Jennifer Lu, Kelin Ru, Ida Candiloro, Alexander Dobrovic, Darren Korbie, Matt Trau

Forward Primer Name*	Forward Primer Sequence*	Reverse Primer Name	Reverse Primer Sequence			
M209_dI	5'-gGTTGGTATt- <u>dI</u> -gGtTttAGGG-3'					
M209_Y	5'-gGTTGGTATt <u>Y</u> gGtTttAGGG-3'	M210				
M209_dS	5'-gGTTGGTATt- <u>dS</u> -gGtTttAGGG-3'	101210	5-AddACCTddACATCCTdddCCTT-5			
M209_5Ni	5'-gGTTGGTATt- <u>5Ni</u> -gGtTttAGGG-3'					
M213_dI	5'-GAGt- <u>dl</u> -gAGATTTGGGtTtTGAAG-3'					
M213_Y	5'-GAGt <u>Y</u> gAGATTTGGGtTtTGAAG-3'	NJ21J				
M213_dS	5'-GAGt- <u>dS</u> -gAGATTTGGGtTtTGAAG-3'	101214	5-TETTTACCACTACTAAAATTACC-S			
M213_5Ni	5'-GAGt- <u>5Ni</u> -gAGATTTGGGtTtTGAAG-3'					
M215_dI	5'-tAtTG- <u>dI</u> -gttttATtTGGAtTGAAATG-3'					
M215_Y	5'-tAtTG- <u>Y</u> -gttttATtTGGAtTGAAATG-3'	M216				
M215_dS	5'-tAtTG- <u>dS</u> -gttttATtTGGAtTGAAATG-3'	101210	5-THATCCTACATCTAAACACCC-5			
M215_5Ni	5'-tAtTG- <u>5Ni</u> -gttttATtTGGAtTGAAATG-3'					
M217_dI	5'-TtTGA- <u>dl</u> -gttAAGGAGttAGttAGA-3'	M218_dI	5'-c- <u>dl</u> -TaTCCTCCCTTTaTTaTaaCTC-3'			
M217_Y	5'-TtTGA <u>Y</u> gttAAGGAGttAGttAGA-3'	M218_R	5'-c <u>R</u> TaTCCTCCCTTTaTTaTaaCTC-3'			
M217_dS	5'-TtTGA- <u>dS</u> -gttAAGGAGttAGttAGA-3'	M218_dS	5'-c- <u>dS</u> -TaTCCTCCCTTTaTTaTaaCTC-3'			
M217_5Ni	5'-TtTGA- <u>5Ni</u> -gttAAGGAGttAGttAGA-3'	M218_Ni	5'-c- <u>5Ni</u> -TaTCCTCCCTTTaTTaTaaCTC-3'			
M219_dI	5'-tTAtttTGtttA- <u>dI</u> -gttAGATGGGG-3'	M220_dI	5'-c- <u>dl</u> -aAaaTaaaTaCACTCCACCTCT-3'			
M219_Y	5'-tTAtttTGtttA <u>Y</u> gttAGATGGGG-3'	M220_R	5'-c <u>R</u> aAaaTaaaTaCACTCCACCTCT-3'			
M219_dS	5'-tTAtttTGtttA- <u>dS</u> -gttAGATGGGG-3'	M220_dS	5'-c- <u>dS</u> -aAaaTaaaTaCACTCCACCTCT-3'			
M219_5Ni	5'-tTAtttTGtttA- <u>5Ni</u> -gttAGATGGGG-3'	M220_Ni	5'-c- <u>5Ni</u> -aAaaTaaaTaCACTCCACCTCT-3'			
M221_dI	5'-GGtA- <u>dl</u> -gGGATGGAGTGAAAG-3'	M222_Di	5'-CCTCCCAATc- <u>dl</u> -AATCCCAAATT-3'			
M221_Y	5'-GGtA <u>Y</u> Gggatggagtgaaag-3'	M222_R	5'-CCTCCCAATc <u>R</u> AATCCCAAATT-3'			
M221_dS	5'-GGtA- <u>dS</u> -gGGATGGAGTGAAAG-3'	M222_dS	5'-CCTCCCAATc- <u>dS</u> -AATCCCAAATT-3'			
M221_5Ni	5'-GGtA- <u>5Ni</u> -gGGATGGAGTGAAAG-3'	M222_Ni	5'-CCTCCCAATc- <u>5Ni</u> -AATCCCAAATT-3'			
M201	5'-GAttAAGAtTtAGGGAAtATTGAGA-3'	M202	5'-TaCACCTCCCCAaCCCAT-3'			
M203	5'-GATTGGATTGGGTTGtATTTGAA-3'	M204	5'-CCTCCTCTaaCCATaCATaTTT-3'			
M205	5'-GGAAAGTTGAGGTAGAGtATG-3'	M206	5'-CTCCCTCCTCCCAaACAC-3'			

SuppTable 1: Primers where the base modification is designed in either a single or both primers

*Modified base within the primer: dI – deoxyInosine, Y/R – mixed-bases (Y – C and T, R – G and A), dS – abasic, 5Ni – 5-Nitroindole

Jennifer Lu, Kelin Ru, Ida Candiloro, Alexander Dobrovic, Darren Korbie, Matt Trau

SuppTable 2: Primers where the base modification is designed near either the 5' or the centre of the forwa	ard
primer	

Forward Primer Name*	Forward Primer Sequence*	Reverse Primer Name	Reverse Primer Sequence			
C601_dI	5'-gGGTAGGG- <u>dI</u> -gGAGGTATT-3'					
C601_Y	5'-gGGTAGGG <u>Y</u> gGAGGTATT-3'	C(0)	5'-AaCTCTCCATTTaCTCTaAACA-3'			
C601_dS	5'-Gggtaggg- <u>dS</u> -gGAGGTATT-3'	002				
C601_5Ni	5'-gGGTAGGG- <u>5Ni</u> -gGAGGTATT-3'					
C603_dI	5'-AGGGGtTG- <u>dl</u> -gGGGAAAGG-3'					
C603_Y	5'-AGGGGtTG <u>Y</u> gGGGAAAGG-3'	C604				
C603_dS	5'-AGGGGtTG- <u>dS</u> -gGGGAAAGG-3'	0004				
C603_5Ni	5'-AGGGGtTG- <u>5Ni</u> -gGGGAAAGG-3'					
C605_dI	5'-AAGGGtAG- <u>dl</u> -gGGGTGATG-3'					
C605_	5'-AAGGGtAG <u>Y</u> gGGGTGATG-3'	CEDE	5'-TCACA2AT2CCCACTTTCCC-3'			
C605_dS	5'-AAGGGtAG- <u>dS</u> -gGGGTGATG-3'	0000	J-TCACAATacccAcTTTCCC-J			
C605_5Ni	5'-AAGGGtAG-5 <u>Ni</u> -gGGGTGATG-3'					
C607_dI	5'-gGGAGTGG- <u>dI</u> -gAGGGTTTA-3'					
C607_Y	5'-gGGAGTGG <u>Y</u> gAGGGTTTA-3'	C609				
C607_dS	5'-gGGAGTGG- <u>dS</u> -gAGGGTTTA-3'	0008	5-CAACETECCAACTAACCAC-S			
C607_5Ni	5'-gGGAGTGG- <u>5Ni</u> -gAGGGTTTA-3'					
C609_dI	5'-GGAGAGtT- <u>dl</u> -gAGGGGAGG-3'					
C609_Y	5'-GGAGAGtT <u>Y</u> gAGGGGAGG-3'	C610	5'->TCCACCCCTCA>>TTCAC-3'			
C609_dS	5'-GGAGAGtT- <u>dS</u> -gAGGGGAGG-3'	010	J-arceactercaarreac-J			
C609_5Ni	5'-GGAGAGtT- <u>5Ni</u> -gAGGGGAGG-3'					
C611_dI	5'-CCTc- <u>dl</u> -TaCCAATAATTTAAACTTC-3'					
C611_R	5'-CCTc <u>R</u> TaCCAATAATTTAAACTTC-3'	C612	5'-##466674647676664446-3'			
C611_dS	5'-CCTc- <u>dS</u> -TaCCAATAATTTAAACTTC-3'	0012				
C611_5Ni	5'-CCTc-5Ni-TaCCAATAATTTAAACTTC-3'					
C613_dI	5'-TtAAT- <u>dl</u> -gTGTGGGtATGTTTtATTA-3'					
C613_Y	5'-TtAAT <u>Y</u> gTGTGGGtATGTTTtATTA-3'	C614				
C613_dS	5'-TtAAT- <u>dS</u> -gTGTGGGtATGTTTtATTA-3'	0014	5 ernanneen Acerraacar 5			
C613_5Ni	5'-TtAAT- <u>5Ni</u> -gTGTGGGtATGTTTtATTA-3'					
C615_dI	5'-TCc- <u>dl</u> -aaaCTCCTaaAACCTTTAC-3'					
C615_R	5'-TCc <u>R</u> aaaCTCCTaaAACCTTTAC-3'	C616				
C615_5Ni	5'-TCc- <u>5Ni</u> -aaaCTCCTaaAACCTTTAC-3'	010				
C615_dS	5'-TCc- <u>dS</u> -aaaCTCCTaaAACCTTTAC-3'					
C617_dI	5'-ACCTc- <u>dl</u> -aAaaAaCTTCTaCTAATTC-3'					
C617_R	5'-ACCTc <u>R</u> aAaaAaCTTCTaCTAATTC-3'	C618	5'-TGGAAtttAGGTtTGTGAGAG-3'			
C617_dS	5'-ACCTc- <u>dS</u> -aAaaAaCTTCTaCTAATTC-3'	010				
C617_5Ni	5'-ACCTc- <u>5Ni</u> -aAaaAaCTTCTaCTAATTC-3'					
C619_dI	5'-CTCTc- <u>dI</u> -TaAACATTCAAaACAAAAC-3'					
C619_R	5'-CTCTc <u>R</u> TaAACATTCAAaACAAAAC-3'	C620	5'-++TTG+++ATTTAG+TGA+TAGGAA-2'			
C619_dS	5'-CTCTc- <u>dS</u> -TaAACATTCAAaACAAAAC-3'	020	5-tthottannadtoathadaa-5			
C619_5Ni	5'-CTCTc- <u>5Ni</u> -TaAACATTCAAaACAAAAC-3'					
C379	5'-TaaaCTTTTaaTaaAaaAAaAaCAATCAT-3'	C380	5'-GGTGGTTGTGAAttAGGGA-3'			
C383	5'-aCTaaaaaCCACAaCCCCAAC-3'	C384	5'-tTTGGGAtAAAGGtttAtTGAG-3'			
C527	5'-AAtAtttAGtTGGAAGTTAATGAAT-3'	C528	5'-aCACTTCCACTCCCACC-3'			

*Modified base within the primer: dI – deoxyInosine, Y/R – mixed-bases (Y – C and T, R – G and A), dS – abasic, 5Ni – 5-Nitroindole

Jennifer Lu, Kelin Ru, Ida Candiloro, Alexander Dobrovic, Darren Korbie, Matt Trau

	deoxyinosine		mixed-base		5-nitroindole			abasic				
	n*	mean	SD	n*	mean	SD	n*	mean	SD	n*	mean	SD
100% Methylated Control												
Modified Primers	9	88.43	2.29	9	87.51	2.81	9	88.49	2.53	9	78.47	6.24
CpG-free Control Primers	23	86.65	3.11	23	85.66	3.24	23	85.38	4.05	23	84.94	5.00
Modified Primers	15	87.86	6.16	15	87.53	6.43	15	38.71	40.30	6	88.47	3.91
CpG-free Control Primers	15	87.18	3.30	15	87.43	3.64	15	87.86	4.46	15	86.71	4.45
75% Methylated Control												
Modified Primers	9	63.03	2.51	9	67.11	2.15	9	68.62	2.36	9	71.56	5.93
CpG-free Control Primers	23	59.19	3.56	23	60.26	2.71	23	62.94	2.87	23	63.14	3.20
Modified Primers	15	53.40	8.00	15	67.19	3.64	15	78.55	12.00	15	79.47	9.62
CpG-free Control Primers	15	60.70	4.03	15	64.22	2.97	15	66.32	5.33	15	67.89	4.70
50% Methylated Control												
Modified Primers	9	42.66	4.22	9	51.83	3.26	9	44.59	1.26	2	39.17	0.20
CpG-free Control Primers	23	41.03	5.44	23	46.28	1.66	23	43.74	1.93	23	43.24	2.24
Modified Primers	15	39.84	2.48	15	43.64	3.06	15	56.90	11.46	6	44.30	2.35
CpG-free Control Primers	15	43.47	4.30	15	44.11	4.19	15	43.61	3.32	15	45.42	4.36
25% Methylated Control												
Modified Primers	9	22.66	3.45	9	26.11	1.71	9	24.84	2.44	9	31.34	6.97
CpG-free Control Primers	23	21.86	1.44	23	18.64	3.23	23	23.16	1.31	23	24.51	1.54
Modified Primers	15	18.84	2.58	15	22.19	1.92	6	25.97	1.51	6	21.81	1.57
CpG-free Control Primers	15	22.40	3.30	15	19.82	1.82	15	22.81	1.64	15	22.54	2.33
0% Methylated Control												
Modified Primers	9	1.45	0.50	9	1.60	0.58	9	1.61	0.35	2	0.67	0.02
CpG-free Control Primers	23	1.42	0.59	23	1.53	0.63	23	1.61	0.78	23	1.60	0.49
Modified Primers	15	1.48	0.68	15	1.33	0.68	6	1.54	0.55	15	3.22	1.95
CpG-free Control Primers	15	1 42	0.42	15	1 27	0.33	15	1 34	0.40	15	1 82	0.66

SuppTable 3: Summary of mean and standard deviation (SD) of CpG methylation sites across all the amplicons generated with primers that had the four modified bases.

*n: number of CpG sites in total

Jennifer Lu, Kelin Ru, Ida Candiloro, Alexander Dobrovic, Darren Korbie, Matt Trau

	deoxyinos	ine	mixed-base		
	n* mean	SD	n* mean	SD	
100% Methylated Control					
CpG near 5' end	8 88.25	3.61	8 87.87	3.93	
near centre of primer	15 87.55	2.62	15 87.27	2.95	
CpG-free control	23 86.65	3.11	23 85.66	3.24	
CpG near 5' end	27 86.97	5.66	27 88.62	5.49	
CpG in both primers	23 88.62	4.88	23 88.16	4.05	
CpG-free control	15 87.18	3.30	15 87.43	3.64	
75% Methylated Control					
CpG near 5' end	8 64.77	3.27	8 68.67	3.32	
near centre of primer	15 65.07	3.89	15 71.00	8.42	
CpG-free control	23 59.19	3.56	23 60.26	2.71	
CpG near 5' end	27 50.38	7.20	27 67.83	3.30	
CpG in both primers	23 62.15	4.43	23 64.01	4.60	
CpG-free control	15 60.70	4.03	15 64.22	2.97	
50% Methylated Control					
CpG near 5' end	8 44.17	1.89	8 46.30	2.04	
near centre of primer	15 45.32	4.74	15 52.47	6.14	
CpG-free control	23 41.03	5.44	23 46.28	1.66	
CpG near 5' end	27 34.46	6.46	27 44.23	2.55	
CpG in both primers	23 41.93	5.81	23 43.92	3.25	
CpG-free control	15 43.47	4.30	15 44.11	4.19	
25% Methylated Control					
CpG near 5' end	8 24.07	1.20	8 24.01	1.28	
near centre of primer	15 25.27	4.36	15 26.00	1.49	
CpG-free control	23 21.86	1.44	23 18.64	3.23	
CpG near 5' end	27 15.24	4.57	27 23.96	2.51	
CpG in both primers	23 18.30	3.62	23 21.39	5.04	
CpG-free control	15 22.40	3.30	15 19.82	1.82	
0% Methylated Control					
CpG near 5' end	8 1.59	0.48	8 1.19	0.26	
near centre of primer	15 1.82	0.96	15 1.92	0.93	
CpG-free control	23 1.42	0.59	23 1.53	0.63	
CpG near 5' end	27 1.36	0.60	27 1.29	0.65	
CpG in both primers	23 1.66	0.84	23 1.89	0.84	
CpG-free control	15 1.42	0.42	15 1.27	0.33	

SuppTable 4: Summary of mean and standard deviation (SD) of CpG methylation sites across amplicons generated using primers where the modified base is positioned differently within the primer(s).

*n: number of CpG sites in total

Jennifer Lu, Kelin Ru, Ida Candiloro, Alexander Dobrovic, Darren Korbie, Matt Trau

		Percentage Methylation (%)				
		100	75	50	25	0
No Modifications						
$\Lambda_{1}(n^{*} - 21)$	Mean	96.48	79.96	62.24	30.37	15.05
Assay 1 (11° – 21)	SD	1.05	11.28	16.38	12.72	9.20
$\Lambda = 1$	Mean	97.55	63.87	46.68	15.00	11.73
Assay 2 (11° – 51)	SD	1.67	15.55	14.91	5.61	6.88
$\Delta c c c v 2 (n * - 22)$	Mean	97.40	72.16	50.27	24.22	11.95
Assay 5 (11° – 22)	SD	1.00	6.10	5.21	3.70	5.18
Single Modification						
$\Lambda_{CCOV}(1 (n^* - 2E))$	Mean	97.01	89.13	79.50	41.57	19.16
Assay 1 (11° – 55)	SD	1.83	4.45	11.14	18.18	15.47
$\Lambda(x,y) = (x^* - 40)$	Mean	98.26	83.20	62.67	19.49	15.34
Assay 2 (11° – 40)	SD	1.23	11.04	19.93	11.06	9.40
$\Lambda(x,y) = (x^* - 26)$	Mean	97.24	72.78	51.55	22.94	12.90
Assay 5 (11° – 50)	SD	1.07	6.83	6.30	8.43	7.53
Double Modification						
$\Lambda_{1}(n^{*} - 22)$	Mean	97.04	89.60	76.90	56.42	18.74
Assay 1 (11° – 25)	SD	1.24	9.72	16.82	26.78	10.85
Accov 2 (n* - 109)	Mean	97.96	88.33	70.35	28.54	18.88
Assay 2 (11° – 100)	SD	1.75	4.61	13.28	16.55	15.11
$\Lambda c c c \gamma 2 (n * - 24)$	Mean	97.94	70.62	51.43	25.84	15.75
Assay 3 (n* = 24)	SD	0.76	9.73	7.59	9.31	7.08

SuppTable 5: Summary of mean and standard deviation (SD) of CpG methylation sites across different assay conditions.

*n: number of CpG sites in total; Conditions of different assays are as summarised in SuppFigure 3

Jennifer Lu, Kelin Ru, Ida Candiloro, Alexander Dobrovic, Darren Korbie, Matt Trau

SuppFigure 1: Validation of primer pairs performed using singleplex bisulfite PCR. a) Amplicons generated using primers where only one modification is designed in the forward primer (**lanes 1-3**) or a modification is designed in both the forward and reverse primer (**lanes 4-6**). While primer pairs with either deoxyinosine or mixed-base modifications produced amplicons regardless of the number of modifications, amplification using abasic- and 5-Nitroindole-modified primers were 'unpredictable'. b) amplicons generated using 'CpG-free' control primers indicated that the results produced in (a) were reliable and not as a result of foreign factors. c) Table of all the primers where the primers corresponding to the lane numbers in (**a**) and (**b**) are listed.

Jennifer Lu, Kelin Ru, Ida Candiloro, Alexander Dobrovic, Darren Korbie, Matt Trau

d) Table of primers used

Number	Forward Primer	Reverse Primer				
1	C601	C602				
2	C603	C604				
з	C605	C606				
4	C607	C608				
5	C609	C610				
6	C611	C612				
7	C613	C614				
8	C615	C616				
9	C617	C618				
10	C619	C620				
11	C571	C572				
12	C575	C576				

SuppFigure 2: Validation of primer pairs using singleplex bisulfite PCR. a) Primer screen of primers where the modification is located near the centre of the forward primer. While primers with mixedbase of deoxyinosine modifications were able to produce products, primers with 5-nitroindole or abasic near the centre of the primer universally failed. b) Primer screen of primers where the modification is located near the 5' terminus of the forward primer. All primers which had a mixedbase or deoxyinosine modification near the 5' end of the forward primer produced products, while only two primer pairs with a 5-nitroindole or abasic near the 5' terminus produced amplicons, which suggests that the latter two modifications is not as stable as the former in bisulfite screening. c) Screening of 'CpG-free' primers during bisulfite PCR. All validation was performed on bisulfite-converted blood pool DNA. d) a table of all the primers where the primers corresponding to the lane numbers in (a), (b) and (c) are listed.

Jennifer Lu, Kelin Ru, Ida Candiloro, Alexander Dobrovic, Darren Korbie, Matt Trau

SuppFigure 3: Summary of methylation analysis of different graduated methylation profiles using different assay conditions. Summary of multiplex bisulfite PCR screening of amplicons generated using primers with 'no modification' (both the forward and reverse primers have no CpG sites), 'single modification' (a single CpG site in either the forward or reverse primer) or double modification (a CpG site within both the forward and reverse primer) of four different graduated methylation controls (0%, 25%, 75% and 100%) shown in **a** - **d**. Optimal level of methylation for each methylated control is indicated with \star along the y axis. e) Summary of assay conditions including primer concentrations (in nM) and annealing temperature (of the PCR).