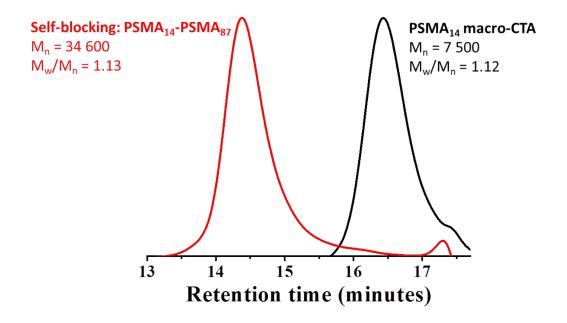
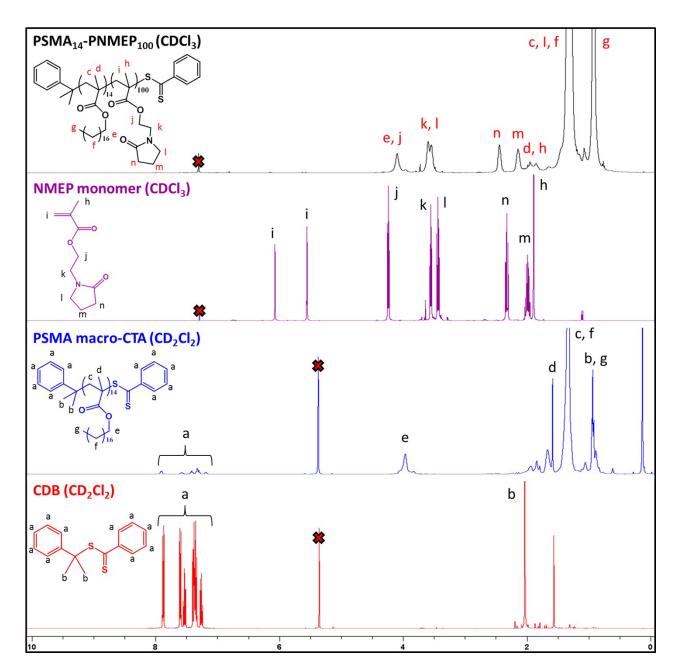
Supporting Information for:

Synthesis, characterisation and Pickering emulsifier performance of poly(stearyl methacrylate)-poly(*N*-2-(methacryloyloxy)ethyl pyrrolidone) diblock copolymer nano-objects via RAFT dispersion polymerisation in *n*-dodecane

Victoria J. Cunningham and Steven P. Armes*


Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.

Osama M. Musa


Ashland Specialty Ingredients, 1005 US 202/206, Bridgewater, NJ 08807, USA.

Synthesis of PSMA₁₄-PBzMA₉₅ via RAFT dispersion polymerisation of SMA

PSMA₁₄ macro-CTA (0.2201 g), BzMA (0.7728 g, 4.386 mmol), T21s (2.37 mg, 26 µmol; dissolved at 10% v/v in *n*-dodecane; CTA/T21s molar ratio = 4.0) were dissolved in *n*-dodecane (4.13.9713 g, 10% w/w) in a 25 ml round-bottomed flask. The reaction mixture was sealed and purged with nitrogen for 30 min, prior to immersion in an oil bath set at 90 °C. Aliquots were taken every 10 min for the first hour and analysed by ¹H NMR analysis. A final conversion of 95% was achieved after 6 h. The resulting copolymer was analysed using 3:1 chloroform/methanol GPC (M_n = 23,800 g mol⁻¹, M_w/M_n = 1.10 vs. PMMA standards). DLS studies on a 0.20% w/w copolymer dispersion indicated an intensity-average particle diameter of 181 nm (DLS polydispersity, PDI = 0.260). TEM studies confirmed a worm-like morphology at 95% conversion.

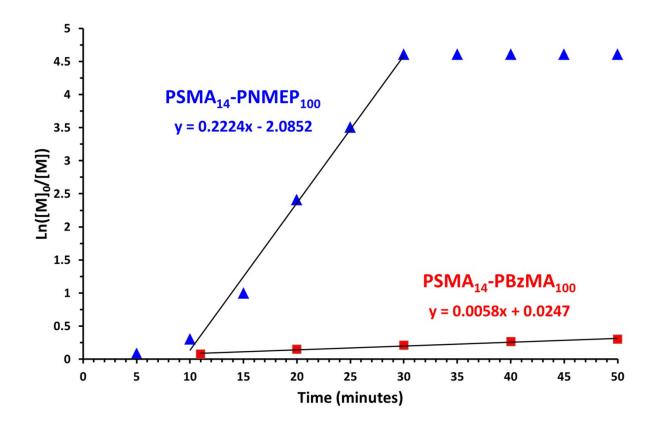


Figure S1. 3:1 Chloroform/methanol GPC curves obtained for the initial PSMA₁₄ macro-CTA and the corresponding PSMA₁₄-PSMA₈₇ after a 'self-blocking' chain extension experiment at 90 °C.

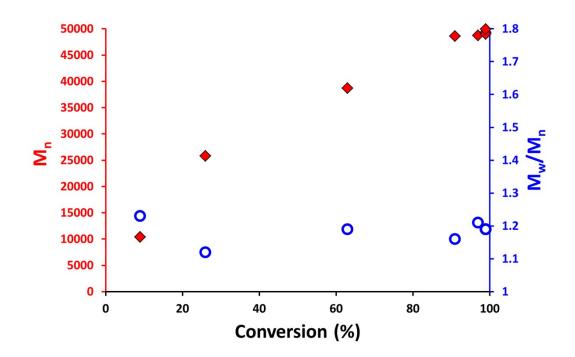
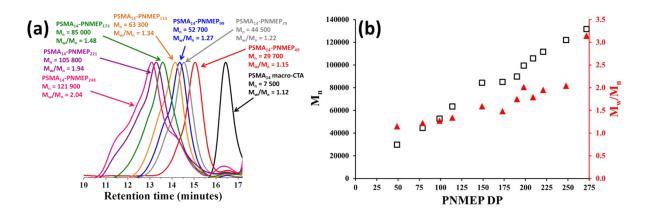


Figure S2. Assigned ¹H NMR spectra obtained for the CDB RAFT agent, a PSMA₁₄ macro-CTA, the NMEP monomer and a PSMA₁₄-PNMEP₁₀₀ diblock copolymer.

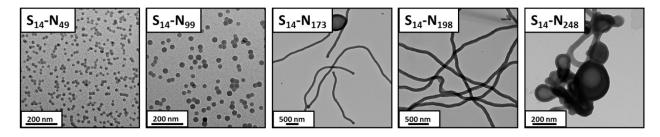
.

Figure S3. A plot of $Ln([M]_0/[M])$ against time for the kinetics of RAFT dispersion polymerisation of either NMEP or BzMA at 90°C when targeting either PSMA₁₄-PNMEP₁₀₀ (blue) or PSMA₁₄-PBzMA₁₀₀ (red), respectively. A short induction period is observed for the PSMA₁₄-PNMEP₁₀₀ formulation, but then the rate of this NMEP polymerisation proceeds with an apparent pseudo-first order rate constant that is 38 times greater than that of the BzMA polymerisation when targeting PSMA₁₄-PBzMA₁₀₀.

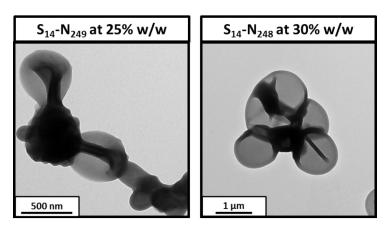
Figure S4. 3:1 Chloroform/methanol GPC data (versus a series of poly(methyl methacrylate) standards) obtained for the kinetics of polymerisation of NMEP when targeting PSMA₁₄-PNMEP₁₀₀

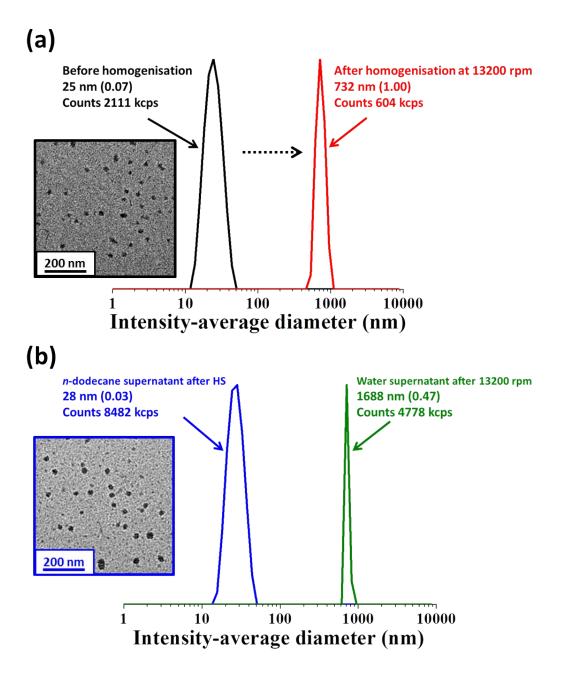

Table S1. Conversions, Molecular Weights (M_n), Polydispersities (M_w/M_n), DLS and TEM diameters obtained for PSMA₁₄-PNMEP_x (S_{14} -N_x) Diblock Copolymer Nanoparticles prepared at 20% w/w Solids and the corresponding PSMA₁₄ Macro-CTA prepared at 40 % w/w Solids.

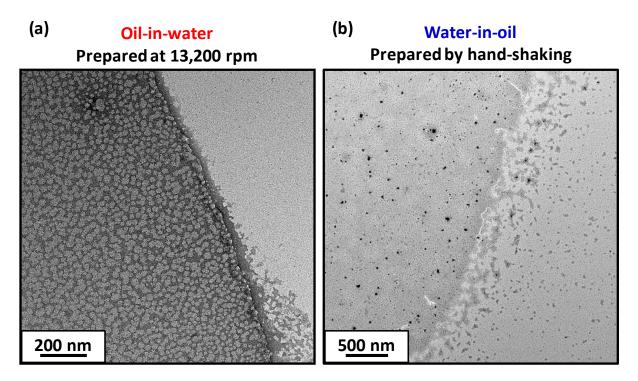
	Diblock Composition	Conversion ^a (%)	Solids content	3:1 v/v% chloroform methanol GPC		Particle diameter	Particle morphology
			(% w/w)	M _n ^b (kg mol⁻¹)	M _w /M _n ^b	DLSº (nm)	
S1	S ₁₄	80	40	7.5	1.12	N/A	-
S2	S ₁₄ -N ₄₉	99	20	29.7	1.15	26 (0.049)	Spheres
S3	S ₁₄ -N ₇₉	99	20	44.5	1.22	36 (0.055)	Spheres
S4	S ₁₄ -N ₉₉	99	20	52.7	1.27	39 (0.054)	Spheres
S5	S ₁₄ -N ₁₁₄	95	20	63.3	1.34	48 (0.054)	Spheres
S6	S ₁₄ -N ₁₄₉	99	20	84.3	1.59	151 (0.093)	Mixed
S7	S ₁₄ -N ₁₇₃	99	20	85.0	1.48	1174 (0.324)	Mixed
S8	S ₁₄ -N ₁₉₀	>99	20	89.8	1.75	824 (0.305)	Mixed
S9	S ₁₄ -N ₁₉₈	99	20	99.4	2.01	722 (0.348)	Worms
S10	S ₁₄ -N ₂₀₉	99	20	105.8	1.79	729 (0.461)	Mixed
S11	S ₁₄ -N ₂₂₁	98	20	111.5	1.94	1370 (0.302)	Mixed
S12	S ₁₄ -N ₂₄₈	99	20	121.9	2.04	1169 (0.115)	Mixed

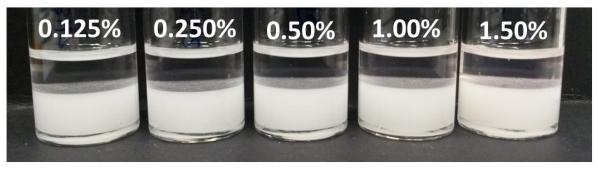

a. Monomer conversion determined by ¹H NMR spectroscopy in CDCl₃.

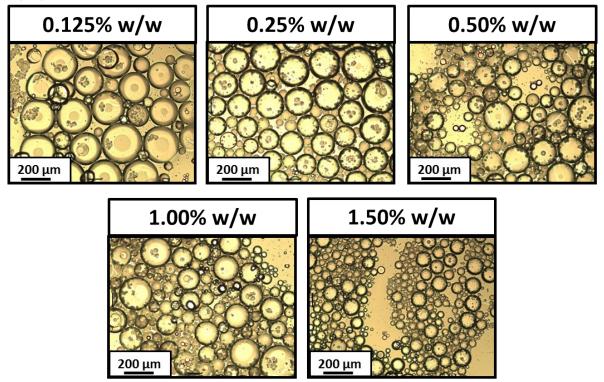
b. Determined by 3:1 v/v chloroform/methanol GPC against poly(methyl methacrylate) calibration standards using a refractive index detector.

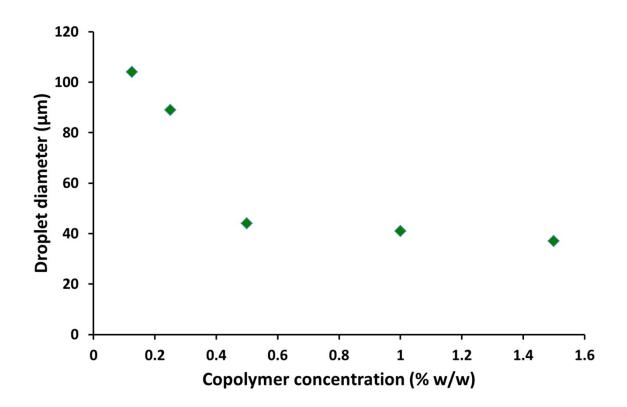

c. The numbers in brackets refer to the DLS polydispersity


Figure S5. (a) 3:1 Chloroform/methanol GPC curves obtained for a selection of $PSMA_{14}$ -PNMEP_x diblock copolymer nanoparticles prepared at 20% w/w solids via RAFT dispersion polymerisation of NMEP at 90 °C. (b) A plot of M_n (black axis) and M_w/M_n (red axis) against PNMEP DP for the same series of PSMA₁₄-PNMEP_x diblock copolymer nanoparticles.


Figure S6. Representative TEM images obtained for $PSMA_{14}$ -PNMEP_x diblock copolymer nano-objects prepared via RAFT dispersion polymerisation of NMEP at 20% w/w solids.


Figure S7. Representative TEM images recorded for the unstable precipitate phase obtained for PSMA₁₄-PNMEP_x syntheses conducted at either 25% or 30% solids when targeting a PNMEP DP of 250.


Figure S8. (a) DLS particle size distributions obtained at 25°C for PSMA₁₄-PNMEP₄₉ nanoparticles before (black) and after (red) homogenisation at 13,200 rpm at 20°C. High shear homogenisation causes the initial 25 nm spherical nanoparticles to break up, resulting in a relatively low count rate and a very high polydispersity. Inset: TEM image before homgenisation. (b) DLS particle size distributions obtained for the *supernatants* (after gravitational sedimentation of the aqueous droplet phase on standing at 20°C overnight) of water-in-oil emulsions prepared using 1.0% w/w PSMA₁₄-PNMEP₄₉ nanoparticles. The blue trace shows the DLS size distribution (and corresponding TEM image) obtained for the *n*-dodecane *supernatant* of the water-in-oil emulsion prepared by hand-shaking, confirming that these nanoparticles are stable to homogenisation at *low* shear (hand-shaking). The green trace shows the *aqueous* supernatant of the oil-in-water emulsion obtained after preparation via homogenisation at 13,200 rpm.


Figure S9. Transmission electron microscopy of Pickering emulsion droplets prepared using $PSMA_{14}$ -PNMEP₄₉; (a) an oil-in-water droplet prepared at 13,200 rpm and stained using uranyl formate and (b) a water-in-oil droplet prepared by hand-shaking and stained using ruthenium(VIII) oxide. Both show the presence of spherical nanoparticles absorbing at the oil-water interface. (a)

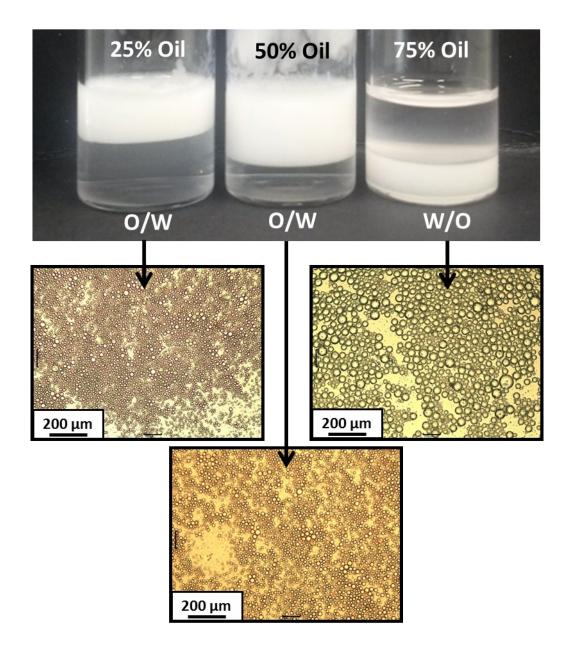

(b)

Figure S10. Water-in-oil emulsions prepared by hand-shaking of 50:50v/v mixtures of *n*-dodecane and water using either 0.125%, 0.25% 0.50%, 1.00% or 1.50% w/w PSMA₁₄-PNMEP₄₉ nanoparticles: (a) digital photograph of the resulting five emulsions and (b) corresponding optical microscopy images.

Figure S11. Concentration dependence of the mean aqueous droplet diameter obtained for the water-in-oil emulsions prepared by hand-shaking using either 0.125%, 0.25% 0.50%, 1.00% or 1.50% w/w PSMA₁₄-PNMEP₄₉ nanoparticles. Mean droplet diameters were estimated from optical microscopy images by analysing at least 100 droplets.

Figure S12. Digital photographs and corresponding optical microscopy images obtained for $PSMA_{14}$ -PNMEP₄₉ emulsions formed using water volume fractions 0.25, 0.50 or 0.75 relative to *n*-dodecane. Emulsions were prepared using 0.5% w/w $PSMA_{14}$ -PNMEP₄₉nanoparticles at 13,200 rpm. The latter water volume fractions resulted in the formation of *oil-in-water* emulsions, whereas the lowest water volume fraction produced a *water-in-oil* emulsion.