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Supplementary Text: S1 

 

Supplementary methods 

Model fitting 

A Bayesian frame work was used to fit the models to data in R using the FME package 1 based on the 

procedure by 2 that implements the delayed rejection and adaptive metropolis algorithm simulated using 

the Markov Chain Monte Carlo (MCMC) method. Prior estimates of the model parameters were taken 

from our previous studies 3-5. For each parameter, a uniform prior was used with the lower and upper 

values taken as the parameter bounds and the median as the parameter estimate. In the fitting we assumed 

that the observations have identically and independently distributed additive Gaussian noise with 

unknown variance. Therefore, given data/observations 𝐷, and a nonlinear model 𝑀, (𝑀 = 𝑓(𝑥, 𝜃)), the 

data can be explained as 𝐷 = 𝑓(𝑥, 𝜃) + 𝑒𝑟𝑟𝑜𝑟, where 𝑒𝑟𝑟𝑜𝑟 = 𝑁(0, 𝛿2) is the Gaussian noise. 𝜃 are the 

model parameters to be estimated and 𝑥 are the model time dependent variables. Applying the Bayesian 

probability, the model parameters can be drawn from the posterior distribution 

𝑃(𝐷 𝑀⁄ , 𝛿2) =
1

𝑃(𝐷)
∗ 𝑃(𝑀 𝐷⁄ )𝑃(𝑀), where 𝑃(𝑀) is the model prior, 𝑃(𝐷) is the model evidence which 

in practice amounts to a normalising constant and 𝑃(𝑀 𝐷⁄ ) is the model likelihood. Assuming uniform 

priors we estimated model parameters from posterior distributions generated using the MCMC method 

and a Gaussian likelihood function, 𝐿(𝑀, 𝐷), therefore 
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This likelihood function was used in estimating parameters for the model in the two different modelling 

approaches, where 𝑇ℎ1𝑖 , 𝑇ℎ2𝑖 , 𝐶𝐹𝑈𝑖, represent the model simulated Th1, Th2 and CFU values and  

𝐼𝐹𝑁𝑖, 𝐸𝐿𝐼𝑆𝐴𝑖 , 𝐶𝐹𝑈𝑑𝑎𝑡𝑎𝑖 ,are the observations from the study  and 𝛿𝑖s are the variances. 

 

 

Selecting parameters for model fitting 



The parameters 𝑘𝑖,⁡𝑘𝑏,  𝜃1, 𝜃2, 𝜃3, 𝜆1 and 𝜇𝑓 were selected for model fitting based on our previous 

studies were we carried out model parameter sensitivity analysis 3-5. In the Hybrid model, the CFU 

shedding parameters in the ODE model were replaced with the parameters 𝜋0,⁡𝜋1 and 𝜋2 in the logistic 

shedding function. Also, in both model we estimated the initial values for macrophages (𝑀𝜙(0), 𝐼𝑚(0), 

𝐵(0), since the actual time/day of infection is not known.    

 

Chain convergence diagnostics 

We used the Coda R package 6 to evaluate the convergence of the MCMC chain. First, we visually 

assessed the chains to determine if stationarity was achieved. We then used the Geweke’s diagnostic, 

which compares the 10% first part of the chain with the 50% last part of the chain, these should be the 

same. The test calculates a z-score for the difference in the means between the two parts of the chains. 

Our chains returned values between 2 and -2, which indicates the two means of the chain are not that 

different. 

 

Calculating of assay sensitivity cut-off points 

Assay sensitivity cut-off values in the simulations were calculated using experimental assay sensitivity 

cut-off values (see Table S2). The macrophage cut-off value was set at the value of the IFN-𝛾 assay cut 

off since a Th1/IFN-𝛾 response is stimulated by infected macrophages or by intracellular infection. We 

used the maximum observed values to normalise the data to a scale of 0 to 1 for the measured values 

(Table S2). The models were fitted to the normalised data and the normalised cut-off values were used 

as the sensitivity cut-off in the simulation of the assays.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Figures and Tables  

 

 
 

Fig S1: Relationships between IFN- γ (Th1), ELISA (Th2) and CFUs. Histograms illustrating the 

distribution of linear regression, 𝑦 = 𝛽0 + 𝛽1𝑥, coefficients (slope of the fitted line, 𝛽1) and the 

coefficient of determination (𝑅2) of the level of correlation between Th1 vs CFUs, and Th2 vs CFUs. A 

and C, show the distribution of the regression coefficient, 𝛽1.  B and D, the coefficient of determination 

of the level of correlation between the Th1 and Th2 responses with the CFU shedding. 

 

 

 

 



 
Fig S2: Theoretical assay predictions. Model predictions showing how Th1, Th2 and CFU based 

assays will probably show when assay sample are taken at different time intervals, for instance using 6 

month sliding windows. This simulation also shows the level of within host free bacteria, which cannot 

be easily tested. However, here, we present a prediction of the probable within host free bacteria that 

corresponds to the excreted bacteria that is normally detected using the faecal culture assay. Group 2 

animals show that, no CFU will be excreted and no free bacteria can be isolated from within the 

animals. However, lowly expressed Th1 and Th2 responses, suggest the presence of an infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Fig S3: Data fitting with a stochastic model. An illustration of how the stochastic model explains the 

IFN- γ (Th1) and ELISA (Th2) and CFUs time evolution for animals in groups 2 and 3, respectively. 

The estimated parameters from the ODE fitting were used with different levels of stochastic signal 

between the two groups. A total of 100 runs were simulated to illustrate the spectrum and impact of 

stochastic immune response stimulation and CFU shedding.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S1: Model parameters. We list parameters that have been derived using information from the 

following literature sources.  

 Name   Definition   Dimension   Range/prior  Baseline Value 

𝛿𝑚  Macrophage supply   cell/mm /day  5.0-10.0   10.0  

𝜇𝑚  Macrophages death rate   day   0.11-0.025   0.02  

        𝜇𝐼  Infected macrophages death rate   day   0.11-0.025   0.02  

𝜇𝐵  Bacteria death rate   day   0.0-1.0   0.03  

𝑘𝑖  Macrophage infection rate  mm /cell/day  0.0-1.0  0.002  

𝑘𝑚  Bacteria removal by macrophages  mm /cell/day  0.0-1.0  0.000125  

𝑘𝑏  Infected macrophages burst rate   day   0.0-1.0  0.00075  

𝑁0  Burst size  -  80.0-100.0  100.0  

𝜇0  Th0 decay/death rate   day   0.1-0.03   0.01  

𝜇1  Th1 decay/death rate   day   0.1-0.03   0.03  

𝜇2  Th2 decay/death rate   day   0.01-0.02   0.02  

𝛿0  Th0 supply   cell/mm /day  0.1-1.0   0.1  

𝜃1  Th1 cells clonal expansion   - 1.0-9000.0  1000.0  

𝜃2  Th2 cells clonal expansion   -  1.0-9000.0  1000.0  

           Th0 differentiation into Th1 cells   mm /cell/day  0.0-1.0   0.01  

            Th0 differentiation into Th2 cells   mm /cell/day  0.0-1.0   0.01 

𝑘𝑙  Th1 lytic effect  mm /cell/day  0.0-0.2   0.00004  

𝜆1  Bacteria shedding    day   0.0-1.0   0.002  

𝜆2  Bacteria shedding   day   0.0-1.0   0.002  

        𝜇𝑓  CFU decay rate   day   0.01-0.02   0.02  
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Table S2: Calculation of assay sensitivity cut-off values 

Assay Sensitivity experimental 

cut-off  value (SEV) 

Maximum measured 

value (MMV) 

Normalised cut-off 

value (NV=SEV/MMV) 

IFN-𝛾 >0.1  2.348 ~0.04 

ELISA >0.25 2.561 ~0.1 

CFU >1 100 0.01 

Macrophages - - 0.04 (Set to IFN-𝛾 

value)  

   

 

 

 

 

Table S3: Predicted correlations. Estimated level of correlations predicted using linear models/linear 

regression. 

 Group1 Group 2 Group 3 

 𝑅2 Adj p-value F-test 𝑅2 Adj p-value F-test 𝑅2Adj p-value F-test 

𝑦 = 𝛽1𝑥          

CFUs-vs-

ELISA 

0.022 1.8e-2 5.72 0.05 <0.001 14.69 0.35 <0.001 171.91 

CFUs-vs-

IFN-𝛾 

0.043 1.6e-3 10.23 0.019 0.015 6.0 0.14 <0.001 52.59 

ELISA-vs-

IFN-𝛾 

0.14 1.8e-8 34.27 0.13 <0.001 40.68 0.28 <0.001 122.08 

𝑦 = 𝛽0 + 𝛽1𝑥          

CFUs-vs-

ELISA 

-4.3e-3 0.74 0.11 6.0e-3 0.12 2.48 0.26 <0.001 112.89 

CFUs-vs-

IFN-𝛾 

1.4e-3 0.26 1.28 -3.8e-3 0.83 0.05 0.05 <0.001 18.55 

ELISA-vs-

IFN-𝛾 

-4.8e-3 0.9 1.6e-2 -1.2e-3 0.40 0.70 0.10 <0.001 33.58 
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