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S| Materials and Methods

Transcriptomic Analysis of SB Mammary Tumors. Total RNA of SB
mammary tumors was extracted using TRIzol (Invitrogen) fol-
lowing the manufacturer’s instructions. For each sample, 100 ng of
total RNA was reverse transcribed to produce cDNA, which was
subsequently used as a template to create biotin-labeled amplified
RNA (aRNA). The aRNA then was fragmented and hybridized to
Affymetrix Mouse Genome 230 2.0 Arrays (Affymetrix) for 16 h at
45 °C using GeneChip Hybridization oven with rotation at 60 rpm.
Arrays then were washed and stained using the FS450_0001 flu-
idics protocol and scanned using an Affymetrix 3000 7G scanner.

Identification of Transposon Insertion Sites. The cloning and map-
ping of transposon insertion sites was done via splinkerette PCR
using the 454 GS-Titanium Sequencer (Roche Applied Science)
and the NCBI mouse genome assembly m37, as described pre-
viously (1). The GKC method was used for CIS determination
using multiple kernel scales (widths of 30, 50, 75, 120, and
240 Kb), as described previously (1-3).

Data Preprocessing of Mouse Mammary Tumor and Human Breast
Carcinoma Panels. Mouse mammary tumors on the Affymetrix
Mouse 430A_2/Affymetrix Mouse 430_2 platform and human
breast carcinomas and cell line data on the Affymetrix U133A/
U133plus2 platform were downloaded from Array Express and
Gene Expression Omnibus website (GEO) (https://www.ncbi.
nlm.nih.gov/geo). Robust Multichip Average (RMA) normali-
zation was performed on each dataset, and the normalized data
were subsequently combined for mouse mammary tumor and
human breast carcinoma panels. The panels then were standard-
ized separately using ComBat software (4) to remove the batch
effect. The panel of mouse mammary tumors (n = 394) included a
subset of our SB mammary tumors (n = 35), E-TABM-684 (n =
12) (5), E-TABM-997 (n = 9) (5), GSE10193 (n = 7) (6),
GSE13221 (n = 6) (7), GSE13230 (n = 7) (7), GSE14226 (n =
12) (8), GSE14753 (n = 3) (9), GSE15119 (n = 13) (10),
GSE15904 (n = 126) (11), GSE20406 (n = 75) (12), GSE20465
(n = 25) (13), GSE22150 (n = 8) (14), GSE6246 (n = 3) (15),
GSE6596 (n = 3) (16), GSE9355 (n = 46) (17), and GSE9447
(n = 4) (18). The panel of human breast carcinomas (n = 1,345)
included GSE12276 (n = 204), GSE19615 (n = 115), GSE21653
(n = 266), GSE23177 (n = 116), GSE23593 (n = 50), GSE26639
(n = 226), GSE3744 (n = 47), GSE5460 (n = 127), GSE5764 (n =
10), GSE6532 (n = 87), GSE5764 (n = 20), and GSE9195 (n =
77). The related detailed information is provided in Dataset Sé.

Subtypes of Mouse Mammary Tumors and Human BCs. For subtype
identification of mouse mammary tumors, an SD of 1.35 was
applied to filter out less variable genes from the mouse mammary
tumor panel. The remaining 1,028 Mouse 430A_2 probes, cor-
responding to 835 genes, were used for subtype identification.
The consensus clustering method then was applied on the mouse
mammary tumor panel to identify the four major subtypes
(Euclidean distance, k = 7). ABC subtype signature (3) and
single-sample gene set enrichment analysis (sSGSEA) (19) were
used to predict the subtypes of the human BC panel samples.

BC Gene-Expression Data Collection and Characteristics. We down-
loaded the expression values of 11 U133A BC “cohort collec-
tions” (hereafter denoted simply as cohorts) from the Gene
Expression Omnibus (GEO) website (https:/www.ncbi.nlm.nih.
gov/geo). Each cohort consists of either a single microarray
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dataset or several small datasets merged together (batches). In
total we collect 11 cohorts including 23 batches (as seen in Table
S1). Each batch includes the raw perfect match/mismatch (PM/
MM) data of 22,215 transcripts (represented by ~18,000 genes).

The number of patients with primary BC tumors in each cohort
varies from 64 to 508; the smallest batch belongs to GSE12276
(the batch ID number is 18) with only two patient samples. For
each patientk, k =1, ..., K, the following clinical characteristics
are recorded: survival time ¢ in years (time to relapse), event e (0
for nonrelapse at time #; 1 for relapse at time ¢), cancer subtype
(ERBB2, luminal A, luminal B, normal-like, basal-like, no sub-
type, HER2, and claudin-low), Elston tumor grade (1-3), ER
status (ER" and ER"), PGR status (PGR™ and PGR™), HER
status (positive and negative), nymph node status (positive and
negative), p53 mutation status (mutation or wild type), age at
diagnosis (ranging from 24 to 88 y), and tumor size in mm
(ranging from 0 to 8.2). Table S1 presents the summary char-
acteristics of the 11 cohorts (the rest of the variables are not
recorded in more than half of the cohorts). Notice that the three
datasets GSE12276, GSE6532, and GSE7390 consist of five
merged batches, and the summary characteristics are estimated
across all the five batches.

Normalization, Data Integration, and Batch-Effect Correction. Each
batch is independently background corrected, normalized, and
summarized by the RMA (20). This task is performed using the
Affy R package. The normalized data from all 23 different
batches (in total 2,333 samples) are merged, and ComBat (4)
corrects for batch effects. The term “batch effect” refers to the
unwanted nonbiological variation observed across the multiple
batches caused by data processing by different technicians, at
different sites, processing times, and protocol variations. In our
work all these factors can possibly be significant, and ComBat
detects and removes them. This removal is a major analysis step
to keep only biologically meaningful data variation in the search
for clinical subgroups specified by the molecular pathways net-
works and the molecular features that link patient subpopula-
tions to treatments clinical biomarkers. ComBat is implemented
via the R package sva. The performance of the algorithm and the
properties of the batch-corrected data are visualized by quality
control analysis via the R package arrayqualitymetrics. Package
arrayqualitymetrics performs a series of tests, summary mea-
sures, and plots for visualization of outlier samples using only the
expression data. Obvious outliers (samples failing many tests)
should be removed from further analysis, but one should be very
cautious (conservative) in removing a sample. In this way we
generate our full dataset consisting of the normalized and batch
effect-corrected expression levels of 22,215 Affymetrix U133A
transcripts, measured for 2,333 patient samples (no outliers were
found by arrayqualitymetrics). Following the experimental de-
sign described in the main text, we keep only the expression data
of the 126 genes of interest.

Hierarchical Clustering Microarray Data and Identification of the
Mouse and Human Tumor Subtypes. For hierarchical clustering of
the mouse (n = 394, Affymetrix Mouse430A) and human (n =
1,345, Affymetrix, U133P2) BC transcriptional profiles, the
samples are grouped according to their tumor subtypes. For
human BCs, the samples were arranged in the following subtype
order: basal-like (n = 229), claudin-low (n = 40), ERBB2 (n =
197), luminal-A (n = 420), luminal-B (n = 400), and normal-like
(n = 59). For mouse BCs, the samples were arranged in the
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following subtype order: mesenchymal (n = 105), Neu (n = 89),
ductal (n = 121), glandular (n = 69), and unclassified (n = 10).
Only probe sets corresponding to the 126 hBCSG genes were
selected for both the mouse and human expression dataset.
Because each gene of interest may be represented by more than
one Affymetrix probe set, we selected a representative probe set
for each gene. The probe set with the highest median expression
across all samples was selected as the representative probe set
for each gene of interest. Before unsupervised clustering, the
expression matrix was preprocessed via median centering and
normalization for both rows and columns. Unsupervised hier-
archical clustering was used to cluster the genes (via the Kendall’s
tau similarity metric and average linkage method) while main-
taining the order of the columns. To address the sample imbalance
between the mouse (n = 394) and human (n = 1,345) expression
datasets, we performed random sampling of the human BC datasets
so that the sample numbers could match those from the mouse BC
datasets. Previous observations from the clustered heatmap in-
volving 394 mouse BC datasets and 1,345 human BC datasets
revealed similar heatmap patterns between (i) the human basal-like
and claudin-low subtypes and the mouse mesenchymal subtype,
(if) the human ERBB? subtype and the mouse Neu subtype, (iii) the
human luminal-A subtype and the mouse ductal subtype, and
(iv) the human luminal-B and normal-like subtypes and the
mouse glandular subtype. Therefore, we sampled 105 human BC
samples from the basal-like and claudin-low subtypes, 89 sam-
ples from the ERBB2 subtype, 121 samples from the luminal-A
subtype, and 69 samples from the luminal-B and normal-like
subtypes. As previously described, the expression matrix was
preprocessed, and unsupervised hierarchical clustering was used
to cluster the genes (via Kendall’s tau similarity metric and average
linkage method) while maintaining the order of the columns. Five
independent random sampling procedures were performed to
assess the stability of the heat map clusters. Clustering was imple-
mented via Gene Cluster 3.0 and visualized in Java Tree View.

Data for Identification of Survival-Significant Genes. We down-
loaded the expression values of 11 U133A BC cohort collections
from the GEO website. Each cohort may consist of a single
microarray dataset or several small datasets merged together
(batches). In total, the 11 cohorts included 23 batches. Each batch
included the raw PM/MM data of 22,215 transcripts (represented
by about 18,000 genes). Each batch was independently back-
ground corrected, normalized, and summarized by the RMA (20).
Detailed information about the identification of the survival
genes is provided in Dataset S7. Available clinical information,
including Elston tumor grades; ER, PR, HER2, and lymph node
status; and tumor size (>2 cm; <2 cm) also was collected for
some patients. DFS data (time, event) for all patients were
collected for all 2,333 patient tumor samples (Dataset S6). We
also analyzed the normalized data from the Agilent mRNA ex-
pression microarrays and the corresponding OS data for 226
BC patients in the TCGA who received systemic therapy
(hormone therapy, chemotherapy, and combine therapy). The
BC samples have been histologically classified as invasive ductal
carcinoma (IDC). Expression and clinical datasets are available
in Dataset S94.

1D-DDg Method. The 1D-DDg method aims to identify an optimal
gene-expression cutoff value that most significantly stratifies the
patient cohort into two survival significant subgroups (21, 22). 1D-
DDg is a univariate analysis performed for a single continuous
random variable (e.g., for a gene expression or microarray pro-
beset signal value). First, patients are ranked in ascending order
based on the quantity of this continuous variable. Using a cutoff
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value for a prognostic variable (e.g., gene expression), patients are
then stratified into two subgroups represented by two Kaplan—
Meier survival curves. The prognostic significance is quantified
via the log-rank and/or Wald statistics tests, bootstrap-defined
confidence intervals, and FDR estimation. The minimum size of
the smallest subgroup is controlled by the 1D-DDg, which re-
duces the imbalance in subgroup size and stabilizes the pre-
diction outcome.

2D-DDg Prognostic Method. The 2D-DDg method is an extension
of the 1D-DDg method for the case of variable pairs (21, 22). The
patients are represented as points on a 2D plane where the two
axes are for the two variables of interest. The patients are
stratified via identification of two prognostic cutoff variables (e.g.,
gene-expression values) on the axes, one for each variable. Two
orthogonal lines, including these cutoff values as the points, split
the plane into five possible distinct subdomains. Optimal cutoff
values are selected that best stratify the patients into two sta-
tistically distinct prognostic subgroups. The statistical significance
is quantified via the log-rank and/or Wald statistics test and FDR
estimation.

SWVg Method. SWVg is an automatic method of prognostic fea-
ture selection and disease risk prediction that allows the con-
struction of an optimized, multivariable, prognostic classifier (22,
23). To construct a multivariable, prognostic signature, the SWVg
selects a set of the most statistically significant prognostic vari-
ables and optimizes the list of selected prognostic variables to
stratify the BC patients further into two, three, or more risk
groups using the binarized patient risk-class data that separated
the patients into two (or more) subgroups according to their risk
of disease development. Such input data could be provided by
1D-DDg and/or 2D-DDg and include weighted variables that
reflect the relative importance and significance of each prog-
nostic variable with respect to the others. This information is
used to construct a decision rule and to assign a patient to one of
the risk subgroups. Also, SWVg optimizes the number of prog-
nostic variables via minimization of the —log function of the log-
rank statistics P values, where the paired K-M functions are
compared.

Functional Analysis of Gene Lists. PANTHER (www.pantherdb.org)
and DAVID tools (https:/david.ncifcrf.gov/) were used to
identify gene functional annotation terms that are significantly
enriched in particular gene lists with all human genes as the
background. A list of NCBI Entrez gene IDs was generated for
each dataset and was used as the input into PANTHER and
DAVID software. DAVID software calculates a modified Fish-
er’s exact P value to demonstrate GO terms and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) molecular pathway
enrichment, where P values less than 0.05 after Benjamini mul-
tiple test correction are considered to be strongly enriched in the
annotation category. PANTHER calculates P values to demon-
strate GO enrichment and PANTHER Pathways, where P values
less than 0.05 after Bonferroni multiple test correction are
considered to be strongly enriched in the annotation category.

MetaCore Significant Pathways. Protein interactions network were
constructed according to protein—protein interactions available
in the GeneGo MetaCore platform (https://portal.genego.com/)
Their Refseq gene symbols are used in MetaCore to generate the
most significant pathways (at FDR 5%) in which these genes are
involved. Based on this analysis, we classify the genes into dif-
ferent biological processes.
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Early activation of K5-Cre in mammary epithelial progenitor cells. Most cells originate from K5/K14 progenitors, as lineage traced by K5cre x floxed

RosaYFP. Shown is a traverse section of a gland from a 4.5 week-old mouse. DAPI staining is indicated by blue (nuclei). YFP, driven by the K5 promoter, is
indicated by green; K14-immunolabeling is red.

Chen et al. www.pnas.org/cgi/content/short/1701512114

30of 15


www.pnas.org/cgi/content/short/1701512114

>
>

>

PNAS

4 types of mice used

Q 3
P «

T2onc2 line 6113

RosalsISBase “SB” = Sleeping beauty Mother Father
Transposase activated by Cre iggﬁ Zz o l Bcat +/-
. . . K5Cre +/-
K5Cre = Cre driven by bovine Keratin 5 re+/
promoter EE
Bcat = KSAN57R-catenin
> stabilized truncated R-catenin under
K5 promoter in mammary
myoepithelium Quadruple Triple SB Triple B-cat
46 mice 43 mice 20 mice
Reat +/- K5Cre +/- Bcat +/-
K5Cre +/- SB +/- SB +/-
SB +/- T20nc2 +/- T20nc2 +/-
T20nc2 +/-

Fig. S2. The crossing scheme for generating triple and quadruple transgenic mice. The four types of mice used areT2onc2 line 6113; RosalsISBase (SBtrans-
posase inserted in the Rosa locus); K5-Cre (Cre driven by bovine keratin 5 promoter); and Bcat (KSAN57p-catenin; AN57p-catenin is a stabilized truncated

B-catenin).
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Fig. S4. BCSGs are differentially expressed in mouse and human BC subtypes. (A and B) Heatmaps of unsupervised hierarchical clustering in mouse (A) and
human (B) gene expression datasets of mBCSGs and hBCSGs, respectively. Red indicates high expression, and green indicates low expression. Color bars above
the heat maps show the mouse mammary tumor subtypes and the gene-associated distribution of human molecular subtypes, respectively. Selected marker
genes representing tumor subtypes are labeled. (C) Bar plot showing the frequency of corresponding mouse and human BC subtypes.
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Fig. S7. The 12 genes of the six-gene-pair BCSG prognostic classifier, used 1D-DDg results as input data for SWVg stratification, can stratify 2,333 BC patients
into three risk subgroups, however low- and intermediate-risk subgroups are not statistically differentiated. These 12 genes were used as the input dataset for
the identification of six gene pairs in 2D-DDg prognostic classification of the patients. The 2D-DDg results then were used as the input dataset for SWVg
analysis, which provides high confidence discrimination of the patients onto three risk subgroups (Fig. 5A).
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Fig. S9. Optimization of the number of genes required for the SWVg prognosis model for patients classified as having the basal-like BC subtype.
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Fig. $10. Optimization of the number of genes required for the SWVg prognosis model for patients classified as the claudin-low BC subtype.
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Fig. S13. Venn diagram of the 12 genes of the six-gene-pair BCSG prognostic signature, 21-gene basal-like BC subtype risk stratification signature, and 16-
gene claudin-low BC subtype risk stratification signature.
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Fig. S14. Allocation of 502 BC patients from the TCGA database into three risk subgroups using SurvXpress software. (A) The 21-gene basal-like subtype risk
stratification classifier genes stratify basal-like BC patients of the TCGA database into three risk groups. (B) The 16-gene claudin-low subtype risk stratification
classifier genes can stratify claudin-low BC patients of TCGA database into three risk subgroups.
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On axis X: gene expression average (AWR) for 6 gene pairs classifier. Three patient sub-
groups were separated by two cut-off values.

1-st (low) expression cut-off value: 1.3497 (inclusive of right)

Gpairs (N=226)

1.0 My T———————TT T R T T T
0.9
08
G
; 0.7
S 08
©
_g 05
£8
0al| — high (n=34)
— intermediate (n= 32)
0.3
— low (n=160)
0.2
(] 20 40 60 80 100 120
Time

Results (K-M plot) of survival prediction based on SWVg prediction.
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Fig. S15. The SWVg-derived six-gene-pair prognostic classifier separates 226 TCGA BC patients receiving postsurgery systemic therapy (hormone therapy,
chemotherapy, or combined therapy) into three risk subgroups [low risk (n = 160), intermediate risk (n = 32), and high risk (n = 34)]. (A) Visual presentation of
two cutoff values, based on the —log(P value) function of the 1D-DDg-like SWVg results. The first cutoff value (left vertical direct line) separates the low-risk
patient’s subgroup (on the left) from two other patients. The second cutoff value (right vertical direct line) separates the intermediate-risk patient’s subgroup
from the high-risk patient’s subgroup. (B) Results of the survival prediction subgrouping of the patients based on the specified SWVg analysis. Low-risk <
1.3497 < intermediate-risk subgroup < 1.463 < high-risk subgroups (see panel A).

Table S1. Clinical characteristics of the breast cancer patients in the 11 cohorts (23 batches)

GEO label No. of batches Batch IDs  No. of patients % relapse  [min(t),max(t)] Ratio of [N,LA] to [ERBB2, LB, basal] % G1 % G3

GSE1456 1 1 159 25.1 [0.18,8.49] 0.96 19.0 41.4

GSE2034 1 3 286 37.4 [0.16,14.25] 0.74 N.d. N.d.

ETABM158 1 8 129 30.2 [0,14.20] 0.63 11.2 51.6

GSE19615 1 11 115 121 [0.08,7.33] 0.65 20.0 55.6

GSE11121 1 12 200 23.0 [0.08,20.00] 0.80 14.5 17.5

GSE31519 1 14 64 35.9 [0.25,10.00] 0.45 N.d. N.d.

GSE12276 5 15-19 204 97.5 [0.35,7.61] 0.53 N.d. N.d.

GSE9195 1 25 77 16.8 [0.57,11.29] 0.61 241 41.3

GSE6532 5 27-31 393 36.5 [0.27,13.55] 0.75 23.9 23.7

GSE7390 5 32-36 198 47.4 [0.72,18.21] 0.79 15.1 43.1

GSE25066 1 46 508 21.8 [0,7.43] 0.65 6.7 54.7
N.d., no data are available for the variable and dataset.

Dataset S1. Histological review of the tumor samples used for sequencing

Dataset S1

Dataset S2. Characteristics of CIS

Dataset S2

Dataset S3. The 126 mouse and human BC gene candidates from 129 mouse CIS loci

Dataset S3
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Dataset S4. Somatic mutations in BCSGs identified in databases of somatic mutations in human BC tissues and cell lines

Dataset 54

Dataset S5. GO and Pathway Enrichment Analysis of 126 hBCSG (enrichment analyses held on 7 October 2014)

Dataset S5

Dataset S6. Datasets of mouse and human BCSGs

Dataset S6

(A) Tumor sample IDs and data sources. (B) Integrated set of 394 gene-expression microarrays of mouse mammary tumors and the tumor subtypes. Presented
are 220 annotated probe sets. (C) Integrated sets of 1,345 gene-expression microarrays of human BC and the BC subtypes. Batch-effect was corrected.
Normalized and log-transformed microarray data were used. Gene-expression values were presented by 280 microarray probe sets. (D) Integrated sets of
the 2,333 Affymetrix U133A microarrays of BC patients with supported clinical characteristics including DFS data. (E) Clinical data and tumor subtype in-
formation supporting the Affymetrix U133A expression microarray probe sets data of tumor samples from 2,333 BC patients.

Dataset S7. Survival prediction analysis: 1D-DDg, 2D-DDg, and SWVg

Dataset S7

(A) The 126 Affymetrix U133A probe set selected by the 1D-DDg method at Wald statistics P < 0.01. (B) Summary statistics 1D-DDg-selected genes of pro-
oncogenic and suppressor-like prognostic genes; P < 0.01. (C) The six-gene-pair prognosis classifier: initial data and gene annotation. (D) Affymetrix U133A
microarray and available clinical data for the basal-like and claudin-low BC subtypes. (E) Prognostically significant genes for the basal-like subtype analyzed
with 1D-DDg. In this analysis, the minimum number of patients in each group was >30. (F) Prognostically significant genes for the claudin-low subtype analyzed
with 1D-DDg. In this analysis, the minimum number of patients in each group was >10. (G) Prognostically significant genes for the basal-like subtype analyzed
with the SWVg method (three groups). (H) Prognostically significant genes for the claudin-low subtype analyzed with the SWVg method (three groups).
(/) Unique and common gene symbols in our three prognostic signatures. (J) Analyzed BC signatures.

Dataset S8. Microarray and clinical data for 2,333 BC patients and the results of 1D-DDg, 2D- DDg, SWVg, univariate, and multivariate
analyses

Dataset S8

(A) Integrated data (master table). (B) Univariate Cox proportional hazard regression for all 2,333 patients. (C) SWVg six-gene-pair prognostic signature.
Multivariate Cox proportional hazard regression for all 2,333 patients. (D) SWVg 21-gene prognostic signature. Multivariate Cox proportional hazard re-
gression for basal patients.

Dataset S9. Univariate and multivariate analyses of 226 TCGA patients treated with hormone therapy, chemotherapy, or combined
adjuvant therapy

Dataset S9

(A) The 226 TCGA patients were treated with hormone therapy, chemotherapy, and combined hormone and chemotherapy. Integrated data (Master table).
(B) Summary of the univariate (1) and multivariate (2) Cox proportional hazard regression model. (C) 1D-DDg analysis. (D) 2D-DDg analysis. (E) 1D-DDg-based
(modified) SWVg. The three risk groups based on the six-gene-pair classifier. (F) Univariate analysis. (G) Multivariate analysis. (1) Data for multivariate analysis.
(2) Results of multivariate analysis. (3) Characteristics of multivariate survival analysis by Cox proportional hazard regression model.

Dataset S10. Therapeutic drug analysis for hBCSGs via MetaCore (direct interaction, version 6.12 build 42289)

Dataset S10
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