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1 Theory

1.1 Definitions of chronological and retrospective probabilities

We denote an individual lineage tree originated from a single ancestor cell by T . The time-
length of an individual tree T is fixed and denoted by τ . We suppose that T is realized with
probability P(T ). Let N(T ) be the number of cell lineages in a tree T . Individual lineages
are labeled by i = 1, 2, · · · , N(T ) as done in Main Text (Fig 2A in Main Text). We denote
the number of division events on cell lineage i by Di, and a phenotype of lineage i by xi.

For a given tree T , we can count the number of cell lineages with D and x as

n (D, x|T ) ≡
N(T )∑
i=1

δDi,Dδxi,x, (S1.1)

where δDi,D and δxi,x are Kronecker Delta. Then,∑
D,x

n (D, x|T ) = N(T ). (S1.2)

We define P cl (D, x|T ) as

P cl(D, x|T ) ≡ 2−Dn(D, x|T ) ≥ 0. (S1.3)

We can show that P cl(D, x|T ) is indeed probability distribution as follows: We fix a tree T .
Let Ai be an event that one reaches the end point of lineage i descending from the ancestor cell
chronologically. At every division (i.e. branch point of lineage trees), one of the two daughter
cells is chosen with probability 1/2. Then, Prob (Ai) = 2−Di . Since Ai(i = 1, · · · N(T )) are
mutually exclusive,

N(T )∑
i=1

2−Di =
N(T )∑
i=1

Prob (Ai) = Prob (∪iAi) = 1. (S1.4)

Inserting Eq.S1.1 into Eq.S1.3 and summing P cl (D, x|T ) for D and x find

∑
D,x

P cl (D, x|T ) =
∑
D,x

2−D
N(T )∑
i=1

δDi,Dδxi,x

=
N(T )∑
i=1

∑
D

2−DδDi,D

∑
x

δxi,x

=
N(T )∑
i=1

2−Di

= 1, (S1.5)

because
∑

x δxi,x = 1 and
∑

D 2−DδDi,D = 2−Di . Therefore, P cl(D, x|T ) is probability distri-
bution.

The factor 2−D in the definition Eq.S1.3 is the probability that a cell lineage on which
division occurred D times is chosen when a lineage is selected from an ancestor to a descendant
cell chronologically. Because a tree T contains n (D, x|T ) lineages whose division count and
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phenotype are D and x, the probability that we choose a lineage with D and x in a specific
lineage tree T becomes 2−Dn (D, x|T ).

The realization of T is also probabilistic. Thus, by taking the average of P cl(D, x|T ) with
respect to P(T ), we can define the chronological joint probability distribution of D and x as

P cl(D, x) ≡
∑
T

P cl(D, x|T )P(T )

= 2−D
∑
T

n (D, x|T ) P(T )

= 2−Dn(D, x), (S1.6)

where n(D, x) ≡
∑

T n (D, x|T ) P(T ) is the expected number of cell lineages with D and x
in a tree.

We also define the retrospective joint probability of D and x as

P rs(D, x) ≡ n(D, x)
⟨N(T )⟩

, (S1.7)

where ⟨N(T )⟩ ≡
∑

T N(T )P(T ) is the expected total number of cell lineages in a tree.
⟨N(T )⟩ is also expressed as

⟨N(T )⟩ =
∑
T

∑
D,x

n(D, x|T )

 P(T )

=
∑
D,x

n(D, x)

=
∑
D,x

2DP cl(D, x). (S1.8)

We define population growth rate Λ as

Λ ≡ 1
τ

ln ⟨N(T )⟩ = 1
τ

ln
∑
D,x

2DP cl(D, x). (S1.9)

Eq.S1.7 can be rewritten as
P rs(D, x) = e−τΛn(D, x). (S1.10)

Thus, from Eq.S1.6,
P rs(D, x) = P cl(D, x)2De−τΛ. (S1.11)

1.2 Definition of fitness landscape

We define fitness landscape h(x) so that eτh(x) becomes the ratio of the expected number of
cell lineages with phenotype x per single lineage tree to the expected chronological probability
that we find a cell lineage with x in a tree, i.e.

h(x) ≡ 1
τ

ln
∑

D n(D, x)∑
D P cl(D, x)

. (S1.12)
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Let P cl(x) ≡
∑

D P cl(D, x) and P rs(x) ≡
∑

D P rs(D, x) be chronological and retrospec-
tive marginal probability distributions of phenotype x, respectively. Because

∑
D n(D, x) =

⟨N(T )⟩P rs(x) from Eq.S1.7, h(x) can be rewritten as

h(x) = Λ + 1
τ

ln P rs(x)
P cl(x)

. (S1.13)

Thus,
P rs(x) = P cl(x)eτh(x)−τΛ. (S1.14)

This indicates that when h(x) > Λ, phenotype x is over-represented in retrospective proba-
bility.

In addition, h(x) can be expressed as

h(x) = 1
τ

ln
∑
D

2DP cl(D|x), (S1.15)

where P cl(D|x) = P cl(D, x)/P cl(x) = 2−Dn(D,x)∑
D

P cl(D,x) is the chronological distribution of D

conditioned on x. Eq.S1.15 tells us that h(x) is a specific value of the cumulant generating
function of P cl(D|x). Thus, we introduce the time-scaled cumulant generating function of
P cl(D|x) as

g(ξ|x) ≡ 1
τ

ln
∑
D

eξDP cl(D|x). (S1.16)

Then,
h(x) = g(ln 2|x). (S1.17)

h(x) can be expanded with the cumulants of P cl(D|x); if we ignore the cumulants higher
than the second-order, we obtain

τh(x) ≈ E [D|x]cl ln 2 + 1
2

V ar [D|x] (ln 2)2

= E [D ln 2|x]cl + 1
2

V ar [D ln 2|x]cl , (S1.18)

where E[·|x]cl and V ar[·|x]cl are mean and variance with respect to chronological conditional
probability P cl(D|x).

Furthermore, by taking the averages of Eq.S1.18 with respect to P cl(x),

E [τh(x)]cl = E [D ln 2]cl + 1
2

E
[
V ar [D ln 2|x]cl

]cl
. (S1.19)

This equation connects the mean of fitness landscape to the variation of division counts when
x is fixed.

Examples

Here we see two extreme cases. When D and x are independent in chronological probability,
P cl(D|x) = P cl(D). From Eq.S1.15,

h(x) = 1
τ

ln
∑
D

2DP cl(D) = 1
τ

ln
∑
D

∑
x

2DP cl(D, x)

= 1
τ

ln
∑
D

∑
x

n(D, x) = 1
τ

ln⟨N(T )⟩

= Λ. (S1.20)
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Therefore, h(x) always equals to Λ irrespectively of x. From Eq.S1.14, we also obtain P cl(x) =
P rs(x), which means that when D and x are independent, chronological and retrospective
probabilities of x become identical.

In the totally opposite case where D is a deterministic function of x, i.e. D̃(x), P cl(D, x) =
P cl(x)δ

D,D̃(x). Thus,

h(x) = 1
τ

ln
∑
D

2D P cl(D, x)
P cl(x)

= 1
τ

ln
∑
D

2Dδ
D,D̃(x) = D̃(x)

τ
ln 2, (S1.21)

which indicates that the fitness landscape is determined only by D̃(x).

1.3 Selection strength

We define selection strength S[x] as

S [x] ≡ ⟨h(x)⟩rs − ⟨h(x)⟩cl

=
∑

x

(
Λ + 1

τ
ln P rs(x)

P cl(x)

)
P rs(x)

−
∑

x

(
Λ + 1

τ
ln P rs(x)

P cl(x)

)
P cl(x)

= 1
τ

∑
x

(
P rs(x) − P cl(x)

)
ln P rs(x)

P cl(x)

= 1
τ

J [P cl(x), P rs(x)], (S1.22)

where J [P cl(x), P rs(x)] is Jeffreys divergence. Jeffreys divergence is decomposed into two
Kullback-Leibler divergences, i.e.

J [p(x), q(x)] = DKL [p(x)||q(x)] + DKL [q(x)||p(x)] , (S1.23)

where
DKL [p(x)||q(x)] ≡

∑
x

p(x) ln p(x)
q(x)

. (S1.24)

Note that
⟨h(x)⟩rs − Λ = 1

τ
DKL

[
P rs(x)||P cl(x)

]
(S1.25)

and
Λ − ⟨h(x)⟩cl = 1

τ
DKL

[
P cl(x)||P rs(x)

]
(S1.26)

are also candidates of a measure of selection strength. Eq.S1.22, S1.25, and S1.26 are the
fundamental relations that link the fitness differences to the statistical deviations between
chronological and retrospective probability distributions of x.
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Since fitness landscape for D becomes

h̃(D) = 1
τ

ln
∑
D′

2D′
P cl(D′|D)

= 1
τ

ln
∑
D′

2D′
δD′,D = D

τ
ln 2, (S1.27)

the selection strength for division count D is

S [D] = 1
τ

⟨D ln 2⟩rs − 1
τ

⟨D ln 2⟩cl = 1
τ

J
[
P cl(D), P rs(D)

]
. (S1.28)

As shown below, S[D] imposes the upper bound of selection strength for any phenotype x.
Conditional KL divergence is defined by

DKL [p(x|y)||q(x|y)] ≡
∑
x,y

p(x, y) ln p(x|y)
q(x|y)

. (S1.29)

Likewise, conditional Jeffreys divergence is defined as

J [p(x|y), q(x|y)] ≡ DKL [p(x|y)||q(x|y)]
+DKL [q(x|y)||p(x|y)] . (S1.30)

Thus, it is natural to define selection strength of D conditioned on x as

S [D|x] ≡ 1
τ

J
[
P cl(D|x), P rs(D|x)

]
. (S1.31)

The KL divergence for joint probability distributions is decomposed to those for conditional
and marginal distributions (chain rule):

DKL [p(x, y)||q(x, y)] = DKL [p(x|y)||q(x|y)]
+DKL [p(y)||q(y)] . (S1.32)

Evidently, the similar relation holds for Jeffreys divergence:

J
[
P cl(D, x), P rs(D, x)

]
= J

[
P cl(D|x), P rs(D|x)

]
+J

[
P cl(x), P rs(x)

]
. (S1.33)

In fact, we can show that

J
[
P cl(D, x), P rs(D, x)

]
= J

[
P cl(D), P rs(D)

]
, (S1.34)

because

ln P rs(D, x)
P cl(D, x)

= ln
n(D,x)
⟨N(T )⟩

2−Dn(D, x)
= D ln 2 − τΛ, (S1.35)
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and

J
[
P cl(D, x), P rs(D, x)

]
=

∑
D,x

(
P rs(D, x) − P cl(D, x)

)
× ln P rs(D, x)

P cl(D, x)
=

∑
D,x

(
P rs(D, x) − P cl(D, x)

)
×(D ln 2 − τΛ)

= ⟨D ln 2⟩rs − ⟨D ln 2⟩cl

= J [P cl(D), P rs(D)]. (S1.36)

Thus, we can derive from Eq.S1.22, S1.27, and S1.31-S1.34,

S [D] = S [D|x] + S [x] . (S1.37)

Evidently, S [D] ≥ S [x]. S[x] reports to what extent variation of x affects the variation of
D.

1.4 Gaussian approximation and cumulant expansion

Below we show that selection strength is related to the variance of fitness and also to the
fitness correlation between division count and phenotype. We consider the joint probability
distribution of y = D ln 2

τ and z = h(x). From Eq.S1.15,

eτh(x) =
∑
D

2DP cl(D|x). (S1.38)

Here we put three assumptions:

1. z corresponds to x in a one-to-one manner.

2. y and z can be assumed as continuous variables.

3. P cl(y, z) follows bivariate normal distribution.

From the first and second assumptions, Eq.S1.38 can be rewritten as

eτz =
∫

eτyP cl(y|z)dy. (S1.39)

Further, by using the properties of bivariate normal distributions, we derive the relations
among the means and the variances for y and z. When P cl(y, z) follows bivariate normal
distribution, P cl(y|z) becomes normal distribution, and the right-side of Eq.S1.39 is the
moment generating function of P cl(y|z). Thus,

eτz = eτE[y|z]cl+ τ
2 α2(1−r2), (S1.40)

where

α2 ≡ τV ar[y]cl (S1.41)

r ≡ Cov[y, z]cl√
V ar[y]clV ar[z]cl

. (S1.42)
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We used
V ar[y|x]cl = V ar[y]cl(1 − r2) = α2(1 − r2)

τ
(S1.43)

to obtain Eq.S1.40. The logarithm of Eq.S1.40 gives

E[y|z]cl = z − α2(1 − r2)
2

. (S1.44)

By taking the averages of the both-sides of Eq.S1.44 for P cl(z),

E[y]cl = E[z]cl − α2(1 − r2)
2

. (S1.45)

Also, by taking the variances,

V ar[E[y|z]cl]cl = V ar[z]cl. (S1.46)

Covariance can be written as

Cov[y, z]cl = E[yz]cl − E[y]clE[z]cl

= E[zE[y|z]cl]cl − E[y]clE[z]cl. (S1.47)

Inserting Eq.S1.44 and S1.45 into Eq.S1.47 finds

Cov[y, z]cl = V ar[z]cl. (S1.48)

Thus, from the definition of r in Eq.S1.42,

V ar[z]cl = r2V ar[y]cl. (S1.49)

We next consider how the means and the variances of y and z are related between the
chronological and the retrospective probabilities. From Eq.S1.11, the chronological and the
retrospective probabilities are related to each other by

P rs(y, z) = eτ(y−Λ)P cl(y, z). (S1.50)

The cumulant generating function of P rs(y, z) is

Crs(p, q) ≡ ln
∫ ∞

−∞

∫ ∞

−∞
epyeqzP rs(y, z)dydz

= −Λτ + ln
∫ ∞

−∞

∫ ∞

−∞
e(p+τ)yeqzP cl(y, z)dydz

= −Λτ + Ccl(p + τ, q)
= −Λτ + (p + τ)E[y]cl + qE[z]cl

+1
2

{
(p + τ)2V ar[y]cl + 2(p + τ)qCov[y, z]cl + q2V ar[z]cl

}
. (S1.51)
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The above is exact for the Gaussian case, and in general it corresponds to the cumulant
expansion to second order. Thus,

E[y]rs = ∂Crs(p, q)
∂p

|p=q=0

= E[y]cl + τV ar[y]cl, (S1.52a)

E[z]rs = ∂Crs(p, q)
∂q

|p=q=0 = E[z]cl + τCov[y, z]cl

= E[z]cl + τV ar[z]cl, (S1.52b)

V ar[y]rs = ∂2Crs(p, q)
∂p2 |p=q=0 = V ar[y]cl, (S1.52c)

V ar[z]rs = ∂2Crs(p, q)
∂q2 |p=q=0 = V ar[z]cl, (S1.52d)

Cov[y, z]rs = ∂2Crs(p, q)
∂p∂q

|p=q=0 = Cov[y, z]cl. (S1.52e)

From the definition of selection strength (Eq.S1.22 and S1.28),

S[D] = E[y]rs − E[y]cl = τV ar[y]cl, (S1.53)
S[x] = E[z]rs − E[z]cl = τV ar[z]cl. (S1.54)

Therefore, selection strength (and equivalently fitness difference between retrospective and
chronological distributions) is linked with the fitness variance of the corresponding phenotype.
Furthermore,

Srel[x] ≡ S[x]
S[D]

= V ar[z]cl

V ar[y]cl = r2, (S1.55)

from Eq.S1.49, which shows that selection strength is also related to the fitness correlation
between division count and phenotype.

In addition,

S[D|x] = S[D] − S[x]
= τ(V ar[y]cl − V ar[z]cl)
= τ(1 − r2)V ar[y]cl

= (1 − r2)α2, (S1.56)

from Eq.S1.37, S1.41, S1.49, S1.53, S1.54. Since E[V ar[y|x]cl]cl = E
[

α2(1−r2)
τ

]cl
= α2(1−r2)

τ

from Eq.S1.43,
S[D|x] = τE[V ar[y|x]cl]cl. (S1.57)

S[x] is also rewritten as
S[x] = τV ar[z]cl = τV ar[E[y|z]cl]cl (S1.58)

from Eq.S1.54 and S1.46. Thus, the relationship of selection strength Eq.S1.37 corresponds
to the well-known law of total variance

V ar[y]cl = E[V ar[y|z]cl]cl + V ar[E[y|z]cl]cl. (S1.59)

The term V ar[E[y|z]cl]cl on the right-side is referred to as “informational component” of
parameter z for the total variance of y [1]. Thus, in our context, S[x] can be regarded as the
informational component of x for the total fitness variation.
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1.5 Separating individual response and selection in population

We next describe the general framework for distinguishing selection in population from in-
dividual response. For this purpose, we introduce environmental parameter E and denote
chronological probability distribution by P cl(D, x|E).

Then, fitness landscape and population growth rate are re-defined as

h(x; E) ≡ 1
τ

ln
∑
D

2DP cl(D|x, E), (S1.60)

and
Λ(E) ≡ 1

τ
ln

∑
D,x

2DP cl(D, x|E), (S1.61)

from Eq.S1.9 and S1.15. The retrospective probability distribution is

P rs(D, x|E) ≡ 2De−τΛ(E)P cl(D, x|E), (S1.62)

from Eq.S1.11. For marginal distributions of x,

P rs(x|E) = eτh(x;E)−τΛ(E)P cl(x|E), (S1.63)

from Eq.S1.14. Note that E is a normal parameter, not a random variable. We add E to
the upper index of the expectation to explicitly indicate the dependence of the probability
distributions on E . Selection strengths are defined as

SE [D] ≡ 1
τ

E [D ln 2]rs,E − 1
τ

E [D ln 2]cl,E , (S1.64)

and
SE [x] ≡ E [h(x; E)]rs,E − E [h(x; E)]cl,E . (S1.65)

Eq.S1.65 should be rewritten as

E [h(x; E)]rs,E = E [h(x; E)]cl,E + SE [x] . (S1.66)

The left-side of Eq.S1.66 represents the mean fitness for P rs(x|E), and the right side is com-
posed of two terms: the mean fitness for P cl(x|E), and the selection strength in the environ-
ment E . Thus, one can express the change of retrospective mean fitness as the sum of the
two terms: one representing the change of chronological mean fitness (individual response),
and the other representing the change of selection strength:

E [h(x; E)]rs,E
′
−E [h(x; E)]rs,E = (E [h(x; E)]cl,E ′

−E [h(x; E)]cl,E)+(SE ′ [x]−SE [x]). (S1.67)

We are therefore able to separately evaluate the contribution from individual response and
the one from selection strength by calculating and comparing E [h(x; E)]cl,E ′

− E [h(x; E)]cl,E

and SE ′ [x] − SE [x].

2 Data analysis
Here we describe how we evaluated fitness landscape and selection strength from the single-
cell lineage tree data.
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2.1 Notations

We denote the time-lapse interval by ∆t (= 5 min). We define the discrete time steps as
tk = k∆t for k = 0, 1, · · · , E, where tE = E∆t is the end time. We label individual trees
in a dataset by j = 1, · · · , M , where M denotes the number of cells at the start time, and
we label members of tree 1 by i = 1, · · · , N1, those of tree 2 by i = N1 + 1, · · · , N1 + N2,
and so on, where Nj denotes the number of lineages in tree j. Thus, the total number of
cells at tE is Ntot =

∑M
j=1 Nj . We introduce a function φ that returns the label of tree to

which a lineage belongs; when lineage i is a member of tree j, φ(i) = j. That is, φ(i) = j if
Nj−1 + 1 ≤ i ≤ Nj (we define N0 = 0).

From single-cell time-lapse experiments, we can obtain the information on the transitions
of individual cells’ phenotypes. Let the cell volume and protein concentration of a cell at
time t on lineage i be vi(t) and ci(t), respectively. In the analysis, we approximated vi(t)
by cell area projected on a two-dimensional image, and ci(t) by mean fluorescent intensity
within the corresponding cell area. We denote the entire time-courses of cellular volume and
protein concentration by vi ≡ {vi(tk)}0≤k≤E and ci ≡ {ci(tk)}0≤k≤E , respectively. We also
introduce the time-series of cell divisions: We define bi(tk) by bi(tk) = 1 if division occurred
at time tk+1 and otherwise bi(tk) = 0. We define bi ≡ {bi(tk)}0≤k≤E−1.

2.2 Coarse-grained phenotypes assigned to lineages

We calculated the coarse-grained phenotypes described in Main Text by

Di ≡
E−1∑
k=0

bi(tk), (S2.1)

ci ≡ 1
E + 1

E∑
k=0

ci(tk), (S2.2)

λi ≡
∑E−1

k=0 (1 − bi(tk)) ln vi(tk+1)
vi(tk)∑E−1

k=0 (1 − bi(tk))
, (S2.3)

and

pi ≡
∑E−1

k=0 (1 − bi(tk))
(
ci(tk+1) − ci(tk) + ci(tk) ln vi(tk+1)

vi(tk)

)
∑E−1

k=0 (1 − bi(tk))
. (S2.4)

Di is the number of cell divisions of lineage i; ci is the time-averaged protein concentration
of lineage i; λi is the time-averaged elongation rate of lineage i; and pi is the time-averaged
protein production rate of lineage i. The denominator of Eq.S2.3 and Eq.S2.4 is E − Di.

2.3 Coefficient of variation for coarse-grained lineage phenotype

We consider one-dimensional and continuous lineage phenotype x̂i (suppose ci, pi and λi as
x̂i). Let P rs

i = 1/Ntot and P cl
i = 2−Di/M . The coefficient of variation (CV) with chronological

and retrospective weights are

CVcl ≡

√∑Ntot
i=1 P cl

i x̂2
i −

(∑Ntot
i=1 P cl

i x̂i

)2

∑Ntot
i=1 P cl

i x̂i

, (S2.5)
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and

CVrs ≡

√∑Ntot
i=1 P rs

i x̂2
i −

(∑Ntot
i=1 P rs

i x̂i

)2

∑Ntot
i=1 P rs

i x̂i

. (S2.6)

We calculated chronological and retrospective CVs for lineage phenotypes which are shown
in S9 Fig.

2.4 Chronological and retrospective lineage probabilities

We define the interval Ix,∆x ≡
[
x − ∆x

2 , x + ∆x
2

)
. and then we can define the chronological

and retrospective probability densities for x.
The expectation with respect to P(T ) in Eq.S1.6 is replaced by the arithmetic mean over

trees and thereby we define the chronological probability density of x by

P̂ cl(x) ≡ 1
∆x

1
M

M∑
j=1

∑
i:x̂i∈Ix,∆x,φ(i)=j

2−Di

= 1
∆x

1
M

∑
i:x̂i∈Ix,∆x

2−Di . (S2.7)

Similarly, the expected total number of cell lineages in a tree ⟨N(T )⟩ in Eq.S1.7 is replaced
by

1
M

M∑
j=1

Nj = Ntot
M

. (S2.8)

Then, we define the retrospective probability density of x by

P̂ rs(x) ≡ 1
∆x

M

Ntot

1
M

M∑
j=1

∑
i:x̂i∈Ix,∆x,φ(i)=j

1

= 1
∆x

1
Ntot

∑
i:x̂i∈Ix,∆x

1. (S2.9)

Here we simply estimate the probability densities by the frequency polygons. That is, x takes
discrete values xmin, xmin+∆x, · · · , xmin+(L−1)∆x, where xmin is the minimum value among
x̂i and L is the number of total bins determined by L = ⌊xmax−xmin

∆x ⌋ + 2 where xmax denotes
the maximum value among x̂i. We determine ∆x from the interquartile range of x̂, where
x̂ = {x̂i}1≤i≤Ntot

. Let the interquartile range of x̂ denoted by IQR(x̂). Interquartile range
is expected to be more robust for outliers than standard deviation; we therefore determined
∆x with a constant α as

∆x = α · IQR(x̂). (S2.10)

As explained before, we choose α so that selection strength of x becomes the least sensitive
to the change of ∆x.

2.5 Fitness landscape and selection strength

Let τ = E∆t. From Eq.S2.8 and Eq.S1.9, the population growth rate Λ̂ can be evaluated by

Λ̂ ≡ 1
τ

ln Ntot
M

. (S2.11)
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We evaluated fitness landscape ĥ(x) by

ĥ(x) ≡ 1
τ

ln NtotP
rs(x)

MP cl(x)
, (S2.12)

which corresponds to Eq.S1.13 in Sec.1.2. We also evaluated selection strength by

ŜX (∆x) ≡ 1
τ

L−1∑
l=0

ĥ(xmin + l∆x)
(
P rs(xmin + l∆x) − P cl(xmin + l∆x)

)
∆x, (S2.13)

which corresponds to Eq.S1.22 in Sec.1.3. Here we represented selection strength as a function
of bin width ∆x. We can define selection strength for division count by

ŜD ≡ 1
τ

Ntot∑
i=1

(
P rs

i − P cl
i

)
Di ln 2. (S2.14)

where P rs
i = 1/Ntot and P cl

i = 2−Di/M . The value of selection strength ŜX(∆x) depends on
the bin width ∆x. In fact, we can show that ŜX(∆x) = ŜD if ∆x < ∆x̂min ≡ mini ̸=j |x̂i − x̂j |,
and that ŜX(∆x) = 0 if ∆x > 2∆x̂max ≡ 2 maxi̸=j |x̂i − x̂j |. Thus, ŜX(∆x) increases from
0 to ŜD as ∆x decreases from 2∆x̂max to ∆x̂min. At the proper level of ∆x, we expect that
ŜX(∆x) is robust against the change of ∆x and shows a plateau, which we indeed found in
our experimental data in Fig 3 and 4.

2.6 Error estimates for fitness landscape and selection strength

To evaluate the error ranges of fitness landscapes and selection strengths in the simulation,
we calculated mean and standard deviation of 10 numerical simulations for the each condition
with different rg and Hill coefficient n For experimental data analysis, we calculated mean
and standard deviation of fitness landscapes and selection strengths of the three independent
time-lapse experiments for the each condition of +Sm and −Sm.

In the simulation, we obtained xmin and xmax for each condition of rg and Hill coefficient
n from the 10 datasets and determined the bin width as 0.3IQR(x̂).

In the experiment for F3/pTN001, we performed the lineage analysis separately for the
early term (from 0 min to 200 min) and the late term (from 200 min to 400 min). In the
experiment for F3NW, we performed the lineage analysis for lineages starting from 100 min
lasting to 300 min. To assign the same bins for the replicate experiments, we obtained xmin
and xmax from the six datasets for F3/pTN001 and eight datasets for F3NW, and determined
the bin width as 0.4IQR(x̂) for the early term of F3/pTN001, and 0.3IQR(x̂) for F3NW and
the late term of F3/pTN001. The number of cells at different time points are summarized
in S1 Table and S2 Table. In S6 Fig, we show the fitness landscapes and selection strengths
for the early term of F3/pTN001; we did not detect the differences of the selection strengths
between +Sm and −Sm conditions for all the phenotypes during the early term.

2.7 Selection strengths for randomly shuffled phenotype

To test whether a selection strengths of phenotype x, S[x], reports statistically significant cor-
relation between x and D, we computed selection strengths for randomly shuffled combination
of D and x across lineages. Let p ≡ (pi)i=1,··· ,Ntot a random permutation of (1, 2, · · · , Ntot),
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i.e. p is a realization randomly chosen from all possible Ntot! permutations with equal prob-
ability. For a set of (Di, x̂i) over i = 1, 2, · · · , Ntot, we randomly shuffle x̂i and do not shuffle
Di, obtaining a new set {(Di, x̂′

i)}i=1,··· ,Ntot
where x̂′

i = xpi . For the set {(Di, x̂′
i)}i=1,··· ,Ntot

,
we calculate the selection strength of x as described in Sec.2.4 and Sec.2.5, denoted by
Sshuffled [x]. x̂i takes the values Di, λi, pi and ci. When x̂i takes the values λi, pi and ci,
Sshuffled [x] is directly calculated by Eq.S2.13. For Di, we computed Sshuffled [D] as follows.

We fix a random permutation p and we introduce a new variable D̃i = Dpi as a phenotypic
value of the i-th lineage. The i-th lineage divides Di times while we assume that it has a
phenotypic value D̃i = Dpi . Then, we can define retrospective and chronological probabilities
of D̃ = d as below:

P̂ cl
(
D̃ = d

)
≡ 1

M

∑
i:Dpi =d

2−Di , (S2.15)

P̂ rs
(
D̃ = d

)
≡ 1

Ntot

∑
i:Dpi =d

1. (S2.16)

Finally we can calculate

Sshuffled [D] = 1
τ

∑
d

(
P̂ rs

(
D̃ = d

)
− P̂ cl

(
D̃ = d

))
ln

P̂ rs
(
D̃ = d

)
P̂ cl

(
D̃ = d

) . (S2.17)

Since the fitness landscape of D̃ is given by

ĥ(D̃) = 1
τ

ln
P̂ rs

(
D̃

)
P̂ cl

(
D̃

) + Λ̂ (S2.18)

(Λ̂ is defined in Eq.S2.11), Eq.S2.18 is also written as

Sshuffled [D] =
∑

d

(
P̂ rs

(
D̃ = d

)
− P̂ cl

(
D̃ = d

))
ĥ(D̃ = d). (S2.19)

By repeating many times such random shuffling of phenotype and computing Sshuffled [x],
we obtain the median and confidence interval. We repeated shuffling 10000 times and com-
puted the 95% CI as shown in S10 Fig.

2.8 Calculation of autocorrelation functions of fluorescent intensities

To calculate the autocorrelation functions, we rewrite the notations for lineages by explicitly
denoting different time windows. Similarly to the previous section, the start time and the
end time of the whole trees are denoted by t0 = 0 and tE = E∆t. The partial time-courses of
fluorescent protein concentration are denoted by c

[l,m]
i ≡ {c

[l,m]
i (tk)}l−m≤k≤l. m denotes the

time-length of the partial timeseries and l denotes the end timepoint of the partial timeseries.
Let N(tl) be the cell number at time tl and i = 1, 2, · · · , N(tl). The set of (i, l, m) uniquely
indentifies a partial cell lineage and let the number of divisions of the lineages labled with
(i, l, m) denoted by Dl,m

i .
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We define the autocorrelation function of the fluorescent protein concentration weighed
with arbitrary weight w

[l,m]
i by

Φ(m∆t) ≡
E∑

l=m

N(tl)∑
i=1

w
[l,m]
i

Wm
c

[l,m]
i (tl−m)c[l,m]

i (tl)−
E∑

l=m

N(tl)∑
i=1

w
[l,m]
i

Wm
c

[l,m]
i (tl−m)

E∑
l=m

N(tl)∑
i=1

w
[l,m]
i

Wm
c

[l,m]
i (tl)

(S2.20)
where

Wm =
E∑

l=m

N(tl)∑
i=1

w
[l,m]
i . (S2.21)

We normalize the autocorrelation function by the square root of the product of

Vm ≡ 1
Wm

E∑
l=m

N(tl)∑
i=1

w
[l,m]
i c

[l,m]
i (tl)2 −

 1
Wm

E∑
l=m

N(tl)∑
i=1

w
[l,m]
i c

[l,m]
i (tl)

2

(S2.22)

and

Ṽm ≡ 1
Wm

E∑
l=m

N(tl)∑
i=1

w
[l,m]
i c

[l,m]
i (tl−m)2 −

 1
Wm

E∑
l=m

N(tl)∑
i=1

w
[l,m]
i c

[l,m]
i (tl−m)

2

. (S2.23)

Vm is the variance of fluorescent protein concentrations at the end timepoint among the
lineages whose time-length is m∆t, and Ṽm is the variance at the start timepoint. That is,
the normalized autocorrelation function is gven by

ϕ(m∆t) ≡ Φ(m∆t)√
VmṼm

. (S2.24)

We calculated the normalized autocorrelation function ϕ(m∆t) for chronological and ret-
rospective weights: w

[l,m]
i = 2−D

[l,m]
i for chronological and w

[l,m]
i = 1 for retrospective. We

checked the normalized autocorrelation functions with chronological weighing were succesfully
consisted to the rigorous function of autocorrelation in the simulation, while the retrospec-
tively weighed autocorrelation functions were more biased as stronger selection acted on the
simulated phenotypic state. Normalized autocorrelation functions of the experimental data
described in Main Text are shown in S1 Fig.

3 Application to models
We here apply our framework to several models and derive the expressions for fitness land-
scape and selection strength.

3.1 Markov model for population dynamics with phenotypic fluctuation

We model population dynamics with a large number of cells whose phenotypic traits tem-
porally fluctuate as discrete-state continuous-time Markov process. This model has been
studied previously [2, 3]; here we apply our framework to show how our measures of fitness
landscape and selection strength are given in this well-studied model.
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Let cellular phenotype denoted by x, which may be a multivariate vector in general: x
represents a set of values of multiple phenotypic traits (e.g. a set of expression levels of
gene A, gene B,... and gene Z). Let the number of cells with phenotype x at time t denoted
by Ŷt(x). Let the environmental conditions denoted by E(t) that may temporally vary (we
assume E(t) also takes discrete states). Within an infinitesimal time period dt, a cell with
phenotype x switches to phenotype x′ with probability sE(x → x′)dt and divides into two
identical siblings with probability f(x)dt. We define sE(x → x) = 0. We call sE(x → x′) the
switching rate from x to x′ and fE(x) the instantaneous fitness (reproduction rate) of a cell
with phenotype x. The upper index E indicates that switching rate and instantaneous fitness
depend on the current environmental conditions E . We denote the expected number of cells
with a phenotype x at time t by n(x, t) ≡ E

[
Ŷt(x)

]
, where E

[
X̂

]
represents the expected

value of the random variable X̂. Then, we can derive the equation for time-evolution of
n(x, t) as

d

dt
n(x, t) =

(
fE(t)(x) − ηE(t)(x)

)
n(x, t) +

∑
x′

n(x′, t)sE(t)(x′ → x), (S3.1)

where ηE(x) is defined by
ηE(x) ≡

∑
x′

sE(x → x′), (S3.2)

which is called the escape rate. The summation is taken over the whole set of phenotypes.
We define the diagonal matrix F (t) with elements fE(x)δx,x′ and the square matrix S(t) with
elements sE(x′ → x) − ηE(x)δx,x′ . Then, the solution of Eq.S3.1 can be represented by the
summation of the biased path probabilities as shown below.

To obtain this representation, we introduce history formulation of the population dynam-
ics for Eq.S3.1 as done in [3]. We fix a time period τ . Let a phenotype at time t denoted
by x(t) and its time-series {x(t)}0≤t≤τ by σ. We call σ a phenotypic history. We begin by
introducing chronological path probabilities of phenotypic history σ, P cl(σ). P cl(σ) is the
path probability of σ generated by the switching matrix S. We fix the initial condition of
Eq.S3.1 to n(x, 0) that satisfies

∑
x n(x, 0) = 1 and thereby n(x, 0) is a probability distribu-

tion describing the frequency of phenotype in the initial population. Then, P cl(σ) can be
represented as below:

P cl(σ) = lim
m→∞

m−1∏
j=0

(
eS∆t

)
x((j+1)∆t),x(j∆t)

 n(x(0), 0) (S3.3)

where ∆t = τ/m. Next, we define historical fitness, H(σ), as

H(σ) ≡
∫ τ

0
fE(t)(x(t))dt. (S3.4)

Historical fitness H(σ) is the time-integral of instantaneous fitness over the entire phenotypic
history. In fact, P cl(σ)eH(σ) represents the expected number of cells with phenotypic history
σ in population growing with instantaneous fitness f(x) [3]. Thus the expected number of
cells with phenotype x in the final population (i.e. at time τ) is the sum of P cl(σ)eH(σ) over
all histories that end in the phenotype x:

n(x, τ) =
∑

σ∈Hx,τ

P cl(σ)eH(σ), (S3.5)
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where Hx,τ denotes the space of all phenotypic histories of length τ that end in the phenotype
x. This representation gives the solution of Eq.S3.1. Similarly, the expected number of cell
in the final population (at time τ) is the sum of P cl(σ)eH(σ) over all histories:

N(τ) =
∑

σ∈Hτ

P cl(σ)eH(σ), (S3.6)

where Hτ denotes the space of all phenotypic histories of length τ . Retrospective path proba-
bilities becomes

P rs(σ) = P cl(σ)eH(σ)

N(τ)
. (S3.7)

P rs(σ) represents the frequency of phenotypic history σ in population. In the model described
here, in which cells divide depending only on instantaneous fitness fE(x), cellular division
on history σ follows inhomogeneous Poisson process. Consequently, the number of divisions
D conditioned on chronological history σ follows Poisson distribution whose mean division
number is historical fitness H(σ):

P cl(D|σ) = H(σ)D

D!
e−H(σ). (S3.8)

Then, fitness landscape for history σ satisfies

eτh(σ) =
∞∑

D=0
2D H(σ)D

D!
e−H(σ) = eH(σ). (S3.9)

Thus
h(σ) = H(σ)

τ
. (S3.10)

This result shows that fitness landscape for σ is in fact equivalent of historical fitness divided
by time length τ in this model.

We can also derive a general consequence for the selection strength. P rs(D|σ) also follows
the Poisson distribution because

P rs(D|σ) = 2De−H(σ)P cl(D|σ) = (2H(σ))D

D!
e−2H(σ). (S3.11)

Thus, the mean division count is E [D|σ]rs = 2H(σ). From Eq.S1.28, the maximum selection
strength is

S [D] = 1
τ

(
E [D]rs − E [D]cl

)
ln 2

= 1
τ

(
E [E [D|σ]rs]rs − E

[
E [D|σ]cl

]cl
)

ln 2

= 1
τ

(
2E [H(σ)]rs − E [H(σ)]cl

)
ln 2

=
(
2S [σ] + E [h(σ)]cl

)
ln 2. (S3.12)

In the third row, we used E [D|σ]rs = 2H(σ) and E [D|σ]cl = H(σ); in the last row, we used
h(σ) = H(σ)/τ and S [σ] = E [h(σ)]rs − E [h(σ)]cl.
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Eq.S3.12 provides the upper bound of selection strength for σ in this model. Noting that
E [h(σ)]cl is always positive,

S [σ]
S [D]

= S [σ]
2S [σ] + E [h(σ)]cl

1
ln 2

<
1

2 ln 2
≈ 0.72 (S3.13)

holds. Thus, the selection strength for σ is bounded by S[D]
2 ln 2 ≈ 0.72 S[D].

3.2 Selection strength and derivative of long-term population growth rate

Here we briefly discuss the application of large deviation theory [4] to population dynamics
and we consider the large deviation property for time-averaged fitness on history. For the
convenience of the calculation, we introduce a univariate control parameter β, which perturbs
historical fitness. Thereby we define Pβ(σ) as

Pβ(σ) ≡ P cl(σ)eβH(σ)

N(τ, β)
. (S3.14)

where N(τ, β) ≡
∑

σ∈Hτ
P cl(σ)eβH(σ). Evidently, Pβ=0(σ) = P cl(σ) and Pβ=1(σ) = P rs(σ).

We call β historical conditions factor [3]. We assume the existence of long term population
growth rate:

Λ(β) ≡ lim
τ→∞

1
τ

ln N(τ, β). (S3.15)

We call historical fitness divided by time-length τ , f τ ≡ H(σ)/τ , time-averaged fitness (f τ

is a random variable). We define the probability distribution of time-averaged fitness by

Qβ(h) ≡
∑

σ∈Hτ,h

Pβ(σ) (S3.16)

where Hτ,h is a set of histories with length τ and with the time-averaged fitness f τ = h.
Thus, chronological and retrospective probabilities are defined by Qcl(h) ≡ Qβ=0(h) and
Qrs(h) ≡ Qβ=1(h). We assume the existence of the limit of time-averaged fitness hcl

∗ such
that

lim
τ→∞

f τ = hcl
∗ (S3.17)

holds with probability 1 in chronological perspective. hcl
∗ is the most probable time-average

fitness with respect to the chronological probability. We further assume the large deviation
property of Qcl(h):

Qcl(h) ≈ e−τIcl(h), (S3.18)

for large τ , where Icl(h) is the rate function that satisfies Icl(h) ≥ Icl(hcl
∗ ) = 0. Icl(h) is the

convex function of h. Then, the rate function of Qβ(h) can be represented as

Iβ(h) ≡ − lim
τ→∞

1
τ

ln Qβ(h) = Icl(h) − βh + Λ(β). (S3.19)

Thus, the most probable time-averaged fitness in population with historical condition factor
β is

h∗(β) ≡ arg min
h

Iβ(h) = arg max
h

[
βh − Icl(h)

]
, (S3.20)
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and the variational formula

Λ(β) = βh∗(β) − Icl(h∗(β)) = max
h

[
βh − Icl(h)

]
(S3.21)

holds. The stationary condition for the term βh − Icl(h) is

β = dIcl(h)
dh

∣∣∣∣∣
h=h∗(β)

. (S3.22)

Evidently, hcl
∗ = h∗(0) and we define hrs

∗ ≡ h∗(1). Since Icl(h) is the convex function, by
inverse Legendre transformation of Eq.S3.21, we obtain

Icl(h) = max
β

[βh − Λ(β)] . (S3.23)

Thus, the rate function of Qrs(h) is

Irs(h) ≡ Iβ=1(h) = max
β

[βh − Λ(β)] − (h − Λ(1)). (S3.24)

Using Eq.S3.22, we obtain

dΛ(β)
dβ

= h∗(β) + β
dh∗(β)

dβ
− dh∗(β)

dβ

dIcl(h)
dh

∣∣∣∣∣
h=h∗(β)

= h∗(β), (S3.25)

and thus
hcl

∗ = h∗(0) = dΛ(β)
dβ

∣∣∣∣
β=0

, (S3.26)

and
hrs

∗ = h∗(1) = dΛ(β)
dβ

∣∣∣∣
β=1

. (S3.27)

Since f τ = H(σ)/τ represents the fitness landscape of phenotypic histories, the selection
strength for phenotypic histories is represented as

S [σ] =
⟨
f τ

⟩rs
−

⟨
f τ

⟩cl
= S

[
f τ

]
. (S3.28)

Thus the large τ limit of S [σ] is exactly calculated as

S
[
f∞

]
≡ lim

τ→∞
S

[
f τ

]
= hrs

∗ − hcl
∗ = dΛ(β)

dβ

∣∣∣∣
β=1

− dΛ(β)
dβ

∣∣∣∣
β=0

. (S3.29)

As done in [3], Λ(β) can be analytically calculated or at least numerically calculated from
the results of simulations. Thus, without calculating or sampling specific long-term histories,
we can evaluate the long-term limit of the selection strength for phenotypic histories. Such
evaluation is done for the following examples.

19



3.3 Two-state switching model

Here we treat a simplified version of the previous model, in which individuals transits between
two phenotypic states, each adapted to two different environments. Adapted individuals have
instantaneous fitness fa and non-adapted individuals, lower fitness fna. Individuals can switch
phenotypes either stochastically of responsively. Stochastic and responsive switching rates
are given by s and sr, respectively. Adapted individuals switch to the non-adapted state with
rate s and non-adapted individuals switch to the adapted state with rate s + sr. Now we
consider the situation where the environment changes between two conditions periodically,
with the period τenv (i.e. population grows in the same environment during the period τenv).

When qa is the frequency of the adaptive phenotypic state on a history, the fitness land-
scape for phenotypic history is exactly represented as

h (qa) = 1
τ

∫ τ

0
f (x(t)) dt = faqa + fna (1 − qa) = fna + qa∆f, (S3.30)

where ∆f ≡ fa − fna. In small τ−1
env condition where the environment changes as slowly as

the population reaches the steady growing state in each environment, we have the analytical
solution for Λ(β) as shown in [3],

Λ(β) = β(fa + fna) − (2s + sr) + K(β)
2

+ 1
τenv

ln 2s + sr

K(β)
+ o(τ−1

env), (S3.31)

where
K(β) =

√
(β∆f)2 + 2(β∆f)sr + (2s + sr)2. (S3.32)

Higher order terms denoted by o(τ−1
env), which decrease faster that τ−1

env as τenv → ∞, can be
expressed as

1
τenv

(
c1e−τK(β) + c2e−2τK(β) + · · ·

)
, (S3.33)

using the powers of e−τK(β), where c1, c2... are constants. Thus, e−τK(β) ≪ 1 is the condition
with which the expansion of Eq.S3.31 gives a good approximation of Λ(β) . By using the
relation

dK(β)
dβ

= ∆f(β∆f + sr)
K(β)

, (S3.34)

we can derive

dΛ(β)
dβ

= fa + fna
2

+ ∆f(β∆f + sr)
( 1

2K(β)
− 1

τenvK(β)2

)
+ o(τ−1

env). (S3.35)

Evaluating Eq.S3.35 at β = 0 and β = 1, we can obtain the selection strength for phenotypic
history in the long-term limit τ → ∞ from Eq.S3.29. Since the general form of Eq.S3.35
are complicated, we discuss three limiting cases. For each case, only the smallest order term
among non-zero terms (both for O(1) and for O(τ−1

env)) is remained in the calculations.
For responsive switching where sr ≫ ∆f and s/∆f → 0,

hcl
∗ = fa − 1

τenv

∆f

sr
+ o(τ−1

env), (S3.36)

and
S

[
f∞

]
= 1

τenv

(
∆f

sr

)2
+ o(τ−1

env). (S3.37)
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In this case, increasing the frequency of environmental changes (i.e. τenv ↘) reduces the
fitness of the most probable chronological histories while it raises the selection strength. Still,
the reduction of chronological fitness is much larger than the fitness gain by the increase of
selection strength since sr ≫ ∆f . Thus, increasing the frequency of environmental changes
reduces the fitness of the most probable retrospective histories.

For stochastic switching where sr = 0,

hcl
∗ = fa + fna

2
+ o(τ−1

env), (S3.38)

and thus the change of environmental duration dose not change the fitness of the most
probable chronological histories in the order of τ−1

env. When 2s ≫ ∆f (fast switching),

S
[
f∞

]
= ∆f2

4s
− 1

τenv

(
∆f

2s

)2
+ o(τ−1

env). (S3.39)

Therefore, the increased frequency of environmental changes reduces the selection strength.
When 2s ≪ ∆f (slow switching),

S
[
f∞

]
= ∆f

2
− 1

τenv
+ o(τ−1

env), (S3.40)

and again, the selection strength decreases.
This two-state switching model was already studied in [3], in which another measure of

selection strength, Ms, was introduced. Ms is defined as

Ms ≡ lim
τ→∞

τVar
[
f τ

]rs
. (S3.41)

This is also expressed as

Ms = d2Λ(β)
dβ2

∣∣∣∣∣
β=1

. (S3.42)

Thus, we can directly compare S
[
f∞

]
with Ms by calculating the second derivative of Λ(β)

and evaluating it at β = 1.
In the cases of weak selection (the first and second cases), we can show that the repre-

sentations becomes identical between S
[
f∞

]
and Ms to first order in τ−1

env. In the third case
(sr = 0, 2s ≪ ∆f), the representations are slightly different:

Ms = 2s2

∆f
+ 1

τenv
+ o(τ−1

env) (S3.43)

(see Eq.S3.40). The difference between S
[
f∞

]
and Ms means that the second derivative of

Λ(β) greatly changes for 0 ≤ β ≤ 1 because we can express S
[
f∞

]
as

S
[
f∞

]
=

∫ 1

0

d2Λ(β)
dβ2 dβ. (S3.44)

In fact, when sr = 0,

d2Λ(β)
dβ2 = 1

2
∆f2√

(β∆f)2 + (2s)2
(2s)2

(β∆f)2 + (2s)2 + 1
τenv

∆f2

(β∆f)2 + (2s)2
(β∆f)2 − (2s)2

(β∆f)2 + (2s)2 .

(S3.45)
This is more sensitive to the changes in β when 2s ≪ ∆f than when 2s ≫ ∆f .
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3.4 Simple stochastic gene expression model

In this last section, we apply our framework to an analytically tractable stochastic gene
expression model.

Here we treat the continuous-state stochastic process. We assume that protein is produced
from mRNA at a constant rate kp, and mRNA from gene at a rate k [5, 6]. We also assume
that life time (due to dilution + degradation) of mRNA, γ−1

m , is much shorter than that of
protein, γ−1. In the limit of γ/γm → 0 with b = kp/γm fixed, protein copy number produced
per mRNA transcript follows exponential distribution with mean b (called mean burst size).
Let Xt be protein copy number at time t. Then,

E [dXt|Xt = x] = (kb − γx)dt, (S3.46)

and
E

[
dX2

t |Xt = x
]

= 2kb2dt. (S3.47)

We introduce diffusion approximation (i.e. E[dXn
t ] = 0 for n ≥ 3) [7, 8] (master equation

without this approximation is described in [9]; its stationary solution is gamma distribution).
The stochastic differential equation is

dXt = (kb − γXt)dt +
√

2kb2dWt, (S3.48)

where dWt is the standard Wiener process, and the master equation (Fokker-Planck equation)
is,

∂q(x, t)
∂t

= − ∂

∂x

[
(kb − γx)q(x, t) − kb2 ∂

∂x
q(x, t)

]
, (S3.49)

where q(x, t) = E [δ(Xt − x)]. The stationary solution qst(x) is

qst(x) = 1√
2π kb2

γ

exp

−
(x − kb

γ )2

2kb2

γ

 . (S3.50)

This is the stationary protein copy number distribution when difference of copy number
causes no fitness advantage or disadvantage for cells (i.e. without selection).

When fitness is correlated with protein copy number, the stationary distribution becomes
different from qst(x). As a simple case, we now assume that instantaneous reproduction rate
is a linear function of Xt, i.e.

f(Xt) = f0 + ξXt. (S3.51)

ξ = 0 corresponds to the case without selection. Let p(x, t) = E [δ(Xt − x)]ξ. The master
equation is

∂p(x, t)
∂t

= − ∂

∂x

[
(kb − γx)p(x, t) − kb2 ∂

∂x
p(x, t)

]
+ (f(x) − λ(t)) p(x, t), (S3.52)

where λ(t) ≡
∫

f(x)p(x, t)dx is instantaneous population fitness at time t [7, 8]. At stationary
state, the master equation becomes

λst(ξ)pst(x) = f(x)pst(x) − ∂

∂x

[
(kb − γx)pst(x) − kb2 ∂

∂x
pst(x)

]
, (S3.53)
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where λst(ξ) =
∫

f(x)pst(x)dx. Then, the solution is

pst(x) = 1√
2π kb2

γ

exp

−(x − µ(ξ))2

2kb2

γ

 , (S3.54)

where
µ(ξ) = kb

γ
+ kb2

γ2 ξ, (S3.55)

and
λst(ξ) = f0 + kb

γ
ξ + kb2

γ2 ξ2 (S3.56)

[7, 8].
Now we evaluate the selection strength S

[
X∞

]
. Since instantaneous fitness is a deter-

ministic function of Xt in this model, Eq.S3.29 can be used to obtain S
[
X∞

]
. Λ(β) defined

in Eq.S3.15 is obtained by transforming f(x) → βf(x) in the present model. Replacing f0
with βf0 and ξ with βξ in Eq.S3.56, we obtain

Λ(β) = βf0 + kb

γ
βξ + kb2

γ2 β2ξ2 (S3.57)

Thus,

hcl
∗ = dΛ(β)

dβ

∣∣∣∣
β=0

= f0 + kρ, (S3.58)

hrs
∗ = dΛ(β)

dβ

∣∣∣∣
β=1

= f0 + kρ + 2kρ2, (S3.59)

and
S

[
X∞

]
= S

[
f∞

]
= hrs

∗ − hcl
∗ = 2kρ2, (S3.60)

where
ρ = bξ

γ
. (S3.61)

is the ratio of the timescale of phenotypic fluctuation, γ−1, to the timescale of selection,
(bξ)−1. Based on these results, we can tell to what extents an environmental perturbation
provokes individual response and change in selection strength. For example, when an envi-
ronmental perturbation changes only transcription rate k, the individual response and the
change in selection strength are

∂hcl
∗

∂k
= ρ, (S3.62)

and
∂

∂k
S

[
X∞

]
= 2ρ2, (S3.63)

respectively. Therefore, when ρ > 1/2, the change in selection strength contributes to the
change in hrs

∗ to a greater extent than the individual response. Note that we cannot distinguish
these two effects only from the changes in hrs

∗ nor in Λ(β).
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We can also calculate the maximum selection strength S[D] in this model. From. Eq.S3.12,
S3.58, and S3.60,

S[D] =
(
4kρ2 + kρ + f0

)
ln 2. (S3.64)

Thus, the effect of perturbation on transcription rate k on S[D] is

∂

∂k
S[D] =

(
4ρ2 + ρ

)
ln 2. (S3.65)

4 Materials and Methods

4.1 Plasmids

We constructed pTN001 and pTN002 plasmids from pLVK3 plasmid in the lab collection.
pLVK3 plasmid was constructed by introducing PLlacO-1 promoter [10], venus structural gene
[11], t1t2 rrnB terminator, and frt-franked kanamycin resistance (kanR) cassette [12] into the
multi-cloning site of pMW118 (pSC101 ori, Nippon Gene).

pLVK3 plasmid harbors SacI-MluI restriction sites within the structural gene of venus
before the stop codon. We used these sites to introduce streptomycin resistance gene smR

into the plasmid pLVK3. We amplified smR gene from pKP2375 plasmid (provided from
Hironori Niki, National Institute of Genetics, Japan) by PCR with the primers SacI-str_F
and str-Mlu_R (see S3 Table for the primer sequence). The PCR product and pLVK3 were
digested by SacI and MluI restriction enzymes, and ligated to obtain pLVSK3.

We also replaced ribosome-binding site (RBS, AGGAGAAAGGTACC) for venus-smR

into a stronger one (AGGAGGAAAAAA) by PCR with the primers RBS-A-venus_F and
PLseries_R. The PCR product was self-ligated to obtain pLVSK4.

To create pTN001 plasmid, we separated the venus and smR structural genes by adding
the stop codon to venus and placing the RBS (the same sequence as that for venus) before
smR. We accomplished this by PCR using pLVSK4 as the template and with the primers
RBS4ATG_F and TAAA_R. The PCR product was self-ligated to obtain pTN001.

We constructed the control plasmid pTN002 as follows. We first changed the RBS of
pLVK3 by PCR with the primers RBS-A-venus_F and PLseries_R. The PCR product was
self-ligated to obtain pLVK4 plasmid. Next, we removed the SacI-MluI sites before the stop
codon of venus by PCR with the primers term_F and venus_R. The PCR product was again
self-ligated to obtain pTN002.

The DNA sequences of pTN001, pTN002, pLVK3, pLVSK4, and pTmCherry4 (see below)
are available on the Dryad data repository site.

4.2 E. coli strains

We transformed E. coli F3 strain (W3110 ∆fliC ∆fimA ∆flu) [13] with pTN001 and pTN002
to construct F3/pTN001 and F3/pTN002.

We also constructed F3NW strain (W3110 ∆fliC ∆fimA ∆flu intC::PLlacO−1-venus-smR

galK::PLtetO−1-mcherry) using the standard λ-Red recombination method [12]. We first am-
plified the DNA fragment from P_LlacO-1 promoter to frt-franked kanR cassette on pLVSK4
by PCR with the primers intC_PlacO1_F3 and intC_R. The PCR product was introduced
into the intC locus of E. coli BW25113/pKD46 strain (provided from The Coli Genetic Stock
Center (CGSC) at Yale) by electroporation. The inserted DNA fragment was transferred to
F3 by P1 transduction. kanR gene was removed by pCP20 (provided from CGSC at Yale).
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We also introduced PLtetO-1-mcherry fragment into the galK locus, first in BW25113/pKD46,
and then transferred to F3 intC::PLlacO−1-venus-smR by P1 transduction. The DNA fragment
of PLtetO-1 [10], mcherry, and frt-franked kanR cassette was amplified from pTmCherryK4
plasmid in the lab collection with the primers galK_PtetO1_F3 and galK_R3. The kanR

gene was removed by pCP20 to obtain the final construct F3NW.

25



Supporting References
[1] Bowsher CG, Swain PS. Identifying sources of variation and the flow of information in

biochemical networks. Proc Natl Acad Sci U S A. 2012;109(20):E1320–8.

[2] Hermisson J, Redner O, Wagner H, Baake E. Mutation-selection balance: ancestry, load,
and maximum principle. Theor Popul Biol. 2002;62(1):9–46.

[3] Leibler S, Kussell E. Individual histories and selection in heterogeneous populations.
Proc Natl Acad Sci U S A. 2010;107(29):13183–8.

[4] Dembo A, Zeitouni O. Large Deviations Techniques and Applications. vol. 38 of Stochas-
tic Modelling and Applied Probability. 2nd ed. Berlin, Heidelberg: Springer; 1998.

[5] Shahrezaei V, Swain PS. Analytical distributions for stochastic gene expression. Proc
Natl Acad Sci U S A. 2008;105(45):17256–61.

[6] Thattai M, van Oudenaarden a. Intrinsic noise in gene regulatory networks. Proc Natl
Acad Sci U S A. 2001;98(15):8614–9.

[7] Sato K, Kaneko K. On the distribution of state values of reproducing cells. Phys Biol.
2006;3(1):74–82.

[8] Mora T, Walczak AM. Effect of phenotypic selection on stochastic gene expression. J
Phys Chem B. 2013;117(42):13194–205.

[9] Friedman N, Cai L, Xie XS. Linking Stochastic Dynamics to Population Distribution:
An Analytical Framework of Gene Expression. Phys Rev Lett. 2006;97(16):1–4.

[10] Lutz R, Bujard H. Independent and tight regulation of transcriptional units in Es-
cherichia coli via the LacR / O , the TetR / O and AraC / I 1 -I 2 regulatory elements.
Nucleic Acids Res. 1997;25(6):1203–1210.

[11] Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A. A variant of yellow
fluorescent protein with fast and efficient maturation for cell-biological applications. Nat
Biotechnol. 2002;20(1):87–90.

[12] Datsenko Ka, Wanner BL. One-step inactivation of chromosomal genes in Escherichia
coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–5.

[13] Hashimoto M, Nozoe T, Nakaoka H, Okura R, Akiyoshi S, Kaneko K, et al. Noise-driven
growth rate gain in clonal cellular populations. Proc Natl Acad Sci. 2016;113(12):3251–
3256.

26


