Supplementary material

Development of oriC-based plasmids for Mesoplasma florum

Dominick Matteau^a^{*}, Marie-Eve Pepin^a^{*}, Vincent Baby^a, Samuel Gauthier^a, Mélissa Arango Giraldo^a, Thomas F. Knight^b, & Sébastien Rodrigue^{a#}.

Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada^a; Ginkgo Bioworks, Boston, Massachusetts, USA^b

Running title: Mesoplasma florum oriC plasmids

#Address correspondence to Sébastien Rodrigue, sebastien.rodrigue@usherbrooke.ca

* D.M. and M-E.P. contributed equally to this work.

This file includes

Supplementary Materials and Methods Supplementary Figures S1-S4 Supplementary Tables S1-S5 Supplementary References

Supplementary Materials and Methods

Plasmids construction

(i) Molecular biology methods

Genes conferring resistance to tetracycline (tetM), puromycin (pac), streptomycin and spectinomycin (aadA1), chloramphenicol (cat), and erythromycin (ereB) were recoded using a compromise codon table (Table S2) to obtain functional proteins (GenBank accession numbers: WP 000691749, AHL28657, WP 001206315, KLX70575, and WP 032488343, respectively) in Escherichia coli as well as in Mesoplasma florum. The pac, aadA1, and cat resistance genes were synthesized in gBlocks fragments (Integrated DNA Technologies), ereB resistance gene was obtained from Biobasic's gene synthesis service (ereB-pUC57), and tetM resistance cassette was amplified from the pTT01 plasmid (Table 3). All PCRs were performed using VeraSeq 2.0 DNA polymerase (Enzymatics) and primers listed in Table S1. PCR conditions were as follows: (i) 30 sec at 95°C; (ii) 30 cycles of 10 sec at 95°C, 30 sec at the appropriate annealing temperature, and 30 sec/kb at 72°C; (iii) 2 min at 72°C. PCR products were purified using Solid Phase Reversible Immobilization (SPRI) bead capture using Agencourt AMPure XP magnetic beads (Beckman Coulter) (1). Wild-type M. florum L1 genomic DNA (gDNA) was extracted using the QuickgDNA MiniPrep kit (Zymo Research) according to the manufacturer's specifications. All plasmids generated in this study were cloned in chemically competent E. coli strain EC100D pir+ cells, except for pMflPT-o4 was cloned in E. coli strain MM294. Plasmid DNA was extracted using the EZ-10 Spin Column Plasmid DNA Minipreps kit (Biobasic) according to the manufacturer's instructions. Plasmid constructions were analyzed by restriction enzymes digestion, and M. florum oriC plasmids sequence was confirmed by paired-end Illumina sequencing at the Laboratoire de Génomique Fonctionnelle de l'Université de Sherbrooke (QC, Canada). Plasmids sequence and annotations are available at <u>http://lab-rodrigue.recherche.usherbrooke.ca/m_florum_plasmids/</u>.

(ii) Construction of *M. florum oriC* plasmids

Plasmids and oligonucleotides used in this study are listed in Table 3 and in Table S1, respectively. M. florum oriC plasmids were constructed as depicted in Figure 2. The different M. florum oriC fragments were all amplified from M. florum L1 gDNA. Regions upstream and downstream of *dnaA*, designated *oriC1* and *oriC2* respectively, were amplified using *oriC1*-F/oriC1-R and oriC2-F/oriC2-R primer pairs. To build the oriC3 fragment, oriC1 and oriC2 regions containing an overlapping sequence of 40 bp were amplified using oriC1-F/oriC3-R and oriC3-F/oriC2-R primer pairs. The oriC3 fragment was then assembled by fusion PCR using flanking primers oriC1-F/oriC2-R. dnaA gene along with both upstream and downstream regions, designated oriC4, was first amplified in four distinct fragments using oriC1-F/oriC4-1-R, oriC4-1-F/oriC4-2-R, oriC4-2-F/oriC4-3-R and oriC4-3-F/oriC2-R primer pairs. The complete *oriC4* region was next assembled by fusion PCR using flanking primers *oriC1*-F/*oriC2*-R. tetM resistance cassette containing the pBOT1 promoter from pBOT1 plasmid (2) was amplified from pTT01 using *tetM*-F/*tetM*-R and *tetM*-1-F/*tetM*-R primer pairs to build pMfIT-01 and pMfIT-o3/-o4, respectively. ColE1 replication origin was amplified from pUC19 (GenBank accession number: L09137) using colE1-F/colE1-R primers and $oriT_{RP4}$ was amplified from pSW23T (Genbank accession number: AY733066) using RP4-F/RP4-R primers. The colE1 and $oriT_{RP4}$ fragments were then assembled by fusion PCR using colE1-F/RP4-R flanking primers. PCR fragments oriC1, oriC3, and oriC4 were assembled with the appropriate tetM, colE1, and $oriT_{RP4}$ fragments using the Gibson Assembly Master Mix (New England BioLabs) to build pMflT-o1, pMflT-o3, and pMflT-o4, respectively. To generate pMflT-o2, pMflT-o4 was digested with ClaI, the resulting 3.6 kb band was purified using the Zymoclean Gel DNA Recovery kit (Zymo Research), and the purified fragment was circularized using the T4 DNA ligase.

(iii) Construction of *M. florum oriC* plasmids derivatives

In order to build pMfIPT-o4, pMfIST-o4, and pMfICT-o4 plasmids (see Fig. 2 and Table 3), pMfIT-o4 was linearized using NotI and the corresponding resistance cassette was cloned using the Gibson Assembly Master Mix (New England BioLabs). For pMfIPT-o4, pBOT1 promoter was amplified from pTT01 and *pac* resistance gene was amplified from gBlocks fragments using pBOT1-F/pBOT1-R and *pac*-F/*pac*-R primer pairs (Table S1), respectively. To construct the *pac* resistance cassette, pBOT1 and *pac* fragments were assembled by fusion PCR using pBOT1-F/*pac*-R flanking primers. For pMfIST-o4, *aadA1* resistance cassette containing P_{N25} promoter (3) was amplified from gBlocks fragment using *aadA1-F/aadA1*-R primers. For pMfICT-o4, P_{N25} and *cat*-F/*cat*-R primer pairs, respectively. The P_{N25} and *cat* fragments using P_{N25}-F/P_{N25}-R and *cat*-F/*cat*-R primer pairs, respectively. The P_{N25} and *cat* fragments were assembled by fusion PCR using P_{N25}-F/*P*_{N25}-R and *cat*-F/*cat*-R primer pairs, respectively. The P_{N25} and *cat* fragments were assembled by fusion PCR using P_{N25}-F/*P*_{N25}-R and *cat*-F/*cat*-R flanking primers to construct the *cat* resistance cassette. pMfIET-o4 was constructed by cloning the *ereB* resistance cassette, obtained from *ereB*-pUC57 AscI/XhoI digestion, into a pMfIT-o4 derivative plasmid.

(iiii) Construction of heterologous oriC plasmids

M. florum heterologous *oriC* plasmids were constructed as depicted in Figure S4B. pMflT-o4 backbone was amplified using pMfl-F/pMfl-R primer pair (Table S1), digested using

XhoI/PvuI, and dephosphorylated with Antarctic phosphatase (New England BioLabs). Heterologous *dnaA/oriC* regions were amplified from pMCO3 (*Mycoplasma capricolum subsp. capricolum*), pMYSO1 (*Mycoplasma mycoides subsp. mycoides*), pMYCO1 (*M. mycoides subsp. capri*), and pSD4 (*Spiroplasma citri*) plasmids (Table 3 and Fig. S4A) using *Mcap*-F/*Mcap*-R, *Mm*-F/*Mmm*-R, *Mm*-F/*Mmc*-R, and *Sci*-F/*Sci*-R primers pairs (Table S1), respectively. *OriC* fragments were then digested with XhoI/PvuI and phosphorylated using T4 phosphonucleotide kinase (Enzymatics). To construct pMcapT, pMmmT, pMmcT, and pSciT-o4 (Table 3 and Fig. S4B), pMfIT-o4 backbone and the corresponding heterologous *oriC* fragment were ligated using T7 DNA ligase (New England BioLabs).

Supplementary Figures

Fig. S1. DNA sequence alignment of the intergenic regions upstream (A) and downstream (B) of *dnaA* in selected species of the Spiroplasma group. Start and stop codons of surrounding genes are highlighted in blue, and putative DnaA boxes (see Fig. 1C) are highlighted in red. Perfectly conserved nucleotides are indicated with asterisks. *Mferi, Mycoplasma feriruminatoris; Mlea,*

Mycoplasma leachii; Mcpn, M. capricolum subsp. capripneumoniae; Mcap, M. capricolum subsp. capricolum; Mmm, M. mycoides subsp. mycoides; Mmc, M. mycoides subsp. capri; Myea, Mycoplasma yeatsii; Mputr, Mycoplasma putrefaciens; Mflorum, M. florum; Scitri, S. citri; Skun, Spiroplasma kunkelii.

Fig. S2. Growth curves of *M. florum* L1 wild-type strain (WT) and *M. florum* L1 carrying pMfITo4 (A), pMfIPT-o4 (B) or pMfIST-o4 (C and D) in ATCC 1161 medium with or without the indicated antibiotics. Growth was monitored by a decrease in absorbance of phenol red at 560 nm caused by the acidification of the culture medium that correlates with *M. florum* cell

concentrations (4). Antibiotics were used at the following concentrations: tetracycline, 15 μ g/ml; puromycin, 30 μ g/ml; spectinomycin and streptomycin, 100 μ g/ml. Each data point represents the mean and the standard deviation of values obtained from three independent experiments.

Fig. S3. Schematic representation of pMfIT-o3 (A) and pMfIT-o4 (B) plasmids recombination with the *oriC* region of the *M. florum* chromosome. The localization of HindIII sites and *tetM* probe used for Southern blot analysis are indicated in red, as well as the resulting fragment size. Genes are drawn to scale.

Fig. S4. Schematic representation of *M. florum* heterologous *oriC* plasmids. Putative DnaA boxes found within the intergenic regions upstream and downstream of *dnaA* are represented by red boxes as shown in Figure 1C. (A) Principal features of *M. capricolum*, *M. mycoides*, and *S. citri oriC* plasmids developed by Lartigue et al. and used in this study (2, 5, 6). (B) Depiction of the new *M. florum* heterologous *oriC* plasmids developed in this study (see Text S1 for construction details). Each plasmid contains a pMfIT-o4 backbone in which the complete *M. florum oriC* region was replaced by a heterologous *oriC* region depicted in A.

Supplementary Tables

Table	S1 .	Primers	used	in	this	study.
-------	-------------	---------	------	----	------	--------

Name	Nucleotide sequence (5' to 3')
oriC1-F	GCGATGAGGATGAACCTACTCAGGGACCTGATGTGACGTGCCGTGAACACGAGCGTGTTT
oriC1-R	ATTAACCCTCACTAAAGGGAGTTTCCATATTAATTCCCCT
oriC2-F	GCGATGAGGATGAACCTACTCAGGGACCTGATGTGACGTGGTTTTAAGTGCTATTTCGCG
oriC2-R	ATTAACCCTCACTAAAGGGACTCATATAACACCTCTTATTTAC
oriC3-R	CGCGAAATAGCACTTAAAACGTTTCCATATTAATTCCCCT
oriC3-F	AGGGGAATTAATATGGAAACGTTTTAAGTGCTATTTCGCG

oriC4-1-R	CAATATATTCTTCAATAATGTCTTGGTCTATTAATTTTTCCTTCTTTAACTTA
oriC4-1-F	TAAGTTAAAGAAGGAAAAATTAATAGACCAAGACATTATTGAAGAATATATTG
oriC4-2-R	TAAAATAGTTACACCAAGATTACTTCTAACAAGGATTACGAACTCTG
oriC4-2-F	CAGAGTTCGTAATCCTTGTTAGAAGTAATCTTGGTGTAACTATTTTA
oriC4-3-R	CGCGAAATAGCACTTAAAAACTGTACTATGGTCTCTTCCACCAAATTCTGCACC
oriC4-3-F	GGTGCAGAATTTGGTGGAAGAGACCATAGTACAGTTTTAAGTGCTATTTCGCG
<i>tetM</i> -F	AGGGGAATTAATATGGAAACTCCCTTTAGTGAGGGTTAAT
<i>tetM</i> -R	TATGCATCAGTATCGCATAACGACCATATAGCCCTACCTA
<i>tetM</i> -1-F	GTAAATAAGAGGTGTTATATGAGTCCCTTTAGTGAGGGTTAAT
colE1-F	TAGGTAGGGCTATATGGTCGTTATGCGATACTGATGCATAAAGGCCGCGTTGCTGGCGTT
colE1-R	GCTCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGTTGAGATCCTTTTTTTCTGC
RP4-F	CGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGAGCGCTGCAGGAATTCGATATCA
RP4-R	CACGTCACATCAGGTCCCTGAGTAGGTTCATCCTCATCGCTGGGTACCAGCGCTTTTCCG
pBOT1-F	CGTTATATGTTCAACAAAATCACATAATAATACTAGTAGCTCCCTTTAGTGAGGGTTAAT
pBOT1-R	GTTGGTTTGTATTCAGTCATCTAGATTTCCTCCATTCAAA
pBOT2-F	GTCGTGACTGGGAAAACCCT
<i>tetM</i> -probe-R	TCCGTTTTGGTCAATTTTGTT
pac-F	TTTGAATGGAGGAAATCTAGATGACTGAATACAAACCAAC
pac-R	CCTAAATCGTATGCCCTATAGTGAGTCGTATTACTGCAGCTTATGCACCTGGTTTTCTTG
aadA1-F	CAAGAAAACCAGGTGCATAATCCCTTTAGTGAGGGTTAAT
aadA1-R	ATTAACCCTCACTAAAGGGATTATGCACCTGGTTTTCTTG
P _{N25} - <i>F</i>	CGTTATATGTTCAACAAAATCACATAATAATACTAGTAGCTCATAAAAAATTTATTT
P _{N25} - <i>R</i>	CATCTAGATTTCCTCCATATAGT
cat-F	GATTCATACGACTCACTATATGGAGGAAATCTAGATGGAAAAAAAGATAACTGGGTACAC
cat-R	CCTAAATCGTATGCCCTATAGTGAGTCGTATTACTGCAGCTCGAGTTAAGCTCCACCTTG
qPCR-tetM-F	TGACCGTGCATATTCAGGTG
qPCR- <i>tetM</i> -R	TCACGTTGTTCAGGTTTGCT
qPCR-rpoB-F	CATGGCTGAAGCTGGAATGGAAAACTATGG
qPCR-rpoB-R	CGTTGTCCCCCGTTTTGTGC
qPCR- <i>rpoC</i> -F	CCTAAAGATGGAAAAGCGATTG
qPCR- <i>rpoC</i> -R	TCAACTGCAATCCCAATAACTG

pMfl-F	CTTATCTTAAAAGGAGTAATTATGCGATCGTCCCTTTAGTGAGGGTTAATGTCGTGACTG
pMfl-R	ATTTTTTTGTAAAGGAGGTAAGTGATATGCTCGAGCACGTCACATCAGGTCCCTGAGTAG
Mcap-F	CCTGATGTGACGTGCTCGAGCATATCACTTACCTCCTTTACAAAAAAAA
Mcap-R	ATTAACCCTCACTAAAGGGACGATCGCATAATTACTCCTTTTAAGATAAGTTTTTTATTC
Mm-F	TACTCAGGGACCTGATGTGACGTGCTCGAGCATACCACTACCTCCTTTACAAAAAAAA
Mmm-R	CATTAACCCTCACTAAAGGGACGATCGCATAATTACTCCTTTTAATCAAATTGTTTTTAC
Mmc-R	CGACATTAACCCTCACTAAAGGGACGATCGCATAATTACTCCTTTTTTAAAAACAAATTGT
Sci-F	TACTCAGGGACCTGATGTGACGTGCTCGAGTCGATATTTTACAAAAATTTGCTTATTATG
Sci-R	CATTAACCCTCACTAAAGGGACGATCGCATTTTTTTTTACTCCTTACTTTAGTATATTCTG

Table S2. Compromise codon table for *M. florum* and *E. coli*.

Amino	Codon	Number in	Number /	M. florum	E. coli	Compromise
acid		M. florum	1000 codons	Probability	Probability	probability
Gly	GGG	848	3.45	0.06	.15	.12
Gly	GGA	5717	23.26	0.43	.11	.26
Gly	GGT	6147	25.01	0.47	.34	.49
Gly	GGC	461	1.88	0.03	.40	.13
Glu	GAG	1543	6.28	0.09	.31	.17
Glu	GAA	16303	66.34	0.91	.69	.83
Asp	GAT	10918	44.43	0.83	.63	.74
Asp	GAC	2203	8.96	0.17	.37	.26
Val	GTG	632	2.57	0.04	.37	.15
Val	GTA	4237	17.24	0.28	.15	.25
Val	GTT	9660	39.31	0.65	.26	.52
Val	GTC	344	1.40	0.02	.22	.08
Ala	GCG	519	2.11	0.04	.36	.15
Ala	GCA	6198	25.22	0.46	.21	.38
Ala	GCT	6297	25.62	0.47	.16	.34
Ala	GCC	522	2.12	0.04	.27	.13
Arg	AGG	194	0.79	0.03	.02	.05
Arg	AGA	5448	22.17	0.80	.04	.33
Ser	AGT	3752	15.27	0.23	.15	.23
Ser	AGC	935	3.80	0.06	.28	.16
Lys	AAG	2110	8.59	0.09	.23	.15
Lys	AAA	21721	88.38	0.91	.77	.85
Asn	AAT	13612	55.39	0.77	.45	.62
Asn	AAC	4161	16.93	0.23	.55	.38
Met	ATG	5660	23.03	1.00	1.00	1.00

Ile	ATA	7748	31.53	0.32	.07	.17
Ile	ATT	14701	59.82	0.60	.51	.62
Ile	ATC	1968	8.01	0.08	.42	.21
Thr	ACG	211	0.86	0.02	.27	.10
Thr	ACA	7243	29.47	0.55	.13	.38
Thr	ACT	5558	22.62	0.42	.17	.38
Thr	ACC	274	1.11	0.02	.44	.14
Trp	TGG	101	0.41	0.04	1.00	1.00
Trp	TGA	2489	10.13	0.96	0.0	0.0
Cys	TGT	1275	5.19	0.85	.45	.68
Cys	TGC	228	0.93	0.15	.55	.32
End	TAG	132	0.54	0.19	.07	.14
End	TAA	551	2.24	0.81	.64	.86
Tyr	TAT	7191	29.26	0.78	.57	.68
Tyr	TAC	1972	8.02	0.22	.43	.32
Leu	TTG	1765	7.18	0.08	.13	.16
Leu	TTA	15736	64.03	0.71	.13	.49
Phe	TTT	10293	41.88	0.81	.57	.70
Phe	TTC	2391	9.73	0.19	.43	.30
Ser	TCG	206	0.84	0.01	.16	.05
Ser	TCA	7413	30.16	0.46	.12	.29
Ser	TCT	3585	14.59	0.22	.15	.22
Ser	TCC	92	0.37	0.01	.15	.05
Arg	CGG	6	0.02	0.00	.10	0.0
Arg	CGA	128	0.52	0.02	.06	.06
Arg	CGT	998	4.06	0.15	.38	.44
Arg	CGC	67	0.27	0.01	.40	.12
Gln	CAG	404	1.64	0.05	.65	.24
Gln	CAA	7058	28.72	0.95	.35	.76
His	CAT	2211	9.00	0.73	.57	.65
His	CAC	836	3.40	0.27	.43	.35
Leu	CTG	182	0.74	0.01	.50	.11
Leu	CTA	1690	6.88	0.08	.04	.08
Leu	CTT	2682	10.91	0.12	.10	.17
Leu	CTC	52	0.21	0.00	.10	0.0
Pro	CCG	203	0.83	0.03	.52	.16
Pro	CCA	3516	14.31	0.57	.19	.44
Pro	CCT	2306	9.38	0.37	.16	.32
Pro	CCC	157	0.64	0.03	.12	.08

^aThe compromise probability is calculated by taking the geometric mean of the two genome codon probabilities and renormalizing such that the sum of probabilities of each codon for a specific amino acid is unity.

Е.	coli MFDpir		M_{\cdot}	florum L1	Mating volume ratio	
Volume ^a (ml)	Dilution	Approx. CFU	Volume ^b (ml)	Dilution	Approx. CFU	(<i>M. florum / E. coli</i>)
1	undiluted	2.5×10^7	1	undiluted	5 x 10 ⁹	10 ⁰
1	undiluted	2.5×10^7	0.1	undiluted	$5 \ge 10^8$	10 ⁻¹
1	undiluted	2.5×10^7	0.01	undiluted	5×10^7	10 ⁻²
1	undiluted	2.5×10^7	0.01	10-1	$5 \ge 10^6$	10 ⁻³
1	undiluted	2.5×10^7	0.01	10 ⁻²	5×10^5	10 ⁻⁴
1	undiluted	2.5×10^7	-	-	-	No recipient control
-	-	-	1	undiluted	5 x 10 ⁹	No donor control
-	-	-	1	undiluted	5 x 10 ⁹	Purified plasmid control (1 µg of pMflT-o4)

Table S3. E. coli and M. florum mating ratios for pMfIT-o4 conjugation.

^aWashed *E. coli* cells from a $\sim 2.5 \times 10^7$ CFU/ml culture.

^bWashed *M. florum* cells from a \sim 5 x 10⁹ CFU/ml culture.

Species	Mferi	Mlea	Mcpn	Мсар	Mmm	Мтс	Муеа	Mputr	Mflorum	Scitri	Skun
Mferi	100%	90%	90%	90%	90%	90%	74%	73%	64%	62%	62%
Mlea		100%	94%	94%	91%	91%	73%	72%	63%	62%	62%
Mcpn			100%	98%	91%	92%	73%	72%	64%	62%	62%
Мсар				100%	92%	92%	73%	72%	63%	62%	63%
Mmm					100%	97%	72%	72%	62%	62%	62%
Мтс						100%	72%	73%	62%	62%	62%
Муеа							100%	74%	61%	59%	60%
Mputr								100%	61%	59%	59%
Mflorum									100%	57%	57%
Scitri										100%	94%
Skun											100%

Table S4. *OriC* region percentage identity matrix of selected species of the Spiroplasma group.

Mferi, M. feriruminatoris; Mlea, M. leachii; Mcpn, M. capricolum subsp. capripneumoniae; Mcap, M. capricolum subsp. capricolum; Mmm, M. mycoides subsp. mycoides; Mmc, M. mycoides subsp. capri; Myea, M. yeatsii; Mputr, M. putrefaciens; Mflorum, M. florum; Scitri, S. citri; Skun, S. kunkelii.

DnaA box sequence	Strand	<i>p</i> -value Genomic position (bp)		Position relative to <i>dnaA</i> start codon (bp)
M. feriruminatoris				
rpmH/dnaA				
TTTATCTACA	-	4.8E-5	4,332 - 4,341	(-182) – (-191)
CTTATCCACA	-	6.0E-6	4,374 - 4,383	(-140) – (-149)
GTTTTCCACA	+	2.2E-6	4,471 - 4,480	(-43) – (-52)
TTTATCTCCA	-	6.3E-5	4,512 - 4,521	(-2) – (-11)
dnaA/dnaN				
GTTATCCACA	+	1.1E-6	5,908 - 5,917	1,386 - 1,395
M. leachii				
rpmH/dnaA				
CTTATCAACA	-	3.4E-5	79 - 88	(-139) – (-148)
GTTTTCCACA	+	2.2E-6	175 - 184	(-43) – (-52)
TTTATCTCCA	-	6.3E-5	216 - 225	(-2) – (-11)
dnaA/dnaN				
GTTATTCACA	+	4.2E-5	1,614 - 1,623	1,388 - 1,397

Table S5. Putative DnaA boxes found within the *oriC* intergenic regions of selected species of the Spiroplasma group.

M. capricolum subsp. capripneumoniae

rpmH/dnaA

TTTATCTACA	-	4.8E-5	1,017,103 - 1,017,112	(-182) – (-191)
CTTATCAACA	-	3.4E-5	1,017,145 - 1,017,154	(-140) – (-149)
GTTTTCCACA	+	2.2E-6	1,017,242 - 1,017,251	(-43) – (-52)
TTTATCTCCA	-	6.3E-5	1,017,283 - 1,017,292	(-2) – (-11)
dnaA/dnaN				
GTTGTTCACA	+	5.6E-5	1,388 – 1,397	1,388 – 1,397
M. capricolum subsp. cc	apricolum			
rpmH/dnaA				
TTTATCTACA	-	4.8E-5	1,009,833 - 1,009,842	(-182) – (-191)
CTTATCAACA	-	3.4E-5	1,009,875 - 1,009,884	(-140) – (-149)
GTTTTCCACA	+	2.2E-6	1,009,972 - 1,009,981	(-43) – (-52)
TTTATCTCCA	-	6.3E-5	1,010,013 - 1,010,022	(-2) – (-11)
dnaA/dnaN				
GTTGTTCACA	+	5.6E-5	1,388 - 1,397	1,388 - 1,397
M. mycoides subsp. myc	oides ^a			
rpmH/dnaA				
TTTATCTACA	-	4.8E-5	1,211,602 - 1,211,611	(-180) – (-189)
CTTATCAACA	-	3.4E-5	1,211,644 - 1,211,653	(-138) – (-147)
GTTTTCCACA	+	2.2E-6	37 - 46	(-42) – (-51)
TTTGTCTCCA	-	7.4E-5	77 - 86	(-2) – (-11)
dnaA/dnaN				
GTTATCCACA	+	1.1E-6	1,474 - 1,483	1,387 – 1,396
M. mycoides subsp. cap	ri			
rpmH/dnaA				
TTTATCTACA	-	4.8E-5	1,078,118 - 1,078,127	(-181) – (-190)
CTTATCAACA	-	3.4E-5	1,078,160 - 1,078,169	(-139) – (-148)
GTTTTCCACA	+	2.2E-6	1,078,257 - 1,078,266	(-42) – (-51)
TTTGTCTCCA	-	7.4E-5	1,078,297 - 1,078,306	(-2) – (-11)
dnaA/dnaN				
GTTATCCACA	+	1.1E-6	1,387 – 1,396	1,387 - 1,396
M. yeatsii ⁰				
rpmH/dnaA				
GTTTTCAACA	+	2.3E-5	894,886 - 894,895	(-172) – (-181)
GTTATCCACA	-	1.1E-6	894,975 - 894,984	(-83) – (-92)
TTTTTCAACA	+	5.6E-5	895,010 - 895,019	(-48) – (-57)
dnaA/dnaN				
TTTATCCACA	+	1.2E-5	1,425 - 1,434	1,410 - 1,419
M. putrefaciens				
rpmH/dnaA				
GTTTTCAACA	+	2.3E-5	832,426 - 832,435	(-169) – (-178)
TTTATCTACA	-	4.8E-5	832,459 - 832,468	(-136) – (-145)
GTTATCCACA	-	1.1E-6	832,513 - 832,522	(-82) – (-91)
dnaA/dnaN				
CITATCCACA	+	6.0E-6	1,392 – 1,401	1,392 - 1,401
M. florum				
rpmH/dnaA				
TITITCAACA	+	5.6E-5	793,045 - 793,054	(-171) - (-180)
CTITICCACA	-	7.1E-6	793,070 - 793,079	(-146) – (-155)
TTTATCCACA	+	1.2E-5	793,157 - 793,166	(-59) – (-68)
GTTTTCCACA	-	2.2E-6	793,170 - 793,179	(-46) – (-55)

dnaA/dnaN				
CTTTTCCACA	-	7.1E-6	1,359 – 1,368	1,359 – 1,368
GTTTTCCACA	+	2.2E-6	1,428 - 1,437	1,428 - 1,437
CTTATTTACA	-	9.6E-5	1,541 - 1,550	1,541 - 1,550
S. citri				
guaB/dnaA				
GTTTTCCACA	-	2.2E-6	52,010 - 52,019	(-159) – (-168)
TTTTTCCACA	-	1.3E-5	52,075 - 52,084	(-94) – (-103)
CTTTTCCACA	+	7.1E-6	52,120 - 52,129	(-49) – (-58)
dnaA/dnaN				
GTTTTCCACA	+	2.2E-6	1,413 - 1,422	1,413 - 1,422
S. kunkelii				
guaB/dnaA				
GTTTTTCACA	-	4.5E-5	1,463,816 - 1,463,825	(-159) – (-168)
CTTTTCCACA	+	7.1E-6	1,463,926 - 9	(-49) – (-58)
dnaA/dnaN				
GTTTTCCACA	+	2.2E-6	1,417 - 1,426	1,360 - 1,369
GTTTTCCACA	+	2.2E-6	1,470 - 1,479	1,413 - 1,422

^aAccording to multiple DNA sequence alignment, protein blast, and absence of putative Shine-Dalgarno sequence, the start codon of *dnaA* was considered to be located at position 88 bp instead of position 1 bp, and the start codon of *rpmH* was considered to be located at position 1,211,498 bp instead of 1,211,534 bp, relatively to the available Genbank sequence (RefSeq NC_005364.2).

^bAccording to multiple DNA sequence alignment, protein blast, and absence of putative Shine-Dalgarno sequence, the start codon of *dnaA* was considered to be located at position 16 bp instead of position 1 bp, relatively to the available Genbank sequence (RefSeq NZ_CP007520.1).

Supplementary References

- Rodrigue S, Materna AC, Timberlake SC, Blackburn MC, Malmstrom RR, Alm EJ, Chisholm SW.
 2010. Unlocking Short Read Sequencing for Metagenomics. PLoS One 5:e11840.
- Renaudin J, Marais A, Verdin E, Duret S, Foissac X, Laigret F, Bové JM. 1995. Integrative and free Spiroplasma citri oriC plasmids: Expression of the Spiroplasma phoeniceum spiralin in Spiroplasma citri. J Bacteriol 177:2870–2877.
- 3. **Brunner M, Bujard H**. 1987. Promoter recognition and promoter strength in the *Escherichia coli* system. EMBO J **6**:3139–3144.
- 4. **Matteau D, Baby V, Pelletier S, Rodrigue S**. 2015. A Small-Volume, Low-Cost, and Versatile Continuous Culture Device. PLoS One **10**:e0133384.
- 5. **Lartigue C, Blanchard A, Renaudin J, Thiaucourt F, Sirand-Pugnet P**. 2003. Host specificity of mollicutes *oriC* plasmids: Functional analysis of replication origin. Nucleic Acids Res **31**:6610–6618.
- 6. **Lartigue C, Duret S, Garnier M, Renaudin J.** 2002. New plasmid vectors for specific gene targeting in *Spiroplasma citri*. Plasmid **48**:149–159.