
The Active Side of Stereopsis: Fixation Strategy and
Adaptation to Natural Environments
Agostino Gibaldi1,*, Andrea Canessa1, and Silvio P. Sabatini1

1Physical Structure of Perception and Computation Group, Department of Informatics, Bioengineering, Robotics
and System Engineering, University of Genoa, 16145, Genoa, Italy
*agostino.gibaldi@unige.it

ABSTRACT

Depth perception in near viewing strongly relies on the interpretation of binocular retinal disparity to obtain stereopsis. Statistical
regularities of retinal disparities have been claimed to greatly impact on the neural mechanisms that underlie binocular vision,
both to facilitate perceptual decisions and to reduce computational load. In order to assess how fixation strategy can finely
conditions the statistics of the disparity a novel and unconventional approach has been designed. The approach integrates
accurate realistic three-dimensional models of natural scenes with binocular eye movement recording, allowing accurate
ground-truth statistics of retinal disparity experienced by a subject in near viewing. Our results evidence how the organization of
human binocular visual system is finely adapted to the disparity statistics that quantitatively distinguish actual fixations, revealing
a novel role of the active fixation strategy over the binocular visual functionality. This suggests an ecological explanation of the
intrinsic preference of the mechanism of stereopsis for a close central object surrounded by a far background, as an early
binocular aspect of the figure-ground segregation process.



Supplementary Materials
Disparity Patterns and Empirical Horopter for the Single Subjects - Figure S1 shows the retinotopic median horizontal disparity
(top), the patterns of disparity variability (middle), and the horizontal and vertical horopter (bottom), separately for the four
subjects involved in the experiment.
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Figure S1. Individual subjects’ data. Horizontal median disparity pattern and standard deviation (top rows), as in Fig. 3, and top and
side views of the empirical horopter and Panum’s fusional area (bottom row), as in Fig. 5, represented for each subject, separately.
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Figure S2. A. Geometry of viewing posture while looking a plane. Sketches of the fixating eye system, showing the eyeballs and the
horizontal and vertical meridians for the left (red) and right (green) eye, projected on the fixed plane (gray mesh). The plane is at 400 mm of
distance from the observer (vergence angle ≈ 8.5◦), with straight-ahead binocular gaze direction, and fixation point lying on its center, with a
tilt of 0◦ (top) and 15◦ (bottom). The sketch represents also the geometric horopters, as the horizontal Vieth-Müller circle (black) and vertical
horopter (black vertical line). B. Empirical Retinal Corresponding Points Generated by a Frontoparallel Plane. Pattern of empirical
corresponding points represented in the first 10◦ of visual field eccentricity, which would be generated by a frontoparallel plane (top) or by a
back-slanted plane (bottom). C. Empirical Corresponding Points Generated on Observer’s Fixations. Pattern of empirical
corresponding points represented in the first 10◦ of visual field eccentricity, which would be generated by the median disparity computed on
subjects’ (top) or random (bottom) fixations.

Retinal Empirical Correspondence across the Field of View. - The empirical correspondence has been commonly studied
along the horizontal14, 36–38, 40, 42 and vertical13, 15, 34, 37, 40–42 meridians of the field of view, as cardinal directions of human
vision. The definition of the Hering-Hillebrand (horizontal) and Helmholtz shear (vertical) deviation, does not imply that
retinal deviations occur along the two meridians only, but they encompass the whole field of view15, 39. Thus, we extended the
comparison to the whole (central) field of view, and compared our results to the disparity pattern projected by a frontoparallel
and a back-slanted plane, as in15 (see Fig. 2A). Both the patterns of empirical corresponding points computed by our disparity
statistics for of subjects’ and random fixations (see Fig. 2B, right) are more similar to a pattern produced by a back-slanted
plane than that produced by a frontoparallel plane (see Fig. 2B, left). Again, the subjects’ pattern presents a higher similarity
with those measured in humans (rmse = 0.14◦), than that obtained by random fixations (rmse = 0.15◦).
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The 3D shape of the empirical horopter. - The empirical corresponding point over the whole field of view (first 10◦ of
eccentricity) have been exploited to compute the 3D shape of the empirical horopter (see Fig. S3, derived by the disparity
statistics for subjects’ fixations. The horopter has been computed as the surfaces that project with minimum retinal disparity to
the pairs of empirical corresponding points35. It is evident how random fixations (B) result in a 3D shape which is smooth and
continuous moving from the center to the periphery of the field of view, while the horopter derived by subjects’ fixation is
characterized by a close central bump surrounded by a further background.
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A. Subjects' Fixations B. Random Fixations

Figure S3. A. 3D shape of the empirical horopter for subjects’ fixations. The 3D empirical horopter, derived by the disparity statistics
for subjects’ fixations, computed as the surfaces that project with minimum retinal disparity to the pairs of empirical corresponding points.
The optical axes (black dashed lines) originating from the eyeballs, intersect at the fixation point. The observer is fixating straight-ahead, with
a vergence angle of 7◦, i.e. at a distance of ≈ 500 mm. The empirical horopter is represented within the first 10◦ of eccentricity (gray mesh),
highlighting the horizontal and vertical meridians (blue lines), and showing the geometric vertical horopter (red line). The observer is fixating
straight-ahead, with a vergence angle of 7◦, i.e. at a distance of ≈ 500 mm. B. 3D shape of the empirical horopter for random fixations.
The 3D empirical horopter, derived by the disparity statistics for subjects’ fixations, computed as in Panel A.
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A B

Figure S4. A. Empirical horopters and Panum’s areas with fixation disparity. Representation of the horizontal (top) and vertical
(bottom) horopter, with the associate Panum’s area, for subjects’ (A) and random (B) fixations, as in Fig. 5. The graphs display the variation
of the empirical horopter and Panum’s area when a fixation disparity varying from zero to 40 arcmin58 is introduced.

Fixation disparity and Panum’s fusional area - Fig. S4 shows the horizontal (top) and vertical (bottom) horopter, with the
associate Panum’s area (pink area), for subjects’ (A) and random (B) fixations, as in Fig. 5, but simulating a fixation disparity.
We assumed a positive fixation disparity, as commonly measured in normal subjects58, and we simulated the fixation disparity
varying from zero to 40 arcmin. The increasing fixation disparity has the effect of shifting the empirical horopter closer to the
geometric horopter. This effect is more convenient in subjects’ fixations, since it reduces the global disparity experienced by
the subject, while a local adaptation of the retinal correspondence accounts for a null perceived disparity at fixation.
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70. Açık, A., Sarwary, A., Schultze-Kraft, R., Onat, S. & König, P. Developmental changes in natural viewing behavior:
bottom-up and top-down differences between children, young adults and older adults. Frontiers in psychology 1, 207
(2010).

71. Hinkle, D. A. & Connor, C. E. Quantitative characterization of disparity tuning in ventral pathway area V4. Journal of
neurophysiology 94, 2726–2737 (2005).

72. Burge, J., Fowlkes, C. C. & Banks, M. S. Natural-scene statistics predict how the figure–ground cue of convexity affects
human depth perception. The Journal of Neuroscience 30, 7269–7280 (2010).

73. Gautier, J. & Le Meur, O. A time-dependent saliency model combining center and depth biases for 2d and 3d viewing
conditions. Cognitive Computation 4, 141–156 (2012).

74. Scharstein, D. & Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Interna-
tional journal of computer vision 47, 7–42 (2002).

75. Hunter, D. W. & Hibbard, P. B. Distribution of independent components of binocular natural images. Journal of vision 15,
6–6 (2015).

76. Liu, Y., Cormack, L. K. & Bovik, A. C. Dichotomy between luminance and disparity features at binocular fixations.
Journal of vision 10, 23 (2010).

77. Chessa, M., Solari, F. & Sabatini, S. P. Virtual reality to simulate visual tasks for robotic systems. In ), J.-J. K. E. (ed.)
Virtual Reality, 71–92 (Citeseer, 2010).

9/10



78. Solari, F., CHessa, M. & Sabatini, S. P. Natural perception in dynamic stereoscopic augmented reality environments.
Displays 34, 142–152 (2013).

79. Erkelens, C. J. & van Ee, R. d. A computational model of depth perception based on headcentric disparity. Vision Research
38, 2999–3018 (1998).

80. Schreiber, K., Crawford, J. D., Fetter, M. & Tweed, D. The motor side of depth vision. Nature 410, 819–822 (2001).

81. Svede, A., Treija, E., Jaschinski, W. & Krumina, G. Monocular versus binocular calibrations in evaluating fixation disparity
with a video-based eye-tracker. Perception 44, 1110–1128 (2015).

82. Cramér, H. Mathematical methods of statistics, vol. 9 (Princeton university press, 1945).

83. Ekström, J. Mahalanobis’ distance beyond normal distributions. UCLA Statistics Preprints 624 (2011).

84. Jones, J. P. & Palmer, L. A. An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate
cortex. Journal of neurophysiology 58, 1233–1258 (1987).

85. Held, R. T. & Banks, M. S. Misperceptions in stereoscopic displays: a vision science perspective. Proceedings of the 5th
symposium on Applied perception in graphics and visualization 23–32, (2008).

86. Fox, R. & Patterson, R. Depth separation and lateral interference. Perception & Psychophysics 30, 513–520, (1981).

87. Banks, M. S., Read, J. C. A., Allison, R. S. & Watt, S. J. Stereoscopy and the human visual system. SMPTE motion
imaging journal 121, 24–43 (2012).

88. Bahil, A. T., Adler, D. & Stark, L. Most naturally occurring human saccades have magnitudes of 15 degrees or less.
Investigative Ophthalmology & Visual Science 14, 468–469 (1975).

89. Stahl, J. S. Eye-head coordination and the variation of eye-movement accuracy with orbital eccentricity. Experimental
brain research 136, 200–210 (2001).

90. Watt, S. J., Akeley, K., Ernst, M. O. & Banks, M. S. Focus cues affect perceived depth. Journal of vision 5, 7–7 (2005).

91. Hoffman, D. M., Girshick, A. R., Akeley, K. & Banks, M. S. Vergence–accommodation conflicts hinder visual performance
and cause visual fatigue. Journal of vision 8, 33–33 (2008).

92. Shibata, T., Kim, J., Hoffman, D. M. & Banks, M. S. The zone of comfort: Predicting visual discomfort with stereo
displays. Journal of vision 11, 11–11 (2011).

93. Hibbard, P. B. & Bouzit, S. Stereoscopic correspondence for ambiguous targets is affected by elevation and fixation
distance. Spatial vision 18, 399–411, (2005).

94. Burge, J. & Geisler, W. S. Optimal disparity estimation in natural stereo images. Journal of vision 14, 1–1, (2014).

95. Bohil, C. J., Alicea, B. & Biocca, F. A. Virtual reality in neuroscience research and therapy. Nature reviews neuroscience
12, 752–762 (2011).

96. Read, J. C. A., Phillipson, G. P. & Glennerster, A. Latitude and longitude vertical disparities. Journal of Vision 9, 11–11
(2009).

10/10


	References

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	1.38: 
	1.39: 
	1.40: 
	1.41: 
	1.42: 
	1.43: 
	1.44: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PauseLeft: 
	1.PlayLeft: 
	1.PlayPauseLeft: 
	1.PauseRight: 
	1.PlayRight: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 


