2. Under the null hypothesis p, = p,

(a) E(an,ny (mma my)) =0
(b) var(Zn, n, (ma,my)) =1

(€) Zngn, (Mg, my) —q N(0,1) as ng,ny — o0

Nature Genetics: doi:10.1038/ng.3751



10 NOTE 2. DISTRIBUTION OF Z SCORES

These properties imply that the first-order expansion of Z about (mg, my) = (i, 1) is

2ngny Mg — My e —
anny(mmmy) = \/; (= 1) + O ((my — p)(my — ) (2.2)

\/%(mx - ,U:Jc) —d N(Onux(l - MZ))
V2 (my — i) = N0, 1y (1 = puy))

since

(2.3)
and if py = py = p
Mally Mo — My o)1) (2.4)
N +ny /(1 — d '
and only one linear function of m;,, m, can be asymptotically N (0, 1).
If g # py and
\ = Ha — Hy (2.5)
\/uz(l pa) | py(1=py)
2Ny 2ny
remains finite as n,,n, — oo, we have
My — My
an,ny mm’my mg(l—mg) my(l—my)
2Ny 2ny
_ (ma —my) = (o — ) P — Hy
\/mz (1-mg) my(l my) \/mm (I-mg) my(lfmy)
2N 2ny 2N 2ny
—d N(O, 1) + A
=N\ 1) (2.6)

For a randomly chosen SNP, let p. be the population allele frequency (AF) in controls, and gy, p2
the population AF's in case subgroups 1 and 2 respectively, for the same allele. Define v as the relative
prevalence of subgroup 1 and 1 — v as the relative prevalence of subgroup 2. The population AF across
all cases is p12 = v + (1 — v)po.

Denote by m., m1, ms the corresponding observed AFs in a study with n., nq, ne controls and samples
in subgroup 1 and subgroup 2 respectively. Define mys = ”1’21712;7"2 as the AF in the whole case group
and nia = ni + no. We assume that - +n2 ~ v; that is, the case group is an unbiased sample of the case
population. We later describe how thls assumption can be relaxed.

The values Z, and Z; are defined as

Zq = Zny ny(m1,m2) (2.7)

Za = n1+n2,nc(m127mc)

2.1.2 Adjustment for strata

If the distribution of some categorical variable (for example, country of origin) associated with allele
frequency varies systematically between x and y, stratification may be needed when computing GWAS
p-values. This may mean that E(m,) # E(m,), even if the expected allele frequency is the same in z
and y in each stratum.

Nature Genetics: doi:10.1038/ng.3751



2.1. DEFINITIONS 11

2 ..., n® be the number of samples, mL, m?2...
mk the observed allele frequencies and pl, p2,..., u¥ the expected allele frequencies for a SNP of mterest
in each stratum (and analagously for y).

Assume z is divided into k strata 1..k, and let n}, n?

We assume the Z score Zg, 3 tn,} ({ma}, {my}) in this case is a smooth function of {n}}, {ni}, {m%}, {m}},
which has a first-order expansion about u', u?, ... u* of the form

iy (i}, {1y }) = ! S bt —ml) +0 ( S kot — )2)

3 kf’;;:y il — pt) itk iel.k

i€l..k

N \/var (szilfnz;__mi?ﬁux _ Mi) +0 (Z kz(mé - m?y)Q) (2.10)

where coefficients k; depend only on the values {n,}, {n,}. For example, if the Cochran-Mantel-Haenszel
. d ki — 2nTny
test 1s used, k; = Tty

Using analogous definitions to section we now define

Za = Znyy nay ({ma }, {ma}) (2.11)
Za = Z{n1+n2},{nc}({m12}v {mc}) (2.12)

We term the coefficients of the allelic differences m{ — mb, mt, —m? in the decomposition of Z and Z,
above as kgy;, kq; respectively.

2.1.3 Adjustment for covariates

If the distribution some continuous confounder associated with allele frequency (for example, height) has a
systematically different distribution in  and y, adjustment for covariates may be needed when computing
GWAS p-values

We set G(i) as the numerical genotype of sample i (0,1,or 2) and w; as the covariate value(s) for
individual 7. We consider w; to be a sample from a random variable Z with pdf f, in  and f, in y.

We define the Z score Z, ,({G},{w}) in this case as a function of observed genotypes which permits
a first-order expansion

Zry({G} {w}) = (2.13)

T | DG - Sy (w))

where h, and h, are functions of covariate scores, depending on the distribution of w in x and y and the
relative sizes of n, and n,, and parameter m is some measure of the overall allele frequency.

The coefficients hg(w;), hy(w;) can be considered to be ‘normalising’ the contribution of genotype i
to the Z score according to the relative density of covariate w; in x and y. If the density of some weight
wp in z is lower than the density in y, then h,(wg) should be greater than h,(wg) to compensate for this.
Indeed, we show that this has to be the case.

The expected genotype of an individual may depend on their covariate value; for an individual 7 with
covariate value(s) w; in x set g,(w;) = E(G(i)), and set g, similarly. Under the null hypothesis, g, = gy,
and the expectation of Z must be 0. We can write the expectation of Z, ,({G},{w}) as an integral over

Nature Genetics: doi:10.1038/ng.3751



12 NOTE 2. DISTRIBUTION OF Z SCORES

the domain of w; namely

E(vm(l —m)Z,({G}, {w})) Zh w)G (i) = D hy(w;)G(j)

- Z he(w;)E(G(3)) — Z hy(w;) E(G(j))
=D ha(wi)ge(wi) = 3y (w;)gy (w;)

e ha(w) fo(Ww)ga(w)dw —ny, hy(w) fy(w)gy (w)dw
o [ ) a@gstwide g [ ) @)
_ /D 1 90) ) (00 = myhy )y ) (2.14)

Since this must hold for all SNPs and thus for any well-behaved function g, we must have

Ngha fo = nyhy fy (2.15)

This arises intuitively if we consider adjustment for covariates analogously to adjusting for strata
We can rewrite equation summing over samples rather than strata (defining S(i) as the stratum of
individual 7):

Zinay oy ({ma}, {my}) m(f_ =X EFCORDY 2;;)6;( i) | o (> —mi)?) (216)

s  €s3)
2n%, Qn?,;
by multiply-counting certain individuals in under-represented strata and under-counting individuals in
over-represented strata. This is analagous to ‘normalising’ the contribution of G(7) by h, according to
the population prevalence of covariate value z;; that is, fz(z;).

The sums of genotypes on the right of equation [2.13| can be considered as ‘effective’ allele frequencies,
and we define

The values can be considered to be ‘normalising’ the distribution of strata across x and y

ml, = th(zi)G i

€T

my =Y hy(z)G(j) (2.17)
Jj€y
A T B T € )

var(ml,) Ny = var(mj)

so that, like allele frequencies, and under appropriate assumptions on the forms of f., fy, gz, gy:

with expected values ji},, p1; respectively. We define ‘effective’ sample sizes n), =

r
Te —Fe 0 N(0,1) (2.18)
(1 By)
and similarly for mj,.
We now define
Zq = Zcase 1,case 2({G}7 {w}) (219)
Za = anses,controls({G}y {w}) (2'20)

Nature Genetics: doi:10.1038/ng.3751



2.2. Zp AND Z4 ARE CONDITIONALLY INDEPENDENT IN CATEGORIES 1 AND 2 13

2.2 Z;and Z, are conditionally independent in categories 1 and 2

2.2.1 Unstratified or stratified groups
For SNPs in categories 1 and 2, u; = po. Hence

cov(Zq, Zg) o cov(mig — me,my — ms2)

<n1m1 + namsy
=cov| —

— Mg, M1 — M2
ni + neo

= T (cov(nyimi, my) — cov(nama, m2))
1

= e (L1(1 = pa) — p2(1 = p2))

(2.21)

which is 0 under Hj in categories 1 and 2.

For stratified groups, the same holds for each stratum; that is, cov(mi, — mi, m{ —mi) = 0. The
independence of Z; and Z, follows from the expression of Z; and Z, as proportional to sums of allelic
differences within strata and independence of the allelic differences in each stratum.

2.2.2 Adjustment for covariates

If we are adjusting for covariates, since E(Z;) = E (Z ha(wi)G(i) — > hg(Mj)G(j)) = 0, we have
i€cl j€EC2

cov(Za, Zalpy = ) o cov | D haa(wy)G(j) = D he(wi)G(i), Y ha(wi)G(i) = Y ha(wy)G(j)

J€Ecases i€ctl iccl JjEC2

=cov | > ha(wi)G(i) + > haa(w;)G (), Y ha(wi)G(i) = Y ha(w;)G(j)

i€cl JjEC2 i€cl JjEC2

= E Y ha(z)hi(w)G()(1 = G(i)) = D haa(z)ha(w;)(G(5)(1 = G(4)))
i€cl j€EC2
— /Rhm(w) (n1h1(w) fr(w) — naha(w) f2(w)) g1 (w)(1 — g1(w))dw
=0 (2.22)

The cancellations are possible because genotypes vary independently in each group; in the second line,
> he(wi)G(i) L Y7 hi(wy)G(i), Y ho(w;)G(j), and in the third line, Y hia(w;)G(i) L > ho(w;)G(j)

i€ctl iccl j€EC2 iccl JjEC2

and ) hio(w;)G(j) L > hi(w;)G(i), and g1 = g2 under Hy. In the fourth line, nihi(w)fi(w) =
JjEC2 i€cl

nzha(w) fo(w).

2.3 SNPs in category 3

Under Hy, SNPs in category 3 have the same allele frequency in cases and controls but different population
allele frequencies between subgroups. Such a set may arise if subgrouping is based on some partially
genetically-determined trait which is independent of the main phenotype has the same prevalence in case
and control groups. An example may be subgroups defined by heterogeneity in treatment response arising
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14 NOTE 2. DISTRIBUTION OF Z SCORES

only from individual pharmacokinetic variation. Under this assumption, the marginal variance of the joint
distribution of Z4, Z, in the direction of Z, is 1, and Z;, Z, are uncorrelated.

Under H; we expect SNPs in category 3 to be associated both with case/control status and with
subgroup status. We therefore expect the marginal variances of the joint distribution to be greater than
1 in both the Z, and Z; directions, and possible correlation/anticorrelation between Z, and Z;.

Define ((pz, pty) as the population normalised log odds ratio between p, and fi,:

Cptas 11y) \/TZOQ(M( My)) (2.23)

1= py)
Mz —
= 2+ O (1t — 1y)?)
(1 — u) !
where i = %(,u.r + py). For a set of SNPs of interest, we consider pui, p2, it to be distributed such that
Ca = C(u1, pn2) and ¢, = ((p12, pe) can be considered to be random variables with joint pdf:

1
Facio =5 \ M) (@ (4 ) 224

PO Og PO Og

with o4, 04, and pg independent of ni, na, n.. Under Hy, o, = 0 (same MAFSs in cases/controls) and
po = 0. We assume that (; and (, are conserved across strata and covariates.

2.3.1 Unstratified groups
Combining equation [2.2] with the first-order expansion of equation [2.23] about f:

P —
(s pry) = ——=—=+ O ((pt — uy)z)
(1 — fi)
- Ng + Ny
~ 2n$ny an,ny (,Uma:uy) (225)

so defining fig = %(Ml + p2) and fi, = %(ulg + pe), we note (defining ¢, and ¢g):

E(Zglfia, Ca) = E(Za|pa, pr2)
= Zm,nz (/leNQ)
2’)11')12
d
ny + ne

def
=cila

_ 27112’[1
E(Za|,uaaCa) = \/ 7”6127-1-7;@
C
e Ca (2.26)

Set p = (p1, p2, pie). Since myq, my and m, are conditionally independent given pu we have

cor(Zy, Zglp) = cor(miz — me,my — ma|p)

nimi+namsa
n1+n2

o(ms — me|p)o(my — ma|p)
cov(nimy, my|p) — cov(nama, ma|w)
(n1 + n2)o(ms — me|p)o(my — me|p)
pa(1 = puy) — po(1 — po)
 (n1+na)o(ms —me|p)o(my —ma|p)
~0

cou( — Me, M1 — Ma|p)

Nature Genetics: doi:10.1038/ng.3751



2.3. SNPS IN CATEGORY 3 15

From equation var(Zglp, pe) = var(Zg|p, pe, pe) = 1. Thus approximately:

() oo (2 12) (2.27)

and the pdf of (Z, Z3)" at (z,y) has value

// chgd cala)T 12 (x y) 02,02%,p0 (Cda(a) dCd dsz

:Fl—i—cg 02,14c2 0% cqcapo (.CU, y)
1
ZZ(N((O) (1+c§(3 CaCdpo )) (SC, y) + N<(0) ( 1+c2¢2 fcacdpo)) (ZC, y)) (228)
077\ cacapo 1+¢2¢2 077\ —cacapo 14c2(2
which is a symmetric two-Gaussian distribution. Under Hp, the marginal variance in the direction of Z,
(fitted 03) is 1, and the covariance between Z, and Z, is zero.

2.3.2 Adjustment for strata

For Astratiﬁed groups, we assume (g and Ca are conserved across strata, and set ﬂil = %(,u’ + ub), pl =
%(,uz12 + pt), ka; as the coefficient of m) — m}, in the first-order expansion of Z; (equation , and ky; as
the coefficient of m}, —m? in the first-order expansion of Z, to find

E(Za{pa}, Ca) = E(Zal{in}, {k2})

1
~ E kdz
2 1 +”2 =1
> kdenn RE(1 — [h) itk

i€l. .k

Z kdz ﬂfj(l - ﬂfi)
nt +n
\/Z Kii's: 2t nf i (1 — fiey)
Z kdz

Ca

~ —Cd
2 nt +n
Z di 2n n2
= e (2.29)
and
1 _ Kai
B Za (ks 7 s} )~ — 2,
n’ +ng
Zkgl 2:12 nl
L, (2.30)

assuming that for most SNPs the values ji’y, i’ do not differ markedly across strata. If the Cochran-
Mantel-Haenszel test is used,

9 7 i
o= |3 Fle (2.31)

and the pdf of Z;, Z, is then as for equation with ¢}, ¢, in place of ¢4, ¢,.
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16 NOTE 2. DISTRIBUTION OF Z SCORES

2.3.3 Adjustment for covariates

The expression for Z, ,({G}, {w}) can be rewritten as:

1 /

—(m/, —m/ 2.32

We define the analog of ((pz, pty) given covariate(s) w

Zry({G} {w}) =

(2.33)

(s ) w0 = /(w) (1 — fu(w)) log (M;(w)(l _ ,uy(w))>

e (w) (1 = py ()

and assume that this is independent of w; that is, the effect size is conserved with respect to the covariate.
The joint distribution of Z; and Z, is then given by the analog of equation|2.28 with appropriate analogues
of ¢g, cq.

2.4 Unequal subgroup prevalences

2.4.1 Motivation

The criteria by which subgroups are defined may have a different distribution in the population than in
the case group, with the consequence that the disease subtype corresponding to one of the subgroups may
be oversampled relative to its true prevalence in the population.

This leads to inaccuracies in the inferred genetic architecture recovered from a case-control study (ie,
a typical GWAS), which may take the form of false-positive associations. If there exist variants which
differentiate subgroups, oversampling of one subgroup will bias the the observed overall variant effect
sizes toward the effect size in the oversampled subgroup, even if the variants are unassociated with the
phenotype overall.

In serious cases, this could lead to false identification of variants associated only with subgroup status
as associated with the disease as a whole. For example, a GWAS on rheumatoid arthritis (RA) in which
the case group had a high prevalence of obesity may identify purely obesity-associated variants as RA-
associated.

For stratified and covariate-adjusted analyses, the equivalent problem is failure of population subgroup
prevalences to match study subgroup prevalences within each strata or across covariates. This could be
a result of ascertainment bias; different geographic locations could report different frequencies of disease
subtypes due to differences in clinic specialties.

As well as affecting conventional GWAS analyses, we show below that subgroup oversampling can
cause false-positives in our test. We provide a modification to our method to account for this.

2.4.2 Behaviour of standard approach

We mathematically demonstrate the effect of mismatched sample and population subgroup frequencies in

the scenario where no strata or covariates are used. The extension to the generalised cases is similar.
Assume that in the disease population, the ‘true’ prevalences of subgroups 1 and 2 are v, 1 — v, and

define p12 = vy + (1 — v) e as the underlying MAF across all cases in the population. In the hypothesis

test to compute P,, the hypothesis H, : . = % is not equivalent to H : . = p12.
Since E(my3) = E (nlﬁiizng) = ”%ig;m # 112, equation [2.27| becomes
Zq Znyns (15 p2) ) >
~ N L2 ) I 2.34
<Za) ‘H ((an,nc(miﬁigm ) Mc) 2 ( )
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2.4. UNEQUAL SUBGROUP PREVALENCES 17

Now

nip1 + nopo Cq N1 + No o
anz,nc — S Hc | = - /J@)

ny + n p(l—p)  ni1+n2

= A_L(Cl“_m ((um — fie) + (annQ - V> (11 — m))
~ ca(Ca + kCa) (2.35)

where k = (=2.— — 1), so the unconditional distribution of (Z, Z4)” in this case is given by
ni+n2

//W Nieyea calCateca)T I (T Y)Fo2 52 50 (Ca, Ca) dCa dCa

1
T2 <N((8)vvz)(x’y) + N((8),aa)(xvy)) (2.36)
where
oy = < L+ 3G caca(po + kC3) >
27 \eacalpo +kC3) 1+ 2(C2 + E2C3 + 2kpo)
_( 1tad caca(—po + kC3)
T (caccz(—ﬂod+dk§§) 1+ c2(¢2 + k3¢ _d2kp0)> (2.37)

Distribution [2.36] consists of the sum of two Gaussians which are not mirror images in the z and y axes.
Conceptually, the aberrance between prevalences of subgroups in the population and in the study induces
a bias in Z, toward either Z; or Zs, whichever is comparatively over-represented in the study compared
to the population.

This effect is demonstrated in figure 2.1}, with simulated data and approximate distribution as per|2.36
As the discrepancy between the relative proportions grows, the distributions precess around the origin.

Importantly, under Hy (0, = 0, po = 0) the distribution of Z4, Z, will not satisfy o3 = 1, p = 0, and our
standard approach is inappropriate.

n1/n2 =0.67, V1/V2 =0.67 n1/n2 =0.67, V1/V2 =2 n1/n2 =0.67, V1/V2 =9
o
g " g g -
< < <
8 8 8
3 ° 7 T o T © 7
12} 12} (2]
8 8 8
< v ] = = 9
N ! N v _| N
! o
o | T
! T T T T T T T T T T
-5 0 5 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Z, (between subgroups) Z4 (between subgroups) Z4 (between subgroups)

Figure 2.1: Distribution of (Z,, Z4) for SNPs in category 3 when observed subgroup frequency (ni/nsa)
does not match underlying subgroup frequency in the population (v4/vs = v/(1 — v)). Red and blue
points correspond to the two Gaussian distributions comprising the underlying distribution of effect sizes.
Contour lines of distributions are shown. Note the precession in the axes of the distributions as the
difference between v /vo and nj/ng increases, and loss of symmetry when v /va # ni/ns
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18 NOTE 2. DISTRIBUTION OF Z SCORES

2.4.3 Adaptation

If the true proportion of case subgroups in the population are known, the problem of oversampled sub-
groups can be overcome by a recalculation of Z,. The problem broadly arises because the expected value
of the observed allele frequency in cases, F(mi2), is different from the true allele frequency pi2 in cases
in the population, for SNPs in category 3.

This can be addressed by using an unbiased estimate of the true population allele frequency m/, =
vmi + (1 — v)mg in place of mjs. The resultant Z score, Z., is obtained by adjusting Z, by subtracting

a multiple of Z;:

2= (Za - B22) (2.39)

SV

so, given a between-subgroup effect size (g4, var(Z.|(q) = 1. We choose 8 so that E(Z!) = 0 for SNPs in
category 3 (see below). The adjustment leads to systematic covariance between Zy and Z,.
Z, and Z; are independent conditioned on (,, (4 and . Thus under Hy and conditioning on

cov(Z), Zg|Ca, Ca) = E(Zy(Za — BZ4)|Ca, Ca)

ﬁ
1
m
—rar(ZiG)
Y
—B

and because (4 and (, are independent under Hy, cov(Z.,, Z4) = T in every category. We denote this

(E(ZaZalCa: Ca) — BE(Z3|Cas Ca))

1

m+m

(2.39)

consistent covariance by p.
Hence the overall model for Z;, Z, changes to

PDFZd,Za|6(da a) :771N< 1 pc) (d,a) (category 1)
pe'1
+maN /1 po\ (d,a) (category 2)
(Pc 03)

+73 (;N< 2 p+pc> (d,a) + ;N< -2 —p+pc) (d, a)) (category 3) (2.40)

ptpe o3 —ptpe o032
where, under Hy, p = 0 and o3 = 1. This requires a slight modification of the fitting algorithm. Our R
package at https://github.com/jamesliley/subtest contains an implementation.
2.4.4 No adjustment - unbiased sampling

If no strata nor covariates are used, we set

e (2.41)

recalling the definitions of ¢, and ¢4 from equation and that v is the proportion of cases of
is the proportion in the study. The value k = ( M 1/) thus

ni
ni1+ne ni+n2
corresponds to the dissimilarity between subgroup prevalences in the case group and in the population.

subgroup 1 in the population while
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Under Hy, for SNPs in category 3 we have

B(ZL)¢) « B (za - kzazd)
d

== (M ) = (g ) o=
= mE (vmi + (1 — v)mg — me)
~0 (2.42)

since E(vmy + (1 —v)mg) = v + (1 — v)ua = pe = E(m,) for all SNPs under Hy.

2.4.5 Adjustment for strata

In the equivalent adjustment for stratified groups, we define

+
ZkﬁzZZ :2 2 Kai (m ”)
Sk k2 niy+ni > kg

ai 2nj nl

(2.43)

so, assuming j§ — p5 are conserved and fiy,, fi; are close to conserved across strata, and given fi;, ~ fi}| Ho:

kai iy — Zc kz L= b
(7 |Ho) = ——2e by ) 2 Rasln = i)
EEs fall = 1%) Vzkiaiﬁzu—uw
Zkaz :u12 dei(ﬂi_ Z)

N _ — +
\/ﬁm il — )| K3

nd pd 4 nb b , n' ‘ ,

= S b (M i) () (- )

ROETAN iyt ny+ny ny +ng

Hall = Ha ai 2nt,nt

1 . A .

= —— (3" kal(vpt + (0= v)uh) = i)

— — i ni

o (1= fia)y | 0 ki 5

=0 (2.44)

2.4.6 Adjustment for covariates

If covariates are used, we define the functions hio, h1, f1, fo as per section and set

Jowy hr2(w) (n1(1 = v) fr(w) — nav fo(w)) dw
Jowy il (w) fr(w)dw

8= (2.45)
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20 NOTE 2. DISTRIBUTION OF Z SCORES

E(Z,) o/ (1 — i) E(Zy — $Za)

= (Z ha(w)G(i) + > haa(w)G(i) — Y hc(wi)G(z')>

i€cl 1€EC2 i€controls

- B (Z I (wi)G(i) = hz(wi)G(i)>

i€cl 1€c2

—>/ hiz(w) (n1fr(w)gi(w) + na fa(w)ga(w)) — nehe(w) fe(w)ge(w)dw
D(w)

— B(g1(w) — ga(w)) / nuhy (w) fi (w)duw

D(w)

= /D( : hia(w) (n1 fi(w) + na fa(w)) (vg1(w) + (1 — v)ga(w)) — nche(w) fe(w)ge(w)dw

- / 2 i) (92 (0) + (1 V)ga() — o) o
~0 (2.46)

since niohis fio = nchefe and nihy f1 = nohs fo from section g1 — go is constant by assumption, and
the expected population genotypes at covariate value w are the same in cases (vgi(w) + (1 — v)ga(w))
and controls (g.(w)) under Hy.

2.5 Testing procedure

2.5.1 Algorithm

For testing a subgrouping S of interest, we use the following protocol:
1. Compute Z, scores between cases and controls
2. For the proposed subgrouping .S

(a) Compute scores Z75 corresponding to S,

(b) Fit parameters of full and null models ©F = arg mazecw, L(Z3, Z4|©), ©F = argmazecu,L(Z3, Z4|©)

(c) Compute uPLR = log{L(Z5, Z4|0%)}~log{L(Z3, Z,|©§)} and adjusting factor f(Z,|07,0F) =
lOQ{L(Za|@f)} - lOQ{L(Za‘@g)}

(d) Compute PLRg = uPLR — f(Z,|67,©f)

3. For > 1000 random subgroups R of the case group

(a) Compute scores Z; corresponding to R
(b) Fit parameters ©7 = argmarecu, L(Z}|Z,,0), ©f = argmazecn, L(Z}|Z,,0)
(c) Compute cPLR = log{L(Z}|Z4,0%)} — log{ L(Z}| Z., ©})}

4. Estimate parameters v, s of the null distribution of cPLR (of the form v (kx3 + (1 — x)x3)), which
majorises the null distribution of PLR.

5. Compute p-value for PLRg using this distribution.

In summary, we compare an adjusted pseudo-log likelihood ratio for a subgrouping of interest to
conditional pseudo-log likelihood ratios for randomly-chosen subgroupings.

Nature Genetics: doi:10.1038/ng.3751



2.5. TESTING PROCEDURE 21

2.5.2 Rationale

A problem arises with the behaviour of the unadjusted pseudo-log likelihood ratio statistic uPLR =
log{L(Z5, 24107} — log{L(Z5, Z,|©5) when the true value of 7 (the marginal variance of Z, in group
3) is near 1, corresponding to an absence of SNPs which differentiate subgroups.

If 7 = 1, there can be no differential genetic architecture between the subgroups, as there are no
systematic genetic differences between them at all. However, the joint distribution of Z;, Z, may still
be in Hy; if Z, has an equally weighted three-Gaussian mixture distribution with variances 1, a?,b?, and
Zq~ N(0,1), the true parameter values are (mwg, 73, T, 02, 03, p) = (%, %, 1,a,b,0) € Hy \ Hyp (figure .

o> 1, t>1 o> 1,t=1

.
buid

24 Zy
oo=1,t>1 oo=1,t=1
Z, Zy
\% ﬁ/ Zy Z4

Figure 2.2: Potential for false positives when 7 = 1. Black/grey points and contours correspond to
category 1, blue to category 2, and red/pink to category 3. Top two figures show potential distributions
of Zy, Z, with o3 > 1; bottom two figures distributions with o3 = 1. A test based on the unadjusted
pseudo-log likelihood ratio uPLR = log{L(Z3, Z,|0%)} — log{L(Z5, Z,|0§)} will reject Hy for both of
the top two scenarios. However, we do not want to reject Hy for the top right figure, in which 7 =1 (no
genetic difference between subgroups). This scenario is possible in real data, as the distribution of Z, is
only approximately normal and may more closely resemble a three-gaussian mixture distribution (where
components have variances 0'%, ag and 1) than a two-Gaussian mixture distribution (where components
have variances 0% and 1).

This problem is particularly prevalent in randomly-chosen subgroups, since 7 = 1 by assumption in
this case. If the distribution of Z4, Z, from a test subgrouping is to be compared against corresponding
distributions from random subgroupings, this problem must be addressed.
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22 NOTE 2. DISTRIBUTION OF Z SCORES

Consider the function

K(Z,@) — K(Zda Zaa7Tla7T277—7 0-270-35/))
_ PL(Z|©) — E{PL(Z|®\ 7,7 = 1)}
— PL(Z4, 240) — PL(Za|®) + ¢(Za) (2.47)

where ¢(Z,) is a constant depending only on the values of Z,. Because the parameters my, oo only describe
the distribution of Z,, we have

PL(Z1,24/0) ~ 5 PL(Z,[6)

PL(Z4,74/0) ~ 5 PL(Z,|6)

(2.48)
SO gTKQ ~ 0 and % ~ 0, and the value of K changes only slightly with changes in w9, 0o. Set

O, = argmazecy, PL(Z|0©)
@T = arg mal‘@Ethrg:ﬁg,ag:(fgPL(Z|®) (249)

Under Hy, there is no systematic overlap between SNPs associated with the main phenotype (for which
the distribution of effect sizes is parametrised by 72, 02) and with the subgrouping phenotype, so fixing
and o9 has minimal effect on the maximum-PL estimates of the other parameters, and hence K(Z,0;) ~
K(Z,07). Because

K(Z,@T) < max@€H1|7r2=7f2,02=zf2K(Z7 @) (250)

we have, setting ©f = arg marecH, jro—ry,00—c> K (Z, 0):

K(Z,01) < K(Z,09) (2.51)

Consider the value
(c) =arg max@EHﬂﬂ'z:ﬂ:z,O'Q:o:zK(Z? @) (252)
= argmaz, {PL(Z4,Z,|©) — PL(Z,|©)} (2.53)

Now since o3 is fixed at 1 under Hy, and PL(Z,|©) only depends on 71, w3 through the difference between
the variances of their associated distribution components (1 and o3 respectively), we have

PL(Z,|©) = PL(Z,|%2, ) (2.54)

Thus maximising K in equation is analogous to maximising PL(Zy, Z4|0). If we choose pi; and oy
to be approximately equal to their maximum-PL estimates under Hy, then

Oy = arg max@EHoth:ﬁQ,O'g:@PL(Z’@)
~ argmazecn, PL(Z|0O)
=0, (2.55)
so K(©1) =~ K(©f). Thus, under Hy, using equation [2.51]

¢PLR = K(Z,05%) — K(Z,05)
> K(Z,01) — K(Z,0,)
— PLR (2.56)
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Under Hy, with 7 > 1, the unadjusted PLR (equal to PL(Z|0©;) — PL(Z|02)) and cPLR both have
identical mixture-x? distributions (the scaling factor v arises from LDAK weights, common to both,
and the mixing parameter x tends to be approximately 1/2). The cPLR has the advantage that the
empirical distribution is closely approximated by a consistent mixture-y? distribution for all values of 7.
By comparing PLR to this distribution, we produce a conservative test.

Heuristically, contributions to the unadjusted PLR can come from either the distribution of Z, or
the interaction between Z, and Z;, and inflation in the unadjusted PLR when 7 = 1 arise only from the
former. If the former effect is large, the parameters ©; will tend to be values which maximise the former
effect, at the expense of the latter. By completely eliminating the former effect, using the adjustment,
only this compromised contribution of the latter is allowed to contribute to the adjusted PLR. The
distribution is less conservative for larger values of 7, since the presence of SNPs with large Z, values
constricts the fitted distribution of Z,. By contrast, the values which maximise the cPLR effectively take
into account the adjustment for Z,, and the compromise of the latter effect does not occur.

If we were to use the adjusted uPLR to generate the null distribution using random subgroups, the
majorisation of the observed distribution by the mixture-x? may lead to loss of FDR control in test
subgroups with 7 > 1. However, using the slightly anti-conservative distribution of ¢cPLR to fit the null
distribution overcomes this problem. Indeed, some conservatism is desirable when 7 = 1 as a double
guard against rejecting Hy. The power of cPLR to reject Hy is, however, somewhat lower than the power
of the PLR, so we test using adjusted uPLR and fit the null distribution with ¢cPLR.
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Note 3

Details of simulations

3.1 Simulations of random genotypes

Firstly, we simulated genotypes at independent SNPs to establish the distributions of PLR and ¢cPLR
under Hy with 7 =1 and 7 > 1.
We simulated the following scenarios:

1. (a) (Z4,Z,) under Hy with 7 =1
(b) (Z4,Z,) under Hy with 7 allowed to vary

2. (Z4,Z,) under Hy

In each case, Z, and Z; were calculated from simulated genotypes at 5 x 10* independent autosomal
SNPs in Hardy-Weinberg equilibrium. Because the sample size only affects PLR through the size of the
fitted parameters (supplementary material, section we fixed the sample size at 2000 controls and 1000
cases of each subgroup and varied the underlying effect size distribution. Larger sample sizes correspond
to larger deviations of underlying values of o9, o3, 7 from 1 (table .

For all simulations, we computed the uPLR and PLR (with adjustment f(Z,)). For scenario[la] (r = 1,
corresponding to random subgroups) we additionally computed the cPLR. Simulations [2| functioned as
power calculations; the results from these are shown in the main text.

We tested over values of 73 from {1073,1072,0.1,0.2}. Values of o5, o3, T were chosen corresponding
to 97.5% quantiles of odds ratios in {1.5,2,2.5} for case/control comparison (Z,) or {1,1.2,1.5,2} for
between-subgroups comparison (Z;), table Values of p were chosen corresponding to correlations in
{0,0.1,0.5}.

97.5% quantile of odds ratios
ni, No 1.2 1.5 2 2.5
500, 500 1.20 1.75 2.66 3.41
1000, 500 1.25 1.94 3.02 3.89
1000, 1000 | 1.36 2.27 3.62 4.71

Table 3.1: Approximate expected standard deviations of observed Z scores for given odds-ratio distribu-
tions at various study sizes. For instance, if a study had 500 cases of each subgroup, and 95% of ’true’
odds ratios (corresponding to population MAFs) for SNPs in category 3 were less than 1.5, the expected
value of 7 (the standard deviation of Z scores for SNPs in category 3) would be 2.66.

We compared the observed distributions of PLR from simulations|laljllb| with the observed distribution
of ¢cPLR from simulation [Tal Q-Q plots are shown in figure 3.1] The distribution of ¢cPLR agrees well

25
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26 NOTE 3. DETAILS OF SIMULATIONS

with a mixture-x? distribution, as does the distribution of PLR for simulation . The distributions of
PLR for simulations are minorised by the distribution of cPLR, more so for simulations (r=1),
leading to a conservative test overall. Using cPLR to fit a null distribution, and using a significance cutoff
p < 0.05, leads to a false-discovery rate of 0.048 (95% CI 0.039-0.059) in subgroups with 7 > 1 and 0.033
(95% CI 0.022-0.045) in subgroups with 7 = 1.

We also show the distribution of unadjusted PLR (uPLR) for simulations |lal and . The distribution
for markedly majorises the mixture-x? distribution, and has a very different distribution to that for
Thus, if a test subgroup with 7 >> 1 was compared to random subgroups using unadjusted PLR, the
test would have very low power to reject Hy. Finally, we plotted the estimated null distribution for all
tests of real disease datasets, and found that the empirical distributions of cPLR from random subgroups
agreed well with the proposed mixture x? distribution (Supplementary Figures .

14
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Figure 3.1: Q-Q plots comparing distributions of PLR and ¢PLR for subgroups based on simulated
genotypes with a random variable distributed as %(X% + x3) (that is, v = k = %) In both plots,
the black points correspond to conditional PLR (cPLR) values for 'random’ subgroups (7 = 1). The
observed distribution is well-approximated by the asymptotic mixture-x?. The left-hand plot shows the
distributions of unadjusted and adjusted PLR for subgroups with 7 = 1. The distribution of unadjusted
PLR markedly majorises the mixture-x?, but the adjustment largely fixes this. The right-hand plot
compares the distribution of cPLR for random subgroups with PLR for subgroups with 7 > 1. The
distribution of ¢cPLR is well-approximated by the mixture-y? whether 7 = 1 (black) or 7 > 1 (red). In
both plots, the distribution of cPLR and the mixture-y? distribution slightly majorise the distribution of

PLR, leading to a conservative test.

3.2 Simulation on GWAS case group subgroups

To check the extensibility of these results to real data, we performed a similar set of simulations on data
generated from subgroups of an ATD case group. In order to simulate scenarios in which 7 > 1, we
selected subgroups for which groups of ~ 50 SNPs differentiated subgroups without being associated with
the disease in general.

Specifically, we repeatedly polled the overall dataset for sets of 2000 SNPs in linkage equilibrium,
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then clustered them hierarchically using a Fuclidean distance metric. We then chose the first-appearing
cluster of 50 SNPs, and hierarchically clustered the individuals in the case group according to a metric
based on similarity across the 50 SNPs. When there were two clusters of individuals left, we denoted the
two clusters as subgroup 1 and subgroup 2. The mean resultant fitted value of 7 was ~ 5 and standard
deviation of fitted values was ~ 1.5.

For simulated subgroups with 7 = 1 (randomly chosen) and with 7 > 1 we computed PLR and
cPLR. As for simulated genotypes, the resultant distributions showed good agreement with the proposed
mixture-x? distributions (figure , with the approximation of the null distribution of PLR with the
distribution of cPL R again leading to a conservative test, as expected. The type 1 error rate corresponding
to a = 0.05 was 0.52 (95% CI 0.043-0.061) in subgroups with 7 > 1 and 0.012 (95% CI 0.007-0.016) in
subgroups with 7 = 1.

w o
o Conditional, t=1 -
o Adjusted, t©>1 -
c 2 Adjusted, T=1 P
I
D_ e
o
[aV]
o
|
o
[aV)
w0 —
o 4 7

I I I I
0 5 10 15

Quantile in mixture %

Figure 3.2: Comparison of distributions of PLR and ¢P LR for subgroups of an ATD case group, chosen so
7 =1or 7 > 1. The distribution of cPLR for random subgroups (7 = 1) and the distribution of PLR for
subgroups with 7 >> 1 are both well-approximated by a random variable distributed as %(X% + x3); red
dashed lines show 99% pointwise confidence intervals. The distribution of PLR when 7 = 1 is minorised
by the mixture-x? leading to a conservative test if a subgroup with 7 = 1 is tested using PLR against
the observed distribution of cPLR for random subgroups. Because 7 = 1 implies no genetic difference
between subgroups, this is reasonable behaviour for the test.

3.3 Distributions of parameter values for simulation and power calcu-
lations

We assume a distribution of summary statistics parametrised by six variables: 71, ma, 09, 03, 7, and p (the
value of 73 is determined by m; and 7). The space of all parameter values is too large to meaningfully
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assess performance of our test across it, so for each simulation, we draw the value of underlying parameters
from sets of potential values chosen to reflect values which may arise in real data.
For a SNP S in two groups of size ni, ng, denote the population allele frequencies as p1, po and the

corresponding observed allele frequencies as my, mo. Set pu = %ﬁgm as the overall observed MAF,

r = log <Z;8::ﬁ;) and R = log (%) as the 'underlying’ and observed log-odds ratios respectively.

To first order

1 1 1 1
SE{R
{ } \/2m1n1 + 1 — m1 ni + 2m2n2 + 2(1 — MQ)TLQ

ﬁ VESHE a.1)

The observed Z score is, to first order, Z = %}R). Now

2u(1 — wning
E(Z|p,r) = Tnz

D(Z|u,r) =1 (3.2)

Consider 7 as a N(0,0?) random variable, and fix . Now, to first order

2u(1 — p)o?
Z|MNN<0,1+ & “)0"1"2) (3.3)

n1 + no

Assuming p to have an approximately uniform distribution on (0, 0.5], this gives

02n1n2
Z~N|[(014+-——"r 3.4
( 3(m +n2)> (34)

An interpretable description of the underlying odds-ratio distribution is the 0.975 quantile of ‘true’ od(d)s
(0%

ratios (approximately 2 standard deviations). If 97.5% of ‘true’ odds ratios r fall in [1/a, o], then o ~ logT
and the expected value of the corresponding observed standard deviation of Z (that is, o9, 03, or 7) is

\/ | 4 Log(@)rny (3.5)

12(%1 + TLQ)

Some examples are shown in table
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Study size (n1/ ng)
a SD | 100/100 100/500 500/500 500/1000 1000/1000 2000/2000
1.1 0.05 1.02 1.03 1.09 1.12 1.17 1.32
1.2 0.09 1.07 1.11 1.30 1.39 1.54 1.94
1.3 0.13 1.13 1.22 1.56 1.71 1.97 2.60
1.5 0.20 1.30 1.46 2.10 2.36 2.80 3.83
2 035 1.73 2.08 3.31 3.79 4.58 6.41

Table 3.2: Correspondence between odds-ratio distribution and standard deviation of observed Z score
for various study sizes. Column « is the 97.5 % quantile of population odds-ratios for SNPs with non-zero
effect sizes (approximately two standard deviations). Column SD is the corresponding standard deviation
of the underlying log-odds ratio distribution (assumed to be normal). Entries in the table correspond
to expected standard deviations of observed Z scores; that is, o9, o3 or 7. We allow different odds-ratio
distributions between cases and controls for SNPs in categories 2 and 3 (corresponding to o2 and o3
respectively). For oy or o3, nj is the number of cases and ng the number of controls; for 7; n; and ngy are
the number of cases in each disease subgroup.
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Note 4

Genetic correlation as an alternative to
PLR test

4.1 Overview

The presence of genetic heterogeneity between disease subgroups could be tested for by adapting several
known methods, although to our knowledge no specific method has yet been developed. One potential
approach is to estimate the narrow-sense genetic correlation (r4) across a set of SNPs between case/control
traits of interest, either between Z scores derived from comparing the control group to each case subgroup,
testing under the null hypothesis 7y = 1 (method 1); or between the familiar Z, and Z,;, under the null
hypothesis 7, = 0 (method 2).

This approach should have the advantage of characterising heterogeneity using a single widely-interpretable
metric. However, both methods have, in our naive application, have multiple shortcomings which pre-
clude their general use to subgroup testing. The most important of these are systematic false-positives
arising in method 1, and false-negatives arising in method 2. We demonstrate this theoretically and in
simulations. In addition, genetic correlation is a signed test statistic; genetic effects in the same direction
contribute positively, and opposite directions contribute negatively, causing a loss of power in situations
where pleiotropy between the phenotypes involves shared effects of both types. Finally, we found that
tests involving r, were less powerful than the PLR in rejecting the null hypothesis in real genetic data
(ATD; GD vs HT).

Genetic correlation is an estimate of the similarity in genetic basis of two traits. A useful formal
definition is given by Bulik-Sullivan et al [2]. Let S be a set of SNPs and X denote a vector of additively
coded genotypes (0, 1 or 2) for a random individual at the SNPs in S. For traits Y7, Y5 set

t
B = arg max,egis |q/j=1 cor(Yr, X'a)

Y = arg max,cplsi |jo)|=1 o (Y2, X'a) (4.1)

where the maximum is taken across the entire population. The genetic correlation between traits across
SNPs in S, 74, is then given by
_ B _ S B
rg = = Bivi (4.2)
BIHII =

4.2 Method 1: control-subgroup 1 vs control-subgroup 2

4.2.1 Expected behaviour

We firstly consider method 1. In this approach, we consider two case-control comparisons:
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1. Case subgroup 1 vs control group

2. Case subgroup 2 ws control group

We denote Z scores derived from GWAS p-values comparing between controls and subgroup 1 by
Zy1 and scores between controls and subgroup 2 by Zs (figure . An estimated genetic correlation
significantly less than 1 (or at least significantly less than estimates from random subgroups) may indicate
different causative architectures for the subgroups, in the form of differing relative effect sizes for disease-
associated variants.

However, using this method will not distinguish between different disease-causative architectures and
genetic differences between subgroups unrelated to the overall phenotype. In terms of the parameters of
our three-categories model, method 1 will be liable to reject the null whenever 7 > 1, regardless of whether
o3 > 1 (that is, regardless of whether subgroup-differentiating SNPs are in general disease-associated).
Indeed, for a set value of 7, the negative contribution of SNPs in group 3 to the observed r, will often be
maximised when Hy holds; that is, o3 = 1.

Consider a SNP in category 3. Under a simple model in which case subgroups are the same size, we
denote by u. the population MAF of the SNP in controls, and u; and us the population AF of the same
allele in cases. To first order 77 o« 1 — pe and Zs o< po — pe. Assume 1 — po is set at some constant
m > 0. Because m > 0, the SNP is associated with at least one of the subgroups, and hence contributes
to the genetic correlation. The value of this contribution to the correlation is proportional to Z1 Zs, which
is proportional to (1 — pe)(p2 — pc)-

This is minimised when p. = %(Nl + u2). This is exactly the scenario in which the genetic subgroup
differences are unrelated to the phenotype as a whole. In other words, dividing the case group on
an arbitrary genetically-associated phenotype (ie hair colour, ethnicity, presence of a second unrelated
disease) would lead to a lowering of r, more than would a differential disease process with the same

heritability (figure [4.1)).

4.2.2 Simulations

We demonstrated this on our ATD dataset by using the subgroups generated under Hy as in simulation [TH]
(see section . These subgroups had a true value of 7 greater than 1, but o3 =1 and p = 0.

For each simulated subgroup, we computed the genetic correlation between the two studies using two
methods - LD score regression (LDSC) [2] and genome-wide complex trait analysis (GCTA) [3] - and
computed our PLR statistic. We also computed genetic correlation and PLR scores for multiple random
subgroups of the ATD case group. Significance of the genetic correlation was assessed by either comparing
the observed ry to the values observed in random subgroups (LDSC) or comparing the likelihood of the
observed data with an alternative model in which r, = 1.

As expected, ry estimates using both methods were markedly lower in subgroups with simulated
genotypic differences than they were in random subgroups (figure . In the LDSC method, a cutoff of
p < 0.05 led to rejecting the null in of 45% (SE 2%) of cases, and in GCTA in in 29% (SE 5%) of cases.
The PLR method did not reject the null more often than expected, rejecting the null in 4% (SE 1%) of
cases.

4.2.3 Application to real data

We also used both LDSC and GCTA to test the hypothesis of differential genetic architecture in GD and
HT. The GCTA method was unable to reject the null hypothesis (p = 0.217), using a likelihood ratio test
against a null model with r4 = 1. The LDSC method was able to reject the null at p < 0.05, though not
at the same significance as the PLR (LDSC: p = 0.012, PLR p = 2.2 x 1071%). This suggests that the r,
based methods are less powerful than the PLR in this context. This is likely due to the PLR responding
to an additional degree of freedom (o3) between the null and full models.
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4.3 Method 2: Z; (case vs control) vs Z, (subgroup 1 vs 2)

4.3.1 Expected behaviour, and relation of p, to p

In method 2, we consider the two case-control comparisons:

1. Combined case group ws control group

2. Case subgroup 1 wvs case subgroup 2

analogous to our approach in the PLR method, with the two comparisons corresponding to Z, and Zy
respectively. We estimate ry between these two traits, and test against the null hypothesis that ry, = 0.

The value of ry relates to the estimated value of py in our full model. For a set S of disease-associated
SNPs with additive (non-epistatic) effects in linkage equilibrium, and a binary trait y, we have

cor(y, X'a) = ZCOT (y, i X;) Zazcor (y, X (4.3)

€S €S

This is maximised when «; o cor(y, X;). If p1(i) denotes the AF of SNP i in S amongst the population
with y = 1, po(i) the corresponding pi.(¢) the overall AF of SNP ¢ and p the incidence of the trait in the
population (that is, Pr(y = 1)), we have

pa (i) — po(4)
\/,uc 1 _,Uc )) (4'4)

Given observed allele frequencies mj (i), mo(i) at SNP ¢ in a GWAS between traits 1 and 2 with n; and
ng samples respectively, the Z score for significance of that SNP is

cor(y, Xi) = v/2p(1 —

N ma(i) —mg(i) e (3) — (i)
2(0) = 00 Omai) — o))

m1(> mO(Z) . 2

+ O((ma(§) — mo(i 45

\/ml z)(1 mi(@) | mo(i)(1-mo(i)) ((m1 () 0(4))7) (4.5)

no
SO 1 1 ”
. Z . —
lim () ey = VAP (46)
|1 —pio|—=0

Amongst SNPs in LE with small effect sizes (u; — po small), expression is maximised for o; o<
limy,, ny—oo Z (7). If we denote by Z1;, Z2; the GWAS Z scores for SNP 7 in phenotypes 1 and 2 respectively
in studies with all group sizes ©(n), the genetic correlation between the phenotypes is

> Z1iZoi
rg ~ lim €5 (4.7)
n o0
Y Iy Z
€S €S

The sum is over all SNPs S, but the only SNPs with non-vanishing contributions to r, are those which
are associated with both phenotypes. For the two traits in method 2, these SNPs are exactly those which
are in our (idealised) category 3 in our full model. Writing C; as the category of the SNP i we can rewrite

the above as
rg ~ lim €8 (4.8)

e Z I(Cz‘ = 3)212i Z I(Cz‘ = 3)2221'
i€S i€S
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for which an obvious estimator is

Z PT(Cz = ?))ZlZZQZ
- €S
g =
Z P’I“(Cl = 3)Z12i z P’I”(CZ = 3)2221'
€S €S

(4.9)

If we were to define our full model such that Z,, Z; for SNPs in category 3 were distributed as a single
bivariate Gaussian distribution with covariance p’ (as opposed to our current model of two symmetric
Gaussians), the updating step for p in the E-M algorithm would have a similar form. Indeed, if ©,,_; is
the set of estimates for {1, 7o, 09, 03,7, p'} after step n — 1 of the E-M algorithm, the updating steps for
o, T, o3 are

Z PT(CZ = 3’@n_1>Za(i)Zd(i)

(¢ & 5 S PriCi=36,1)
zz;(ci = 3]On—1)Zal(i)>?
(73)n ieszs Pr(C; = 3/0,_1)
ZZ;r(Ci = 3|0p-1)Za(i)?
(T iesz Pr(C; = 3[0,_1) 1
ics

and hence when the E-M algorithm converges, p’/(o37) is an estimator for r,. Testing ry # 0 in this
scenario is broadly equivalent to testing whether p’ # 0 in the adapted full model.

When developing the PLR method, we chose not to use this simpler model, opting for a more complex
two-Gaussian distribution of (Z,, Z;) for SNPs in category 3. There were several reasons for our choice.
Importantly, p’ # 0 implies p > 0, so the test ry # 0 tests a more specific proposition than the PLR.

Testing for p’ # 0 or r4 # 0 is weakened when Z, and Z; are correlated at some group of SNPs
and anticorrelated at others. We note that this simultaneous correlation and anticorrelation is likely in
many biological scenarios. Given two disease subgroups 1 and 2, deleterious variants associated only with
subgroup 1 will have correlated Z,, Z; values, whereas deleterious variants associated only with subgroup
2 will have anticorrelated Z, and Zj.

In addition, the presence of between-subgroup heterogeneity, as characterised by the presence of SNPs
with simultaneously high |Z4| and |Z,| values, does not require that Z, and Z; have to be correlated
or anticorrelated at all. The presence of a set of SNPs whose marginal variances of Z, and Z; are
simultaneously significantly larger than 1 is sufficient evidence for heterogeneity of disease basis. This
was the impetus for including the additional parameter o3 in the full model.

Uncorrelated Z, and Z; may well occur in situations where the main sources of variation between
the subgroups are only weakly associated with the overall phenotype, while less associated variants are
strongly associated. This would be expected to occur in situations where the subtypes have known
genetic differences. If, for example, a subgrouping phenotype was based on visual acuity in the phenotype
of symptomatic Type 2 diabetes, variants associated with general macular degeneration would have large
|Z4| scores with low |Z,| scores, while variants associated with microvascular glucose sensitivity would
have larger |Z,| scores and smaller (but still overdispersed) |Z4| scores.

The behaviours of r4/p’, p, 7 and o in various scenarios are summarised in supplementary table
Overall, we consider that while p, is a useful statistic, it does not capture the variety of forms that disease
heterogeneity can take.
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4.3.2 Simulations

We tested the ability of GCTA to reject the null hypothesis r, = 0 on simulated data. We simulated
genotypes for 4000 controls and 2000 cases in each of two subgroups at 10000 SNPs in linkage equilibrium.
Genotypes were simulated in such a way that Z, and Z; scores would have the distributions

<§d> N <<8) | (é (1)>> at 7000 SNPs (m; = 0.7)

(2) N ((8) | ((1) 2)) at 2000 SNPs (73 = 0.1)

(2) N (<8> | (i Z)) at & 1000 SNPs (3 = 0.2)
0

(?) ~ N <<0> ) <_4p :f)) at (1 — &) * 1000 SNPs (73 = 0.2)

The value £ represents the degree to which Z,, Z; scores can show both correlation and anticorrelation,
and p represents the extent of the correlation/anticorrelation. We ran simulations at p = 0 and for
p € {0,0.5,1,2} for £ = 0 (no anticorrelation), { = 0.2 (mostly correlation, some anticorrelation) and
& = 0.5 (equal correlation and anticorrelation). The large value of w3 was to ensure that both PLR and
GCTA should be well-powered to reject the null hypothesis where able, but not so well-powered as to be
incomparable.

We estimated ry using the GCTA method [3]. Significance was assessed using the provided likelihood-
ratio test comparing the fitted model with a null model in which r, = 0.

We did not test LDSC in this scenario, as it estimates ry based on phenomena arising from the LD
matrix, and simulation would entail setting an inherent effect size for these phenomena through specifying
an LD matrix. Since the shortcomings we identify are with the use of r, itself, rather than the method
used to simulate it, we considered this reasonable.

As expected, the test based on r, = 0 was not able to reject the null hypothesis when p = 0 or £ = 0.5,
and power was markedly reduced when some anticorrelation was present, at £ = 0.2 (figure table .
While the test was able to systematically reject the null hypothesis when & € {0,0.2}, p > 0, the power
was universally lower than that of the PLR test (table . This was likely due to information gained
from the additional degree of freedom (o3) between the full and null models in the PLR test. We did not
simulate any scenarios where o3 = 1, as this would imply that SNPs in category 3 were not systematically
associated with the subgrouping phenotype, and hence correlation with Z, would be spurious.

4.3.3 Application to real data

Finally, we assessed whether we could reject Hy by testing against 7, = 0 on our ATD dataset (MHC
removed), with subtypes GD and HT. We used both the LDSC and GCTA methods to do this. While
both were able to reject the null hypothesis (LDSC: ry = —0.579, p = 0.04, from known null distribution
of pg; GCTA: r4y = —0.580,p = 1 x 1073 from likelihood-ratio test) neither could do so as confidently as
the PLR test (p = 2.2 x 1071%).

Our proposed test is complex, and parametrises disease heterogeneity using several variables (namely
73, 03, T and p) rather than providing a single metric. We consider this complexity to be necessary;
heterogeneity in a phenotype can arise in many ways and the heterogeneous genetic architecture can take
many forms. A test specifically to detect SNPs with large, genome-wide significant effect sizes in one
disease subgroup but not the other may miss heterogeneity characterised by subtle effect size differences
across many SNPs with small effects. Our method can ideally detect heterogeneity in a general sense in
multiple situations, and give insight into the architecture in the form of the fitted parameters.
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p ¢ || GCTA PLR
0 0 | 0.09(0.002)|1()
0 021 0.12(0.002) | 1(-)
0 05| 0.06(0.002) | 1(-)
05 0 | 0.55(0.006) | 1 (-)
0.5 0.2 | 0.13 (0.004) | 1 (-)
0.5 0.5 | 0.06 (0.001) | 1 (-)
1 0 |[0.96(0.002) |1()
1 021 0.59 (0.005) | 1(-)
1 05 0.07(0.002) | 1(-)
2 0 |[1() 1(-)
2 021 1() 1(-)
2 0.5 0.04(0.001) | 1(-)

Table 4.1: Power of tests to reject the null hypothesis at @ = 0.05 in simulated data. Brackets show
standard error. Value p is the degree of correlation/anticorrelation between Z; and Z,. Value £ is the
degree of split between correlation and anticorrelation; & = 0 corresponds to correlation only, & = 0.2
to mostly correlation with some anticorrelation, and £ = 0.5 to a half/half mix. Testing for subgroup
heterogeneity using GCTA is adequately powerful when correlation p is present, but declines markedly
when both correlation and anticorrelation are present, and is effectively zero when p = 0.5 or p = 0. The
PLR-based test was able to reject Hy universally in all cases.
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Case subgroup 1

Case subgroup 2

Figure 4.1: One way to test for phenotypic heterogeneity using genetic correlation (r,) is to estimate r,
for two separate case-control studies; each comparing the control group to one of the disease subgroups,
and test whether the estimated r, is significantly less than 1. We denote by Z1, Z> the sets of Z- scores
corresponding to allelic differences between controls and cases of subtype 1 and between controls and
cases of subtype 2 respectively (top panel) in contrast to our usual Z, and Z; scores. A shortcoming
of this method is that 7, is decreased by the presence of SNPs which show allelic differences between
subtypes, but are unrelated to the phenotype overall. In this sense, the test ry < 1 is responsive to any
genetic difference between subtypes - not just those which correspond to differing disease pathology. This
scenario would arise if subgroups were defined based on a phenotype with non-zero heritability which
was unrelated to the disease; eg, subgroups of T1D defined by hair colouring. The lower two panels
demonstrate this scenario. The left panel shows (simulated) Z, and Z; scores for a set of SNPs under Hy,
where grey corresponds to category 1, red to category 2, and blue to category 3. The right lower panel
shows the corresponding sets of Z; and Z, values. SNPs in the grey circles, and generally SNPs coloured
blue, will contribute negatively to the overall genetic correlation, which is asymptotically proportional to
the sum of Z; Z5 over all SNPs coloured red or blue.

Nature Genetics: doi:10.1038/ng.3751



38 NOTE 4. GENETIC CORRELATION AS AN ALTERNATIVE TO PLR TEST

2.5

— Random subgroups
— Simulated difference

Density
1.0 15 20
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0.0

0.0 0.5 1.0 1.5 2.0

Estimated genetic correlation

Figure 4.2: Density of estimated 4, (LDSC method) for method 1. Estimates for random subgroups
generated under Hy are shown in black. Estimates for subgroups with a simulated difference (7 > 1) are
shown in red. A test based on method 1 would reject Hy if 7, was significantly less than 1; however, as
the plot shows, this would lead to systematic false positives in the scenario where 7 > 1. Some estimated
values of 1, are greater than 1 due to the way the statistic is estimated under the LDSC method.
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P values (GCTA), sorted

Relative rank

Figure 4.3: Sorted p values from test of null hypothesis r, = 0 under simulations in which p € {0,0.5,1, 2}
and & € {0,0.2,0.5}. In all simulations, Hy is false (with o3 > 0). GCTA is able to reject the null
hypothesis only if p > 0 and p # 0.5, and power is reduced (ie, p-values are higher) if p = 0.2 compared

top=0. If p =0 or £ = 0.5, the p-values show effectively no deviation from U(0,1). Thus a test based
on rejecting p, = 0 is not suitable for our purposes.
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Note 5

Other

5.1 Alternative test statistics for retrospective single-SNP analysis

We propose four summary statistics for testing the degree to which single SNPs have differential effect
sizes in disease subgroups. The fourth of these, the Bayesian conditional false discovery rate (cFDR) is
discussed in the methods section of the main text. The three alternative statistics (which we term X,
X9, X3) test against slightly different null hypotheses.

The first, X7, is the posterior probability of membership of the third category of SNPs under the
full model; that is, for a SNP of interest with Z scores z,, zq and given fitted parameters ©; =
{m1, w2, W3, 09,03, T, p}:

X1 = Pr(SNP € category 3|01)

1
s N N
573 ( 07(;2 Up?)(Za,Zd) + 07(12 75) (Za, Zd)>
= 3 P (5]‘)

PDFg,(za, 24)

This test statistic has the advantage of straightforward FDR control against the null hypothesis Hy =
{SNP € category 1/2|01}, assuming the validity of ©;. It also reflects the overall shape of the distribution.
A disadvantage is the dependence on the model implied by O1; in circumstances where o3 >> o9, the test
statistic X1 will be high for high values of |Z,| even when |Zg]| is low (supplementary figures [7). This is
a particular problem if tested regions include very strong associations; for example, the MHC region in
autoimmune phenotypes.

Our second statistic, Xs, is the difference in pseudo-log likelihood of a given SNP under the full and
null models; that is, given fitted parameters ©1 under H; and ©g under Hy

Xo =1log{PL(zq, 24|091)} — log{ PL(2q, 24|©0) } (5.2)

This has the advantage that high values of Xs directly identify the SNPs contributing to a higher pseudo-
likelihood ratio. A disadvantage is the sensitivity to the behaviour of the fitted parameters under Hy,
which may be variable (see main paper, results section, page [7| and table , and absence of direct FDR
control. Because X; and X5 tend to highlight uninteresting SNPs in differing circumstances, we found a
combination of both to be useful to find SNPs which are 'unusual’ (high X;) and contribute to the PLR
(high X5).

The third test statistic is defined as X3 = zg‘zclfo‘, a € (0,1). We chose this test statistic as we are
broadly searching for evidence of correlation between Z, and Z;, and SNPs contribute to measures of
correlation principally through the value of Z,Z;. This test statistic identifies SNPs with concurrently
high Z, and Z; in an obvious way, so is of most use when SNPs which differentiate subgroups are not of
interest unless they are also associated with the overall phenotype.
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The value of « is set in order to prioritise SNPs with high Z; over those with high Z,; for instance,
with o = 0.5 will give equal weight to a SNP with Z, = 10, Z; = 1 and a SNP with Z, = 1, Z; = 10, but
in general the second SNP will be of far greater interest. To determine the best value of o, we consider
how much we may expect Z, and Z; to deviate from 0, using both the full and null models.

We set 7/ as the largest value of 7 across both models, and ¢’ as the largest of oo (null model) and
o9, o3 (full model). Given fitted values 7/, o/, we suggest the value

_ log(o”)
log(7") + log (o)

(5.3)

so that the statistic X3 has the same value at the points (1,7’) and (¢’,1). The rationale for this is that

SNPs which have the true underlying distributions N o (le 0) or N o (1 0 ) are uninteresting; we seek
o 1 '\ 0 0”2
deviance from both of these distributions. A hypothesis test for X3 can then be computed, using the

appropriate values of 1 ).
Contour plots of the test statistics for several datasets are shown in supplementary figures

5.2 Independence of PLR distribution on subgroup sizes

PLR and cPLR values for randomly chosen subgroups are all derived from data with the same Z, values,
with the distribution of Z; expected to be N(0, 1) and independent of Z, regardless of the relative sizes of
random subgroups. Therefore we expect that the asymptotic distribution (main paper, equation [2| does
not depend on relative subgroup size. An important consequence of this is that if several subgroupings of
a phenotype are being simultaneously assessed, the empirical distribution of cPLR need only be calculated
once.

We demonstrate this assertion by simulation. Using our autoimmune thyroid disease dataset, we
simulated random subgroups from the combined case group (GH-+HT) for a range of relative sizes,
repeating the simulation 1000 times for each subgroup size. Figure shows the observed distributions
of PLR and cPLR as compared to the overall distribution. These plots are consistent with independence
of empirical PLR and cPLR distributions on subgroup size.

5.3 Number of simulations necessary to fit null distribution

We assessed the number of simulated random subgroups required to estimate the parameters v, k of
the null distribution of the cPLR. We took bootstrap samples of various sizes from our list of simulated
random subgroups (7 = 1) of the ATD data. For each sample, we computed the fitted values of v and
and the observed p-values associated with observed PLR values of 2, 3, 5, and 10, i.e. expected p values
0.08, 0.03, 0.004 and 1.5 x 107% respectively (figure

This suggests that 1000 simulations is generally adequate, and it is difficult to improve accuracy
markedly past this point. For this number of simulations, 95% of computed values for x, v, Pr(PLR >
2|k,~) and Pr(PLR > 5|k, ~) were in [0.44, 0.56], [0.46, 0.72], [0.069, 0.97] and [0.0021, 0.0057] respectively.
As expected, consistency of p-value estimates is poorer for lower p-values, as these correspond to greater
extrapolations of the distribution.
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Figure 5.1: Distributions of PLR and cPLR for various relative sizes of subgroups. Simulations are on ATD
data. Legend shows the proportion of cases in the smaller subgroup. Leftmost plot shows distribution of
observed ¢PLR, rightmost distribution of PLR. Red dotted lines show empirical 99% confidence limits.
Distributions are similar for all relative subgroup sizes.
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Figure 5.2: Distributions of estimated parameters v and s and various corresponding p-values, using
various numbers of simulated random subgroups. Blue lines show quantiles of observed distribution
corresponding to +2c; red lines show quantiles corresponding to +o. Errors in v and k are shown as
percentage errors as compared to median. Errors in p-values are shown as logig fold changes from median.
Values of the median value of each variable are shown. Observed values are shown as grey dots.
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Supplementary Figure 3: Estimates of power for various values of w3, o3, 7, and p. The
value N is the approximate number of SNPs in category 3, corresponding to 73. In total,
each simulation was on 5 x 10* simulated autosomal SNPs in linkage equilibrium. The
value p/(o37) is the correlation (rather than covariance) between Z, and Z; in category 3.
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Supplementary Figure 5: Observed Z, and Z; scores (grey) for T1D subtypings based
on autoantibody positivity, including or excluding the MHC region, and contours of pa-
rameters of fitted models (coloured ellipses). Full models are shown for the comparisons
involving TPO-Ab, GAD-AD, and IA2-Ab, and null models for PCA-Ab (for which the null
hypothesis could not be rejected). Note the differing X-axis scales. The plots illustrate the
rationale for the three-category model; for TPO-Ab, GAD-Ab and IA2-Ab, a tendency is
seen for SNPs associated with autoantibody positivity (high |Z4|) to be associated with
T1D also (high |Z,]). This tendency is not seen for PCA-Ab, and is minimal for non-MHC
SNPs in GAD-Ab. Further analysis of the plot for TPOAD positivity (top left) is shown

below.
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Supplementary Figure 7: We demonstrate all four test statistics for single-SNP effects in
the comparisons betwen T1D/T2D/RA, and between GD and HT (preceding pages). The
top 100 SNPs for each test statistic are highlighted, with larger symbols corresponding to
SNPs with non-zero weights after applying LDAK [2]; that is, the SNPs which contributed
to the model fit. Contours of each test statistic are shown in grey.

Differences are evident in the behaviour of the test statistics X7 and X9 between the two
datasets; X3 and X4 are more robust. The different null hypotheses between X5 and X4
are responsible for the difference in shape near the line Z, = 0. Contours of X, are jagged
due to the dependence of this statistic on the distribution of Z scores.

All methods primarily identified SNPs with both high |Z,| and |Z;| scores as contributors.
As evident from the comparison between GH and HT, the statistic X7 is vulnerable to
falsely declaring SNPs as subgroup-differentiating despite low |Z,| scores (labeled "A’; top
left panel, GD/HT). This arises due to the full model having a markedly higher value of
o3 than oy, leading to SNPs with very high |Z,| values having a high posterior probability
of category 3 membership.

This is partially able to be overcome by combining the test statistics X; and X, into
one, which we typically do by only considering Xs scores in SNPs with X; greater than
some cutoff. However, this is not always effective, as is evident from the above figure for
T1D/T2D. In this case, as discussed in the main paper, almost all SNPs with high Z,
also had high Z;, meaning that the two distributions forming categories 2 and 3 under the
null model were essentially the same. This led to the fitted parameters of the null model
supporting SNPs falling into two distributions; one with identity covariance matrix, and
the other with var(Zy) > 1, var(Z,) = 1 (see fitted parameters).

The different alternative hypothesis for X, (different population MAFs in subgroups with-
out requiring association with the phenotype overall) meant that SNPs with low | Z,| scores
may be identified by X4 in addition to those identified by X, X5 and X3 (contour lines on
bottom right panel, both figures). SNPs which are isolated may be missed by both X; and
X (label 'B’, top two panels, TID/RA), due to the fitted distribution of SNPs in category
3 tending to be driven by clusters of SNPs.

Given these results, we consider X3 and X4 to generally be the most appropriate measure
for single SNP effects, although in appropriate circumstances X can be used alone or
conditionally on X;.
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Supplementary Figure 8: We assessed the SNPs responsible for the observed difference in
pseudo-likelihood ratio for our analysis of TPOAD positivity in T1D. SNPs in the MHC
region were removed from the analysis (co-ordinates 25-38 Mb, GChR build 37). We
combined X7 and X5 into a single test statistic, by only considering SNPs with X; > 0.7
and then considering the top SNPs for X5. The top ten SNPs for X5|X; > 0.7 (blue, top
two panels), X3 (purple, bottom left panel), and X, (red, bottom right panel) are shown.
Contours of each summary statistic are shown as black lines. Details of SNPs are shown
in the supplementary tables.
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Supplementary Figure 9: We assessed the SNPs responsible for the observed difference in
pseudo-likelihood ratio for our analysis of age at diagnosis in T1D. SNPs in the MHC region
were removed from the analysis (co-ordinates 25-38 Mb, GChR build 37). We combined
X1 and Xs into a single test statistic, by only considering SNPs with X; > 0.7 and then
considering the top SNPs for X5. The top ten SNPs for Xo|X; > 0.7 (blue, top two panels),
X3 (purple, bottom left panel), and X4 (red, bottom right panel) are shown. Contours
of each summary statistic are shown as black lines. Details of SNPs are shown in the
supplementary tables.
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H;: shared genetic architecture
between subgrouping phenotype
<1 0 0 >1 >1 and main phenotype, effect sizes

dependent but not correlated or

anticorrelated

Supplementary Table 1: Heterogeneity between case subgroups may arise in multiple ways, some of which are illustrated
here. Plots show the distribution of Z; and Z, for SNPs in category 3 (those which differentiate subgroups). Column rél)
corresponds to genetic correlation in method 1 (between Z scores for control vs subgroup 1 and control vs subgroup 2),
and column 7"52) to genetic correlation in method 2 (between Z, and Z;); see supplementary material, section [4f SNPs in
category 1 (not differentiating cases/controls and not differentiating subgroups) are shown in grey for reference, and SNPs
in category 2 are omitted. In the first two rows, the pathology leading to heterogeneity is genetically independent of the
pathology leading to the main phenotype; our null hypothesis. The test rél) < 1 will reject Hy for the scenario in row 2,
as well as other scenarios. The test 7’52) = 0 rejects Hy for the scenario in row 3, but is weakened in the scenario in row 4
due to the anticorrelation, and will not be able to reject Hy for rows 5-7. Since p detects correlation and anticorrelation

simultaneously, it will additionally reject Hy for row 4 and will not be weakened in row 3. However, it is necessary to test

for o3 > 1 to reject Hy for rows 5 and 6.
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Model ™ o 3 oo o3 T p p-value

TPO-Ab  Full 0.511 0.487 2407 x 1073 0.994 6.545 1.552 0.991 < 1x 102
Null 0.987 2.333x 1073 0.011 6.634 - 1.308 -

TPO-Ab Full 0.997 2.898 x 10~% 3.031 x 1073 4.698 2.291 1.497 0.338 1.5x 10~ %

no MHC Null 0.989 1.882x 1072 9.087 x 1073 3.11 - 1.318 -

GAD-Ab  Full 0.995 3.557 x 1073 1.057 x 10~° 2.832 8.866 2.295 5.484 <1x1020
Null 0.997 2.328 x 1073 3.002 x 10~* 6.639 - 2.153 -

GAD-Ab Full 0.997 29x10=° 3434 x10°% 2279 4531 1.055 3.424 0.002

no MHC  Null 0.792 1.883 x 103 0.206 3.111 - 0.997 -

TIA2-Ab  Full 0.995 3.275x 103 1.244 x 10~% 2.804 8.291 3.027 1575 <1x10°20
Null 0.997 2.287 x 103  3.805 x 10~* 6.674 - 3.852 -

TA2-Ab  Full 0.998 1.362 x 103 7.904 x 10-% 3.318 2212 2.145 0 0.008

no MHC Null 0.998 1.88x1073 2.073x107* 3.112 - 2.889 -

PCA-Ab Full 0.997 2.336 x 1073 3413 x 10-% 6.631 0.37 2.097 0.422 > 0.5
Null 0.998 2.335x 1073 1.276 x 10~* 6.632 - 2.54 -

PCA-Ab Full 0.997 2759 x 1073 1.303x 10~%* 2.508 5.58 2.256 0 > 0.5

no MHC Null 0.998 1.884 x 1072 1.384 x 10~* 3.111 - 2.5 -

Supplementary Table 2: Parameters of models fitted to T1D autoantibody positivity data. With MHC retained (co-
ordinates 25-38 Mb, GChR build 37) all full models fit better than null models with the exception of those fitted to
PCA-AD positivity. With MHC removed, effect sizes were lower, but the null hypothesis could be rejected for TPOA-Ab
positivity, with weaker evidence for rejecting the null hypothesis for GAD-Ab and [A2-Ab. In most cases, there was
evidence of SNPs differentiating subgroups (typically, fitted 7 > 1). There were generally a small number of SNPs which
strongly differentiated cases and controls (a small value of 7o, 73 corresponding to the larger value of o2, 03). P-values
were computed against the null distribution of cPLR for random subgroups, which showed good agreement with the
asymptotic mixture-x? distribution (see supplementary figure . P-values shown are unadjusted for multiple testing.

Age Full | 0.898 0.099 24x107% 096 6.558 1.601 3.644 4.9 x 1077
Null | 0.885 2.338 x 1073 0.113 6.631 - 0.945 -

Age Full | 0.997 1.881 x10~% 3.035 x 10~2 5.257 2.372 1.159 1.315 0.007

no MHC Null | 0.782 1.891 x 1073 0.216 3.107 - 0.97 -

Supplementary Table 3: Parameters of models fitted to age at diagnosis in T1D, considered as a parameter rather than
defining subgroups. The full model fit significantly better than the null model when the MHC region was included or
excluded. Plotted Z, and Z; scores are shown in supplementary figure [ff The fitted models show evidence of SNPs
associated with age at diagnosis (fitted 7 > 1). P-values were computed against the null distribution of ¢cPLR for random
subgroups, which showed good agreement with the asymptotic mixture-x? distribution (see supplementary figure [4c).
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