Supplementary Figure S1. Genetic deletion of Cnr1 leads to an increase in adipocyte size in inguinal fat. Related to Figure 1. Representative H&E stain images (n = 6-7 images per mouse) of perirenal (as visceral fat) and inguinal (*subcutaneous) adipose tissue and quantification of adipocyte diameter in both tissue from Lean (open circles), ZDF (light blue) and ZDF-Cnr1 (dark blue) at 26 week-old. Scale bars, 200 μ m. Data represent mean \pm SEM (n = 3 rats per group). Significant difference from corresponding value in lean (*P < 0.05, **P < 0.01, ***P < 0.001) or ZDF rats (##P < 0.01, ###P < 0.001).

©2017 American Diabetes Association. Published online at http://diabetes.diabetes.journals.org/lookup/suppl/doi:10.2337/db16-1199/-/DC1

Supplementary Figure S2. Genetic deletion of Cnr1 protects against β-cell death. Related to Figure 3. (A) Representative TUNEL stain image of pancreatic islets from ZDF and ZDF-Cnr1 rats. (B) Double immunostaining for insulin and CCL2 in pancreatic islets.

 $@2017\ American\ Diabetes\ Association.\ Published\ online\ at\ http://diabetes.diabetes.journals.org/lookup/suppl/doi:10.2337/db16-1199/-/DC1$

Supplementary Figure S3. Genetic deletion of Cnr1 protects against the development of diabetic nephropathy. (A) Serum concentration of creatinine and blood urea nitrogen (BUN); Urinary clearance of creatinine, BUN and albumin; Glomerular filtration rate in lean, ZDF and ZDF-Cnr1 rat. (B) Podocytes identified in glomeruli of lean, ZDF and ZDF-Cnr1 rats by WT-1 immuno-staining. (C) PAS staining and glomerular enlargement quantification. Columns and bars represent mean \pm SEM (n = 10 rats per group). Significant difference from corresponding value in lean (white bars) (*P < 0.05, **P < 0.01, ***P < 0.001) or ZDF rats (light blue bars) (##P < 0.01, ###P < 0.001).

©2017 American Diabetes Association. Published online at http://diabetes.diabetes.journals.org/lookup/suppl/doi:10.2337/db16-1199/-/DC1

Supplementary Figure S4. Determination of the optimal radiation dose required to eliminate total white blood cells without being lethal. Related to Figure 4. Total body radiation exposure from a ¹³⁷Cs source was varied between 0.5 to 1.1 Gy and total blood cell count was performed 24h before irradiation and 7 days post-irradiation. WBC: White Blood Cells, NE: Neutrophils, Ly: Lymphocytes, Mo: Monocytes, Eo: Eosinophils ans Ba: Basophils. Columns and bars represent mean \pm SEM (n = 3 rats per group).

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1199/-/DC1

Supplementary Figure S5. Transplantation with *Cnr1* deficient bone marrow does not prevent the development of diabetic nephropathy. Related to Figure 4. (A) Serum concentration of creatinine and blood urea nitrogen (BUN); Urinary clearance of creatinine, BUN and albumin; Glomerular filtration rate in ZDF rats receiving wild-type BM (green columns) or $Cnr1^{-/-}$ BM (purple columns). (B) Podocytes identified in glomeruli of wild-type BM (green columns) and $Cnr1^{-/-}$ BM (purple columns) by WT-1 immuno-staining. Columns and bars represent mean \pm SEM (n = 5 rats per group). Significant difference from corresponding value in ZDF rats receiving wild-type BM (*P < 0.05).

Supplementary Figure S6. GeRP-Mediated Knockdown of *Irf5* in ZDF Rats macrophages leads to a blunted lymphocyte response in pancreatic islets. Related to Figure 7. (A) *Cd3* gene expression as marker of T lymphocyte infiltration. (B) Gene expression of *Tbet*, *Ifng* and *Il12* as Th1 response markers. (C) Gene expression of *Gata3* and *Il4* as Th2 response markers. (D) Gene expression of *Rora*, *Rorc* and *Il17* as Th17 response markers. (E) Gene expression for *Il12p40*, *Il23* and *Il10* in pancreatic islets. Columns and bars are means±SEM from 6 rats/group. **P*<0.05, ***P*<0.01, ****P*<0.005 relative to control siRNA-treated group

Supplementary Table S1. Serum parameters in whole body irradiated-BMT rats.

Parameters	ZDF-WT BM cells (n=5)	ZDF-KO BM cells (n=5)
Triglycerides (mg/dL)	108.1 ± 10.1	105.8 ± 4.1
Free fatty acids (µM)	176.8 ±6.3	182.1 ± 12.5
Total cholesterol (mg/dL)	94.7 ±3.3	98.1 ±2.9
Adiponectin (ng/mL)	486.3 ±32.5	472 ± 43.7
Leptin (pg/mL)	3,204.8 ±219.6	3,078.7 ±97.9

Columns and bars represent mean±SEM. Significant difference from corresponding value in ZDF rats receiving WT BM cells(P>0.05*, P>0.01**, P<0.001***).

_

Cnr1			_
Cycle Step	Temp (°C)	Time	
1	94	3 min	
2	94	30 sec	
3	56	30 sec	
4	68	30 sec	* 45 cycles
5	72	5 min	

Supplementary Table S2. PCR parameters for *Cnr1* and *Lepr* amplification.

Lepr			_
Cycle Step	Temp (°C)	Time	
1	95	5 min	
2	95	30 sec	
3	58	30 sec	
4	68	30 sec	* 35 cycles
5	68	5 min	

Cnr1 smF: 5'-gatgcaggccttcctaccac, smR: 5'-gctgtctttacggtggaata.

Fa smF: 5'-cgtatggaagtcacagatgatggtatt, Fa-smR: 5'-cctctcttacgattgtagaattctct.

After Fa PCR, 20 μ l of PCR reaction were digested in a total volume of 30 μ L with MspI (FastDigest Mspl, Thermo scientific, #FD0544) in order to digest the mutant allele to ~79 bp and 39 bp. Cnr1 and Fa PCR products were resolved on 4% agarose gel and revealed by GreenGloTM Safe DNA Dye (Denville Scientific inc, CA3600, Metuchen, NJ) using a Gel scanner G:BOX (SYNGENE, Frederick, MD).

Proteins	Reference	Supplier	Dilution
CB1R	L15	Gift from Dr Ken Mackie (Uni of Indiana, USA)	1/250
Insulin	Ab7842	Abcam, USA	1/100
CD68	Ab31630	Abcam, USA	1/200
CCL2	Ab25124	Abcam, USA	1/800
WT-1	05-753	Millipore (USA)	1/200
IRF5	Ab181553	Abcam, USA	1/200

Supplementary Table S3. list of antibodies used for immuno-histology.

Supplementary Table S4. list and sequence of siRNAs used.

RAT		
Cnr1	Control	
5'-GCAUCAAGAGCACCGUUAAUU-3'	5'-GCAUCAAGUCUACCGUUAAUU-3'	
Irf5:	Control:	
5'-GGUUACAGAUGGUGGCUGAUU-3'	5'-GGUUACAGUACGUGGCUGAUU-3'	
HUMAN		
CNR1:	Control:	
5'-CCGCAAAGAUAGCCGCAACUU-3'	5'-CCGCAAAGUAUGCCGCAACUU-3'	
MAPK14:	Control:	
5'-GGCACACAGAUGAUGAAAUUU-3'	5'- GGCACACACUAGAUGAAAUUU-3'	
MAPK11:	Control:	
5'-GCACGUUCAAUUCCUGGUUUU-3'	5'-GCACGUUCUUAUCCUGGUUUU-3'	

 $\label{eq:constraint} \ensuremath{\mathbb{C}}\xspace{2017} American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1199/-/DC1 and the state of the state of$

Proteins	Reference	Supplier	Dilution
CB1R	N/A	Immunogenes, Hungary	1/750
a-p38MAPK	#4511	Cell Signalling Technology (USA)	1/1000
α-p38MAPK	#9215	Cell Signalling Technology (USA)	1/1000
α-pERK1/2	#4377	Cell Signalling Technology (USA)	1/1000
α-pSAPK/JNK	(#9251	Cell Signalling Technology (USA)	1/1000
α-pSAPK/JNK	#4668	Cell Signalling Technology (USA)	1/1000
α-phospho-c-jun	(#9261	Cell Signalling Technology (USA)	1/1000
α-pSTAT3	#9145	Cell Signalling Technology (USA)	1/1000
α -total-ERK1/2	(#4695	Cell Signalling Technology (USA)	1/1000
α-total-SAPK/JNK	(#9252	Cell Signalling Technology (USA)	1/1000
α-total-STAT3	(#4904	Cell Signalling Technology (USA)	1/1000
р38МАРКа	Sc-535	Santa Cruz USA	1/1000
β-actin	Ab49900	Abcam, USA	1/1000

Supplementary Table S5. list of antibodies used for western-blotting.