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1 Simulation procedures3

1.1 Simulations Set 3: contribution through time invested4

1.1.1 Methods5

Having a higher productivity is only one way to contribute more to a cooperative interaction.6

Another natural way is to spend more time to amass resources. To test the robustness of our7

partner choice mechanism, we thus created a third set of simulations in which there are no more8

di�erences of productivity between individuals, but one of the two individuals in a cooperating9

dyad has to invest m times more time than her partner. We thus model the possibility that10

there is a cooperative role more time-consuming than the other. In practice, we model this11

by randomly attributing a �high investment of time� role to the partner or the decision maker12

when an encounter takes place. The decision maker then decides whether or not she wants to13

cooperate with her partner based on her partner's reputation for a given level of investment14

into cooperation. Each individual is thus characterized by 4 genetic variables, two rkl and two15

MARkl, with k and l ∈ {H,L}, denoting an individual's time investment (H = High, L =16

Low). If the partner is accepted, individuals share a constant resource of size 1 at each unit17

of time, and the end of the interaction is determined in the same way than in Simulations Set18

1, through a constant split rate τ . When a split happens though, the individual who needs19

to invest more time is prevented to encounter new individuals for a length of time equal to20

(m − 1) ∗ (the length of the interaction). Because this individual is prevented to encounter21

other individuals during this period, one can interpret this period as a period in which this22

individual is still investing time into the previous interaction.23

All other methodological details for Simulations Set 3 are the same as in Simulations Set24

1. In particular, we start from a population of individuals giving zero reward even when they25
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Figure SM1: Evolution of the average reward accepted, depending on whether partners invest

twice as much or half as much time into cooperation. Individuals investing twice as much time

receive twice as much resources at equilibrium, and vice-versa.

invest less time into cooperation, and observe what will be the relationship between contribution26

(time invested) and rewards at the evolutionary equilibrium.27

1.1.2 Results28

Simulations Set 3 show that proportional rewards also evolve when individuals di�er not by29

their productivity but by the time they invest in cooperation (Fig SM1). Setting m = 2, one30

individual of the pair has to invest twice as much time as the other. When the decision maker31

invests twice as much time, the partner agrees to reward him with 66% of the total resource32

at the evolutionary equilibrium, when partner choice is not costly. Conversely, when decision33

makers invest half as much time as their partner, they accept rewards of 33% only, showing34

that the �tness-maximizing strategy in this situation is to accept rewards proportional to each35

partner's relative time investment.36
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2 Analytical model.37

We developed an analytical model to model the situation where individuals di�er by their pro-38

ductivity (but not e�ort), and where only two productivities coexist in the population. The39

analytical model incorporates all of the features of the simulations, but with one simpli�cation:40

we assume that the total number of interactions accepted per unit of time is the same for each41

individual. With this assumption, rejecting an opportunity to cooperate does not compromise42

the chances of cooperating later, but on the contrary grants new opportunities. This situa-43

tion is analogous to the condition where β
τ
tends towards in�nity in the simulations: social44

opportunities are plentiful at the scale of the length of interactions. When individuals reject an45

interaction, however, they are forced to postpone their social interaction to a later encounter.46

We assume that this entails an explicit cost expressed as a discounting factor δ (0 ≤ δ < 1). If47

we call the average payo� of an individual of productivity i Gi, then δGi will be the average48

expected payo� in the next interaction after rejecting an o�er. When δ equals 1, refusing an49

interaction carries no cost; when δ equals 0, refusing an interaction will result in zero payo�50

from the next interaction. In practice, we will neglect the case where δ equals 1, as it leads to51

artefactual results (see below).52

The assumption that only partners can decide of the division in our model is necessary so53

that the evolution of fairness is not explained trivially. When only one individual can decide,54

natural selection favors sel�shness [1]. This is easy to understand. On the one hand, whatever55

reward a partner suggests, accepting it brings a greater gain than rejecting it for the decision56

maker. Therefore, in all cases, natural selection favors indiscriminate partners, with decision57

makers taking whatever bene�ts are made available to them. On the other hand, and as a58

result, selection favors stingy partners, o�ering the minimal possible amount. Because decision59

makers are in such an inferior bargaining position, in the following analysis we will focus on60
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decision makers'�and not partners'�payo�s. A decision maker receiving a large share of the61

resource is a strong indication that there are evolutionary forces at work against the expected62

partners' sel�shness.63

All our analyses assume that (i) individuals enter the population at a constant rate, (ii)64

evolution is slow compared to an individual's lifespan (and thus ) (iii) mutations are rare, and65

that (iv) there is no recombination between genetic traits (pij and qij). As a consequence of66

(i) and (ii), the composition of the population does not change during an individual's life. As67

a consequence of (iii) and (iv), at any evolutionary equilibrium, all the strategies present in68

the population must reach the same payo� for individuals of a given strength (only a high69

mutation rate or recombination rate could continuously re-introduce maladaptive strategies in70

the population, yielding a variance of payo�s at each generation).71

Here we ask the same question answered in the main paper through simulations: how will72

the behavioural traits rij and MARij (i and j ∈ {HP,LP}) evolve in an environment where73

LP and HP individuals coexist and share resources? As a reminder, MARLPHP reads as "the74

minimum reward that a LP individual will accept from a HP individual," and rHPLP as "the75

reward a HP individual will give to a LP individual."76

Following the precise evolutionary dynamics of the system to answer this question is quite a77

complex challenge, in particular due to epistasis phenomena. The low �tness bene�ts brought78

by a reward r can be compensated by high bene�ts from an acceptance threshold MAR, or small79

bene�ts obtained in interactions with individuals of one productivity could be compensated by80

high bene�ts received in interactions with the other productivity, generating linkage disequilib-81

rium [2]. But as in [1], it is easier to derive simple conditions on the payo� an individual would82

or would not have an interest in accepting at the evolutionary equilibrium.83
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2.1 Solving the system84

The reasoning is more normative than descriptive, as we consider a situation in which the equi-85

librium has already been reached, and derive constraints on the values of traits that individuals86

should display at the equilibrium. To derive the payo� a LP individual should receive from a87

HP individual at the evolutionary equilibrium, we need to consider four arguments:88

1. All individuals with the same productivity must gain the same payo�. At89

the equilibrium, all HP individuals should gain the same payo� GHP per interaction90

(otherwise it wouldn't be an equilibrium), and the same is true for LP individuals. We91

thus only have two average payo�s in the population at the equilibrium. The average92

payo� of a HP individual is labeled GHP , and that of a LP individual is written GLP .93

2. Every individual of productivity i accepts exactly δGi, with i ∈ {HP,LP}. If an94

individual's average payo� is Gi, his expected payo� in the next interaction (if the current95

interaction is refused) will be δGi. As a consequence, a decision maker should never refuse96

a reward that is above the corresponding δGi, but should always refuse rewards that97

are below this level. At the equilibrium, because rewards from partners should evolve98

toward the minimum that decision makers will accept, individuals will always demand99

and accept exactly δGi, no matter who they are interacting with (regardless of their100

partner's productivity). We thus have:101



MARHPHP = δGHP

MARHPLP = δGHP

MARLPLP = δGLP

MARLPHP = δGLP

(1)

3. Partners give their decision makers what they want at the evolutionary equi-102

librium, as long as a
b
> δ(x−1)

δx−2
.103
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Knowing (1) and (2), it can be shown that partners are always better o� giving their104

decision makers what they "ask for" (δGi) at the evolutionary equilibrium, as long as105

δ < 1. The reasoning is as follows.106

Suppose that at the evolutionary equilibrium, all LP individuals refuse to give HP in-107

dividuals what they ask for, namely δGHP (but all other demands are satis�ed). The108

average social payo� of a LP individual in this population is then109

GLP = (1− x)
(
δGLP

2
+
δGLP

2

)
+

1

2
x (a+ a) (2)

with x the proportion of LP individuals in the population and a the productivity of110

LP individuals. GLP can be decomposed into three terms: an average payo� obtained in111

interactions with other LP individuals 1
2
(a+ a), an average payo� obtained in interactions112

with HP individuals when HP individuals play the role of decision makers (in this case,113

under our hypothesis the reward will be rejected and the LP individual's payo� will114

be discounted by δ), and, �nally, an average payo� obtained in interactions with HP115

individuals when HP individuals are partners (the LP individual's MAR is met, so they116

gain δGLP ).117

Similarly, the payo� of a HP individual in this population is118

GHP = x

(
δGHP

2
+

1

2
(−δGLP + b+ a)

)
+

1

2
(1− x) (b+ b) (3)

with b the productivity of HP individuals. Solving the system composed of equations (2)119

and (3) gives us an expression for GHP and GLP . The question we need to answer now120

is the following: what would happen if, in such a population, a mutant LP individual121

decided to accept to give HP individuals what they want? Upon meeting a HP individual122
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and being assigned the role of partner, this mutant would gain a+b−δGHP (the resource123

to be shared minus the demand of a HP individual) instead of just δGLP (the average124

payo� being discounted). Knowing GLP and GHP , it is easy to show that it is never125

possible that δGLP ≥ a+ b− δGHP as long as δ < 1. In other words, at the evolutionary126

equilibrium, it is impossible that all LP individuals refuse to o�er δGHP to HP individuals,127

because they would gain more from doing so.128

What if there was some polymorphism in the population such that only some LP indi-129

viduals refuse to give HP individuals what they ask for? The average social payo� of130

those LP individuals is still written the same as in equation (2). But because we know131

that at the evolutionary equilibrium all individuals with the same productivity must gain132

the same payo�, the payo� of all LP individuals will be the same, regardless of pheno-133

type. The coexistence of two types of LP individuals in the population would imply that134

δGLP = a + a − δGHP (the payo� of the two types of LP individuals in the position135

of partner when paired with HP individuals is equal), but as we showed above, this is136

not possible as long as δ < 1. As a consequence, it is not only impossible that all LP137

individuals refuse to give HP individuals what they want at the evolutionary equilibrium,138

it is also impossible that some LP individuals refuse to give HP individuals what they139

want as long as δ < 1.140

Following the same reasoning, it can be shown that it is not possible for some individuals141

(of any productivity) to refuse to give their social partner (of any productivity) what142

they ask for at the evolutionary equilibrium as long as a
b
> δ(x−1)

δx−2
(see SM section 2.2).143

When a
b
≤ δ(x−1)

δx−2
, it is possible that LP individuals refuse to give other LP individuals144

what they ask for. This condition re�ects the fact that if the di�erence of productivity145

between HP and LP individuals is too large, it is more bene�cial for LP individuals to146
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interact with HP individuals than with LP individuals. As we will see though, this is147

only possible when partner choice is costly. Moreover, as long as a
b
> 0.5, as is the case148

in our simulations, it is not worth it for LP individuals to refuse to interact with other149

LP individuals, and so all partners will give their decision makers what they want at the150

evolutionary equilibrium.151

If a
b
> δ(x−1)

δx−2
, we can thus write:152



rHPHP = δGHP

rHPLP = δGLP

rLPLP = δGLP

rLPHP = δGHP

(4)

and if a
b
≤ δ(x−1)

δx−2
, we can thus write:153


rHPHP = δGHP

rHPLP = δGLP

rLPHP = δGHP

(5)

4. a
b
> δ(x−1)

δx−2
, no o�er is never refused154

If a
b
> δ(x−1)

δx−2
, from step 3. it directly results that no reward is ever rejected at the155

evolutionary equilibrium, because each partner's reward is exactly equal to the decision156

maker's MAR, and thus each reward is accepted. If no reward is ever refused, the average157

payo� of LP and HP individuals respectively can be written as:158


GLP = (1− x)

(
1
2
(−δGHP + b+ a) + δGLP

2

)
+ 1

2
x (a+ a)

GHP = x
(
δGHP

2
+ 1

2
(−δGLP + b+ a)

)
+ 1

2
(1− x) (b+ b)

(6)
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Solving this system gives us an expression for GHP and GLP as a function of x and δ at159

the evolutionary equilibrium:160


GLP = b(δ−δx+x−1)+a((δ−1)x−1)

δ−2

GHP = b(δ−δx+x−2)+(δ−1)xa
δ−2

(7)

From (5) and (8), it is straightforward to show that when δ tends toward 1 (partner choice161

is not costly), rLPHP tends toward b. That is, when partner choice is not costly, even if162

LP individuals are in the strategically dominant position of partner, at the evolutionary163

equilibrium they o�er HP individuals an amount that is exactly equal to their productivity164

b. In percentage, this corresponds to an o�er proportional to the relative contribution of165

each individual: LP individuals o�er HP individuals b
b+a
∗ 100 % of the total resource to166

be shared.167

Similarly, it can be shown that when δ tends toward 1, LP individuals o�er other LP168

individuals a resources, HP individuals o�er other HP individuals b resources, and HP169

individuals o�er LP individuals a resources. At the equilibrium, when partner choice is170

not costly each individual is rewarded with an amount exactly equal to his contribution.171

5. a
b
≤ δ(x−1)

δx−2
, all LP individuals refuse to interact with other LP individuals172

In this case, the average payo� of LP and HP individuals respectively can be written as:173


GLP = (1− x)

(
1
2
(−δGHP + b+ a) + δGLP

2

)
+ δxGLP

GHP = x
(
δGHP

2
+ 1

2
(−δGLP + b+ a)

)
+ 1

2
(1− x) (b+ b)

(8)

Solving this system gives us an expression for GHP and GLP as a function of x and δ at the174

evolutionary equilibrium:175
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GLP = (x−1)((δ−1)b+a(δx−1))

δ(x(δx−2)−1)+2

GHP = b(δ((x−1)x−1)−x+2)−(δ−1)xa
δ(x(δx−2)−1)+2

(9)

From (6) and (10), it is straightforward to show that when δ tends toward 1, the previous176

results hold: LP individuals o�er HP individuals b resources, HP individuals o�er other HP177

individuals b resources, and HP individuals o�er LP individuals a resources.178

2.2 Veri�cation that partners are always better o� giving their de-179

cision maker what they want at the evolutionary equilibrium,180

except when a
b ≤

δ(x−1)
δx−2181

There are four hypothetical primary situations that need to be taken into account:182

• A: when HP individuals are partners, they refuse to give other HP individuals what they183

want184

• B: when HP individuals are partners, they refuse to give other LP individuals what they185

want186

• C: when LP individuals are partners, they refuse to give other LP individuals what they187

want188

• D: when LP individuals are partners, they refuse to give HP individuals what they want189

These situations are not mutually exclusive, however, so the total number of possible situ-190

ations is:191

∑4
k=1

(
4

k

)
= 15192
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Situation D was already proven to be impossible at the evolutionary equilibrium in the193

previous section. We now show that the same holds for the 14 remaining situations, except in194

situation C. We give the expected social payo� of HP and LP individuals in each situation. We195

also give the condition that must be satis�ed for each situation to be possible at the evolutionary196

equilibrium; it is then straightforward to show that, given our parameter values (0 ≤ x ≤ 1,197

0 ≤ δ < 1 ), this condition can never be satis�ed.198

Situation A:199

• GLP = (1− x)
(
1
2
(−δGHP + b+ a) + δGLP

2

)
+ 1

2
x (a+ a)200

• GHP = x
(
δGHP

2
+ 1

2
(−δGLP + b+ a)

)
+ δ(1− x)GHP201

• Condition −δGHP + b+ b ≤ δGHP impossible202

Situation C:203

• GLP = (1− x)
(
1
2
(−δGHP + b+ a) + δGLP

2

)
+ δxGLP204

• GHP = x
(
δGHP

2
+ 1

2
(−δGLP + b+ a)

)
+ 1

2
(1− x) (b+ b)205

• Condition −δGLP + a+ a ≤ δGLP impossible when a > δ(x−1)b
δx−2

206

Situation B:207

• GLP = (1− x)
(
1
2
(−δGHP + b+ a) + δGLP

2

)
+ 1

2
x (a+ a)208

• GHP = x
(
δGHP

2
+ δGHP

2

)
+ 1

2
(1− x) (b+ b)209

• Condition −δGLP + b+ a ≤ δGHP impossible210

Situation A & C:211

• GLP = (1− x)
(
1
2
(−δGHP + b+ a) + δGLP

2

)
+ δxGLP212
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• GHP = x
(
δGHP

2
+ 1

2
(−δGLP + b+ a)

)
+ δ(1− x)GHP213

• Condition −δGLP + a+ a ≤ δGLP ∧ −δGHP + b+ b ≤ δGHP impossible214

Situation B & C:215

• GLP = (1− x)
(
1
2
(−δGHP + b+ a) + δGLP

2

)
+ δxGLP216

• GHP = x
(
δGHP

2
+ δGHP

2

)
+ 1

2
(1− x) (b+ b)217

• Condition −δGLP + a+ a ≤ δGLP ∧ −δGLP + b+ a ≤ δGHP impossible218

Situation C & D:219

• GLP = δxGLP + (1− x)
(
δGLP

2
+ δGLP

2

)
220

• GHP = x
(
δGHP

2
+ 1

2
(−δGLP + b+ a)

)
+ 1

2
(1− x) (b+ b)221

• Condition −δGLP + a+ a ≤ δGLP ∧ −δGHP + b+ a ≤ δGLP impossible222

Situation B & D:223

• GLP = (1− x)
(
δGLP

2
+ δGLP

2

)
+ 1

2
x (a+ a)224

• GHP = x
(
δGHP

2
+ δGHP

2

)
+ 1

2
(1− x) (b+ b)225

• Condition −δGHP + b+ a ≤ δGLP ∧ −δGLP + b+ a ≤ δGHP impossible226

Situation A & D:227

• GLP = (1− x)
(
δGLP

2
+ δGLP

2

)
+ 1

2
x (a+ a)228

• GHP = x
(
δGHP

2
+ 1

2
(−δGLP + b+ a)

)
+ δ(1− x)GHP229

• Condition −δGHP + b+ a ≤ δGLP ∧ −δGHP + b+ b ≤ δGHP impossible230

Situation A & B:231
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• GLP = (1− x)
(
1
2
(−δGHP + b+ a) + δGLP

2

)
+ 1

2
x (a+ a)232

• GHP = δ(1− x)GHP + x
(
δGHP

2
+ δGHP

2

)
233

• Condition −δGHP + b+ b ≤ δGHP ∧ −δGLP + b+ a ≤ δGHP impossible234

Situation A & C & D:235

• GLP = δxGLP + (1− x)
(
δGLP

2
+ δGLP

2

)
236

• GHP = x
(
δGHP

2
+ 1

2
(−δGLP + b+ a)

)
+ δ(1− x)GHP237

• Condition −δGLP + a + a ≤ δGLP ∧ −δGHP + b + b ≤ δGHP ∧ −δGHP + b + a ≤ δGLP238

impossible239

Situation A & B & C:240

• GLP = (1− x)
(
1
2
(−δGHP + b+ a) + δGLP

2

)
+ δxGLP241

• GHP = δ(1− x)GHP + x
(
δGHP

2
+ δGHP

2

)
242

• Condition −δGLP + a + a ≤ δGLP ∧ −δGHP + b + b ≤ δGHP ∧ −δGLP + b + a ≤ δGHP243

impossible244

Situation B & C & D:245

• GLP = δxGLP + (1− x)
(
δGLP

2
+ δGLP

2

)
246

• GHP = x
(
δGHP

2
+ δGHP

2

)
+ 1

2
(1− x) (b+ b)247

• Condition −δGLP + a + a ≤ δGLP ∧ −δGHP + b + a ≤ δGLP ∧ −δGLP + b + a ≤ δGHP248

impossible249

Situation A & B & D:250

• GLP = (1− x)
(
δGLP

2
+ δGLP

2

)
+ 1

2
x (a+ a)251
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• GHP = δ(1− x)GHP + x
(
δGHP

2
+ δGHP

2

)
252

• Condition −δGHP + b + b ≤ δGHP ∧ −δGLP + b + a ≤ δGHP ∧ −δGHP + b + a ≤ δGLP253

impossible254

Situation A & B & C & D:255

• GLP = δ(1− x)GLP + δxGLP256

• GHP = δ(1− x)GHP + δxGHP257

• Condition −δGHP + b + b ≤ δGHP ∧ −δGLP + b + a ≤ δGHP ∧ −δGLP + a + a ≤ δGLP ∧258

−δGHP + b+ a ≤ δGLP impossible259

As explained in the previous section, the veri�cation that it is not possible for some (but260

not all) individuals not to interact with other individuals at the evolutionary equilibrium (in261

case of polymorphism) is already implied by the use of not strict inequalities.262

3 Supplementary discussion263

3.1 Opportunity costs264

In the main article, we explain that when high-productivity individuals are assessing a low-265

productivity individual's reward, they have opportunity costs (or "outside options") of 2 be-266

cause they expect to receive 2 with other high-productivity individuals on average. It is267

important to see that this is true only because high-productivity individuals have an equal268

chance of playing the role of either decision-maker or partner when they interact with other269

high-productivity individuals. If some high-productivity individuals always played the role of270

decision maker with other high-productivity individuals, they would be exploited all the time271
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by those high-productivity partners, which would drastically reduce their outside options when272

bargaining with low-productivity individuals, preventing the evolution of proportionality. Thus,273

in our model the evolution of proportionality depends as much on the possibility of changing274

roles as on the possibility of changing partners. In real life, this is the equivalent of having a275

rich and varied social life with multiple cooperative opportunities in which one is not always in276

the worse bargaining position [3, 4].277

3.2 Theoretical problems with partner choice278

Partner choice is an intrinsically complicated subject. The existence of a wide variety of coop-279

erative partners to choose from means that a wide variety of social strategies can coexist and280

provide the same bene�ts, complicating evolutionary analysis. For example, an individual's ac-281

ceptance of low rewards as a decision maker could be compensated by the low rewards she herself282

makes as a partner. Or some low payo�s received when interacting with low-productivity indi-283

viduals could be compensated by high payo�s received when interacting with high-productivity284

individuals.285

These e�ects explain why a quick look at the evolved strategies of individuals is not always286

enough to �nd a pattern of proportionality. This is especially true with neural networks working287

on a continuum of productivities or e�ort. While, as we have shown, the theoretical �tness-288

maximizing behavior is to o�er an amount proportional to one's own relative contribution, it289

is not necessarily the case that neural networks will produce proportional o�ers for the whole290

range of inputs they are exposed to. Imagine an individual who o�ers proportional rewards only291

to the best producers in the population, while o�ering less-than-proportional rewards to other292

individuals. At the evolutionary equilibrium, our model predicts that these unfair rewards will293

be rejected. But as long as �nding a new partner is not costly, being rejected does not lead to294

a loss of �tness. As a consequence, any individual can o�er less-than-proportional rewards to a295
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fraction of the population, as long as another fraction still accepts the rewards she makes that296

are proportional. In other words, individuals can specialize in o�ering proportional rewards to297

only a fraction of the range of productivities in the population, and stop interacting with the298

remaining fraction. Because they stop interacting, the rewards o�ered to this fraction become299

subject to drift.300

Because of this mechanism, it is possible that averaging the output of di�erent evolved301

neural networks does not reveal a pattern of proportionality. In our simulations, averaging302

the output of 15,000 neural networks producing MARs yielded an almost perfect proportional303

relationship between contributions and MARs (main paper, Fig. 3C). Plotting the average304

output of 15,000 neural networks producing rewards did not show such a perfectly proportional305

relationship, although it was not far from it. Here, it is important to remember that despite306

this variability in the rewards that are extended, proportionality prevails when we look only307

at the interactions that actually take place: only proportional rewards are accepted at the308

evolutionary equilibrium, as evidenced in Fig. 3B of the main article.309

Finally, problems of neutrality add complexity to the analysis. Although at the beginning310

of our simulations raising MARs drove the evolution of proportional rewards, once proportional311

rewards had spread in the population, the selection pressure to maintain high MARs disap-312

peared: if all individuals o�er rewards of r, requesting r or r− ε as a decision maker brings the313

same payo�. Because of drift, MARs can thus start to decrease, and in turn partners will be314

selected to decrease their rewards to try to exploit those undemanding decision makers. This315

exploitation cannot last for long, as it soon revives the selection pressure to increase MARs,316

but the dynamic exists. Although it is rather easy to conceptualize why, under appropriate317

conditions, partner choice leads to proportionality, the actual dynamics underlying this result318

are far from straightforward to understand.319
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