
Supplementary Information
SI–1 Measures of population structure in the islandmodel
Here, I briefly discuss different measures of population structure in the infinite island
model. In the Taylor-approximation for host fitness, we introduced var(q) as a measure
of population structure. This is inline with the fact that for a given overall frequency of
an allele (or strain) p, the classical measure of population structure, Fst, is given by [1] :

Fst =
var(q)
p(1− p)

. (SI–1)

In the island model, the probability that two individuals (sampled with replacement)
in a given deme of local frequency q are of the same strain is given by q2+(1− q)2. Taking
the expectation of this over the Beta distribution (equation (SI–9)), we have the expected
probability for two individuals from the same deme to be of the same strain as:

P (same strain) = 1 + 2mn(1− 2(1− p)p)

1 + 2mn
(SI–2)

Now, we assume that the probability that the second drawn individual is of the same
type as the first one is given by a constant regression coefficient R plus (1− R) times the
frequency of the first drawn type in the population [2], we have:

P (same strain) = p(R + (1−R)p) + (1− p)(R + (1−R)(1− p)) , (SI–3)

In general, this assumption is not guaranteed to hold, but in the infinite island model we
can easily show that it does. Setting the right-hand sides of equations (SI–2) and (SI–3)
equal to each other, and solving forR, we can show thatR is indeed a frequency indepen-
dent constant and equal to Fst:

R =
1

1 + 2mn
= Fst. (SI–4)

The same relatedness coefficient can also be obtained as the low-migration, large deme
limit of the probability that two randomly picked alleles will coalesce before leaving the
deme when going backwards in time [3], which in the infinite island model with finite
mutation is the identity by descent probability between two alleles (since coalescence can
only occur within a deme). Our result is exact rather than an approximation, since we
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only consider two alleles and ignore mutation.

SI–2 Full life-cycle in the island model
Here, I derive the expression for the change in frequency of the beneficial symbiont in an
island model with weak selection. Consider a deme that contains the beneficial symbiont
at frequency q. The fitness of the beneficial symbiont is given by:

WA = 1 + δwA(q, s), (SI–5)

and for the non-beneficial symbiont:

WB = 1 + δwB(q, s) , (SI–6)

where δ ≪ 1 is the strength of selection. The new local frequency of the beneficial sym-
biont, after selection and migration is:

q′ = (1−m)
qWA

qWA + (1− q)WB
+m

∫ 1

0 qWAf(q|p)dq∫ 1

0

(
qWA + (1− q)WB

)
f(q|p)dq

, (SI–7)

where m the the probability of new individuals in a patch being migrants. Taking the
Taylor expansion to first order in δ, and integrating over f(q|p), we find the new overall
frequency of the beneficial symbiont, p′:

p′ ≈ p+ δ

∫ 1

0

[(
(1−m)q(1− q) +mq(1− p)

)
wA(q, s)

−
(
(1−m)q(1− q) +mp(1− q)

)
wB(q, s)

]
f(q|p)dq . (SI–8)

Finally, I assume selection is weak enough that the distribution of the local deme frequen-
cies of the beneficial symbiont, f(q|p), is well-approximated by neutrality [4]. Thus, we
have:

f(q|p) = 1

B(α, β)
qα−1(1− q)β−1 , (SI–9)

where B(·, ·) is the Beta function, α = nmp, β = nm(1 − p), and n is the symbiont deme
size.

Local competition changes the results reported in the main text section 4.1 and 4.2 in
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substantiveways. Under fixed rewards, population structure has no influence onwhether
selection favors the cooperative symbiont or not: there exist a threshold level of choosi-
ness independent of population structure above which the beneficial symbiont is favored,
and below which it is not (Supplementary Figure 1, left-hand panel). This is a case of fer-
tility effects of population structure being cancelled out exactly by the local competition
effect [5]. On the other hand, under feedback-dependent rewards, population structure
helps the beneficial symbiont at high levels of choosiness while hurting it at low levels
(Supplementary Figure 1, right-hand panel). In particular, there exists a (low to mod-
erate) range of host choosiness where the beneficial symbiont goes from being favored
only when common to never being favored as population structure increases, whereas at
higher host choosiness levels the symbiont goes to being always favored. Interestingly,
and in contrast to the results without local competition, this pattern holds regardless of
the shape of the host benefit. The reason local competition does not exactly cancel out
the fertility effects under feedback-dependent but not fixed rewards is that in the former,
there are effectively two social interactions involved: the first is partner choice, while the
second is a public goods game through the host. Due to partner choice, the second stage
happens over amodified distribution of strain frequencies relative to the distribution over
which the local competition happens, therefore the the latter does not entirely cancel the
former: when choosiness is low, local competition becomesmore important as population
structure increases, whereas when choosiness is high enough, the benefits from the public
goods rewards become more important.

SI–3 Coevolutionary model

1 Host fitness in the coevolutionary model

In this section, I describe the model where two genotypes each of the host and symbiont
exist in the population. One of the host genotypes has choosiness s and the other zero
(i.e., does not reject any symbiont). I assume that the choosy host’s fitness when the local
frequency of the beneficial symbiont is q is given by

Wch = 1 + δwh(q, s) , (SI–10)
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Supplementary Figure 1: Effect of population structure changes when local competition
is taken into account. Colors as in Figures 3 and 4 in the main text (gray=beneficial sym-
biont does not invade or fix, white=beneficial symbionts invades and fixes, red=beneficial
symbiont cannot invade but can fix). Panel a depicts the fixed rewards (h0 = 1, h1 = 0)
case: population structure has no effect on selection in the symbiont population. Other
panels depict the feedback-dependent reward cases (h0 = 0, h1 = 1) with different shapes
of host benefit. The all show that with high host choosiness, population structure helps
the beneficial symbiont getting selected for at low frequencies while for lower host choosi-
ness, the symbiont goes from being favored when common to not being favored ay any
frequency. Particular host benefit functions are as follows. Panel b: diminishing returns
(b(qc) = qc − q2c/2), c: linear returns (b(qc) = qc), d: accelerating returns (b(qc) = qc + q2c/2).
In all panels k = 0.4 and n = 100, except for the diminishing rewards (panel b), where
k = 0.2.
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where δ is the strength of selection, assumed to be small, wh is given by equation (2), and
I assume a linear cost to choosiness:

c(s) = χs , (SI–11)

with χ a constant. The fitness of a non-choosy host is:

Wnh = 1 + δwh(q, 0) . (SI–12)

As in section SI–2, I assume the hosts also live in an island structured population, with
nh the host deme size, and mh the fraction of each deme that is formed from the global
migrant pool. The analysis will then proceed as above Because of the weak selection as-
sumption, I use the neutral distribution of local frequencies for both the host and symbiont
[e.g. 4, 6]. The weak selection assumption also allows me to neglect potential build up of
correlations between host and symbiont genotypes [7] so that the joint local frequency
distributions of hosts and symbionts are given just by the product of their separate distri-
butions. The overall frequency of choosy hosts in the global migrant pool after selection
is:

∫ 1

0 qhWchf(q|p)g(qh|ph)dqdqh∫ 1

0

(
qhWch + (1− qh)Wnh

)
f(q|p)g(qh|ph)dqdqh

, (SI–13)

which to first order in the strength of selection becomes:

ph + δph(1− ph)

∫ 1

0

(wh(q, s)− wh(q, 0))f(q|p)dq . (SI–14)

Meanwhile, the contribution of the philopatric individuals to first order in δ is:
∫ 1

0

∫ 1

0

(qh + δqh(1− qh)(wh(q, s)− wh(q, 0))f(q|p)g(qh|ph)dqdqh . (SI–15)

Observe that wh(q, s) − wh(q, 0) is not a function of qh, so the only dependence to qh is in
the qh and qh(1− qh) terms. Thus, we can take the qh integral easily to obtain:

(ph − var(qh)− p2h)

∫ 1

0

(wh(q, s)− wh(q, 0))f(q|p)dq . (SI–16)
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The total frequency of the choosy hosts in the next generation is expression (SI–14) times
mh plus expression (SI–16) times (1−mh), hence:

p′h ≈ ph + δ(mhph(1− ph) + (1−mh)(ph + var(qh)− p2h))

∫ 1

0

(wh(q, s)− wh(q, 0))f(q|p)dq .

(SI–17)

Note that, unlike equation (4), this expression is not a low-variance approximation in either
q or qh (we only assumed small δ, i.e. weak selection). The term var(qh) arises because the
qh dependency of the integrand is quadratic, so can be expressed exactly using the second
moment of g(qh|ph). To calculate var(qh), I assume that the local choosy host frequency
distribution is given by:

g(qh|ph) =
1

B(αh, βh)
qαh−1
h (1− qh)

βh−1 , (SI–18)

where αh = nhph, βh = nh(1 − ph), nh are the symbiont and host deme sizes, respectively
[4]. The symbiont local frequency distribution f(q|p) is again given by (SI–9).

2 Symbiont fitness in the coevolutionary model

Now I turn to the symbiont fitness. In a deme that contains the beneficial symbiont at
frequency q and the choosy host at qh, the fitness of the beneficial symbiont is given by:

WA = 1 + δ(qhwA(q, s) + (1− qh)wA(q, 0)) , (SI–19)

and for the non-beneficial symbiont:

WB = 1 + δ(qhwB(q, s) + (1− qh)wB(q, 0)) . (SI–20)

The new local frequency of the beneficial symbiont, after selection and migration is:

q′ = (1−m)
qWA

qWA + (1− q)WB
+m

∫ 1

0

∫ 1

0 qWAf(a)g(qh|ph)dqdqh∫ 1

0

∫ 1

0

(
qWA + (1− q)WB

)
f(a)g(qh|ph)dqdqh

(SI–21)
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Taking the Taylor expansion to first order in δ, and integrating over f(q|p) and g(qh|ph),
we find the new overall frequency of the beneficial symbiont, p′:

p′ ≈ p+ δ

∫ 1

0

∫ 1

0

[(
(1−m)q(1− q) +mq(1− p)

)
uA(q, qh)

−
(
(1−m)q(1− q) +mp(1− q)

)
uB(q, qh)

]
f(q|p)g(qh|ph)dqdqh , (SI–22)

where uA(q, qh) = qhwA(q, s)+ (1− qh)wA(q, 0) and ub(q, qh) = qhwB(q, s)+ (1− qh)wB(q, 0),
i.e., the expected fitness increments to each strain due to the interactions in the local deme.
This means that the integrand in (SI–22) is linear in qh, so the qh integral can again be taken
easily to obtain:

p′ ≈ p+ δ

∫ 1

0

∫ 1

0

[(
(1−m)q(1− q) +mq(1− p)

)
uA(q, ph)

−
(
(1−m)q(1− q) +mp(1− q)

)
uB(q, ph)

]
f(q|p)dq , (SI–23)

in other words, we can simply evaluate the fitness increments for each strain at the global
mean frequency of the choosy hosts.

Below, I sketch out the general patterns of the coevolutionary dynamics of the choosy
host and beneficial symbiont frequencies, starting with fixed rewards to the symbiont.

3 Fixed rewards to the symbiont

The first finding for fixed rewards to the symbionts is that there exists parameter combi-
nations for which polymorphisms in both host and the symbiont are stably maintained,
even in the absence of mutational (or migrational) input which most previous research
has suggested to be important. However, the equilibrium where the beneficial symbiont
and choosy hosts go extinct also is always stable. Stronger population structure of sym-
bionts shrinks the basin of attraction of the stable equilibrium and shifts the equilibrium
frequencies of the beneficial symbiont and choosy hosts lower, as shown in Figure 5 in
the main text, which depicts the case where host fitness is a linear function of qc, and Fig-
ure 6, also in the main text, which depicts how the equilibrium frequency changes with
population structure.

This pattern stays largely the same when host benefit exhibits diminishing or acceler-
ating returns to qc (Supplementary Figure ??), although with diminishing returns, popu-
lation structure can initially increase the equilibrium frequency of the beneficial symbiont
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(Supplementary Figure 3). Accelerating returns tend to make the cycles larger for the
same parameter set.

To summarize, the overall effect of population structure in the fixed rewards case is to
reduce the amount and likelihood of stable cooperation. The model also predicts that the
coexistence patterns will generally exhibit at least transitory cycling when starting in the
interior, either as oscillatory convergence to the stable equilibrium or as limit cycles. This
is in line with previous results [8, 9].

4 Feedback-dependent rewards

The pattern with feedback-dependent rewards is broadly similar to fixed rewards. The
boundary equilibrium without the beneficial symbiont and choosy host is again always
stable. There can also be an internal equilibrium as in the fixed-rewards case, but for
the same host benefit functions a higher level of host choosiness is required for this equi-
librium to be stable. Population structure has the same effects as in the fixed-rewards
case: it shrinks the basin of attraction of the stable equilibrium, eventually removing the
stable equilibrium (Supplementary Figure 4), while also generally tending to reduce the
frequency of cooperation and choosiness (Supplementary Figure 5).

SI–4 Strong selection simulations
In this section, I describe the results of stochastic simulations of the island model under
strong selection. The basic life-cycle is as in the analytical model above, except there are
a finite (large) number of demes. Strong selection allows the build-up of covariances be-
tween the frequencies of different host and symbiont genotypes across demes and there-
fore host population structure will not be neutral anymore.
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Supplementary Figure 2: Population structure in both hosts and symbionts disfavors
choosiness and cooperation with fixed rewards. The panels depict variation in the co-
evolutionary dynamics of cooperation and choosiness as a function of the migration rates
m andmh of the symbionts and hosts, respectively. Rows correspond to (from top to bot-
tom) m = 1, m = 0.01, and m = 0.001, respectively; columns (from left to right) mh = 1,
mh = 0.01, mh = 0.001, respectively. In all panels, the boundary equilibrium at (0, 0)
is locally stable. Host population structure has no effect when symbiont population is
well mixed (top row), but reduces the basin of attraction of the stable equilibrium when
symbiont population is structured (middle row). Symbiont population structure for all
host migration rates causes the stable internal equilibrium to support less cooperation, re-
duces the basin of attraction of this equilibrium, and eventuallymakes it disappear. Other
parameters are: h0 = 1, h1 = 1, b(qc) = qc, s = 0.6, χ = 0.1, n = nh = 100.
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Supplementary Figure 3: With diminishing returns to the host and fixed rewards to the
symbiont, population structure might first increase, then decrease the frequency of the
beneficial symbiont. Red curve gives the equilibrium frequency of the beneficial sym-
biont; black the choosy host. Parameters as in Supplementary Figure ??.
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Supplementary Figure 4: Population structure in both hosts and symbionts disfavors
choosiness and cooperation with fixed rewards. As in Figure 2, the rows and columns
are for decreasing m and mh values, respectively (1, 0.01, and 0.001). Filled black circles
depict stable internal equilibria, file open circles depict unstable internal equilibria. In all
panels, the boundary equilibrium at (0, 0) is locally stable. Increasing symbiont popula-
tion structure (decreasingm) causes this equilibrium to be first unstable (middle row, see
also Figure 5) and then disappear (bottom row). This figure assumes linear benefits to
the host (b(qc) = qc) and feedback-dependent symbiont rewards (h0 = 0, h1 = 1). Host
choosiness is s = 0.8; m = 1 on the left-hand panel; m = 0.001 on the right-hand. Other
parameters: χ = 0.1, k = 0.4, n = nh = 100,mh = 1.
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Supplementary Figure 5: Symbiont population structure decreases the equilibrium fre-
quency of the beneficial symbiont and increases the frequency of the choosy host with
feedback dependent rewards. Population structure can also destabilizes the internal equi-
librium (as determined by the dominant eigenvector of the Jacobian matrix being greater
than 1); the unstable equilibrium is indicated by the dotted curves above a threshold Fst

value. For this figure, we assumed linear benefits to the host (b(qc) = qc) and feedback-
dependent symbiont rewards (h0 = 0, h1 = 1). Other parameters as in Supplementary
Figure 4.
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Supplementary Figure 6: Simulations of the island model with strong selection (δ = 0.5)
while varying the migration rates of the hosts and symbionts (given at the top of each
panel). For each pair of migration ratesm andmh, I simulated 100 populations consisting
of 1000 demes of 100 hosts and symbionts each, with starting frequencies p and ph on a grid
[0.05, 0.95] for both. Each blue curve corresponds to the trajectory of one such population,
for 1000 time steps. This graph is for fixed rewards h0 = 1, h1 = 0, and linear host fitness
b(qc) = qc. Other parameters are s = 0.6, χ = 0.1.
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Supplementary Figure 7: Simulations of the island model with strong selection (δ = 0.5)
while varying the migration rates of the hosts and symbionts (given at the top of each
panel). Simulation procedure as in Figure . This graph is for feedback-dependent rewards
h0 = 0, h1 = 1, and diminishing returns host fitness b(qc) = qc−q2c/2. Other parameters are
s = 0.6, χ = 0.1. For weak symbiont population structure (top two rows), host population
structure has no or positive effect on the maintenance of cooperation. However, in the
third row, going right, one can see that strong host population structure can cause a stable
equilibrium to disappear.
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Supplementary Figure 8: Simulations of the island model with strong selection (δ = 0.5)
while varying the migration rates of the hosts and symbionts (given at the top of each
panel). Simulation procedure as in Figure . This graph is for feedback-dependent rewards
(h0 = 0, h1 = 1), and linear host fitness (b(qc) = qc). Other parameters are s = 0.6, χ = 0.1.
In the second row, going right, one can observe that strong host population structure can
cause the internal equilibrium to become stable.

15



Supplementary Figure 9: Simulations of the island model with strong selection (δ = 0.5)
while varying the migration rates of the hosts and symbionts (given at the top of each
panel). Simulation procedure as in Figure . This graph is for feedback-dependent rewards
(h0 = 0, h1 = 1), and accelerating host fitness (b(qc) = qc + q2c/2). Other parameters are
s = 0.6, χ = 0.1. With weak symbiont population structure (top two rows), stronger host
population structure tends to shrink the basin of attraction of the stable equilibrium.

16


